

2009 U.S. NATIONAL CHEMISTRY OLYMPIAD

NATIONAL EXAM – PART I

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, Chair, State University of New York, Cortland, NY

James Ayers, Mesa State College, Grand Junction, CO Paul Groves, South Pasadena HS, South Pasadena, CA

Sherry Berman-Robinson, Consolidated HS, Orland Park, IL (retired) Preston Hays, Glenbrook South HS, Glenbrook, IL

Seth Brown, *University of Notre Dame*, Notre Dame, IN

David Hostage, Taft School, Watertown, CT

Peter Demmin, Amherst HS, Amherst, NY (retired)

Adele Mouakad, St. John's School, San Juan, PR

Marian Dewane, Centennial HS, Boise, ID

Jane Nagurney, Scranton Preparatory School, Scranton, PA

Valerie Ferguson, Moore HS, Moore, OK

Ronald Ragsdale, University of Utah, Salt Lake City, UT

Kimberly Gardner, US Air Force Academy, Colorado Springs, CO

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron® answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on **Part I**. Testing materials, scratch paper, and the Scantron sheet should be made available to the student *only* during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 29, 2009, after which tests can be returned to students and their teachers for further study.

Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed **Part I**, or after **one hour and thirty minutes** has elapsed, the student must turn in the Scantron sheet, **Part I** of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I	60 questions	single-answer multiple-choice	1 hour, 30 minutes
Part II	8 questions	problem-solving, explanations	1 hour, 45 minutes
Part III	2 lab problems	laboratory practical	1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use non-programmable calculators.

DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

Not valid for use as an USNCO Olympiad National Exam after April 29, 2009.

Distributed by the ACS DivCHED Examinations Institute, Iowa State University, Ames, IA.

All rights reserved. Printed in U.S.A.

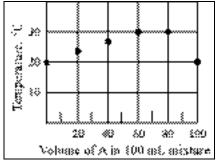
ABBREVIATIONS AND SYMBOLS								
amount of substance	n	Faraday constant	F	molar	M			
ampere	A	free energy	G	molar mass	M			
atmosphere	atm	frequency	ν	mole	mol			
atomic mass unit	u	gas constant	R	Planck's constant	h			
atomic molar mass	\boldsymbol{A}	gram	g	pressure	P			
Avogadro constant	$N_{ m A}$	hour	h	rate constant	k			
Celsius temperature	°C	joule	J	reaction quotient	Q			
centi- prefix	c	kelvin	K	second	S			
coulomb	C	kilo- prefix	k	speed of light	c			
electromotive force	\boldsymbol{E}	liter	L	temperature, K	T			
energy of activation	$E_{ m a}$	measure of pressure	mmHg	time	t			
enthalpy	H	milli– prefix	m	volt	V			
entropy	\boldsymbol{S}	molal	m	volume	V			
equilibrium constant	K							

CONSTANTS					
$R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$					
$R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$					
$1 F = 96,500 \text{ C} \cdot \text{mol}^{-1}$					
$1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$					
$N_{\rm A} = 6.022 \times 10^{23} \rm mol^{-1}$					
$h = 6.626 \times 10^{-34} \text{J}\cdot\text{s}$					
$c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$					
$0 ^{\circ}\text{C} = 273.15 \text{K}$					

EQUATIONS
$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad \qquad \ln K = \left(\frac{-\Delta H}{R}\right) \left(\frac{1}{T}\right) + \text{constant} \qquad \qquad \ln \left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

1			P	EKI	WD		IAB	LE	OF	IH	$\mathbf{E}[\mathbf{E}]$	LEN	IEN	115			18
1A																	8A
1																	2
H	2											13	14	15	16	17	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	\mathbf{Sr}	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub		Uuq				
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)		(2??)				

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)


DIRECTIONS

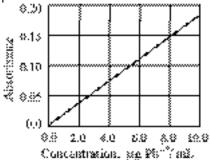
- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using a soft, #2 pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark very carefully.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened will not
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.
 - 1. Which oxide produces an acidic solution when mixed with water?
 - (A) Al₂O₃
- (B) CaO
- (**C**) CO
- (\mathbf{D}) SO₂
- 2. Which gas should not be collected over water due to its high solubility in water?
 - (A) H₂
- (B) N_2
- (C) NH₃
- (**D**) CH₄
- 3. Which procedure(s) will allow a student to differentiate between solid sodium sulfate and solid sodium sulfite?
 - I. Make solutions of each and look for a precipitate when added to $0.10 \text{ M Ba}(NO_3)_2$.
 - II. Add crystals of each to 0.10 M HCl and watch for
 - III. Make solutions of each and test with a pH indicator.
 - (A) I only
- (B) III only
- (C) I and II only
- (**D**) II and III only
- 4. A student gets fingerprints on a cuvette before using it to determine the concentration of a colored species using its known extinction coefficient. What is the effect on the absorbance and reported concentration?

absorbance reported concentration

- (A) increased too low (B) increased too high (C) decreased too low (D) decreased too high
- 5. Chemicals A and B each initially at 20 °C react exothermically. A graph of the final temperature reached by mixing equimolar solutions of A and B to a total of

100 mL is given to the right. According to this graph, in what mole ratio do A and B react?

- (A) 2:1
- **(B)** 3:1
- **(C)** 4:1
- **(D)** 3:2


- **6.** What color does the strontium ion produce in a flame test?
 - (A) red
- (B) blue
- (C) green
- (D) yellow

7. What is the mass percent of oxygen in th

What is the	Formula Weight, g				
mass percent	UO ₂ (C ₂ H ₃ O ₂) ₂ ·NH ₄ C ₂ H ₃ O ₂ ·6H ₂ O	573			
of oxygen in the compound					
$UO_2(C_2H_3O_2)_2\cdot NH_4C_2H_3O_2\cdot 6H_2O$?					

Formula Waight a

- (A) 5.58%
- **(B)** 16.8%
- **(C)** 22.3%
- **(D)** 39.1%
- **8.** A 25.0 mL sample of waste water is obtained to analyze for Pb²⁺ ions. This sample is evaporated to dryness and redissolved in 2.0 mL of H₂O, mixed with 2.0 mL of a buffer solution and 2.0 mL of a solution of dithizone then diluted to 10.0 mL. The absorbance of the colored Pb²⁺dithizone complex is compared with the Beer-Lambert plot below.

- The absorbance of a portion of the final solution is 0.13. What is the concentration of Pb²⁺ ions in the waste water in ppm?
- **(A)** 2.9
- **(B)** 7.2
- **(C)** 18
- **(D)** 36
- 9. Reductic acid contains 52.63% carbon, 5.30% hydrogen, and 42.07% oxygen. Its empirical formula is the same as its molecular formula. What is the number of carbon atoms in a molecule of this acid?
 - **(A)** 4
- **(B)** 5
- **(C)** 6
- **(D)** 8
- 10. Sulfur trioxide, SO₃, is made by oxidizing sulfur dioxide, SO_2 , according to the equation, $2SO_2 + O_2 \rightarrow 2SO_3$. If a 16.0 g sample of SO₂ yields 18.0 g of SO₃, what is the percent yield?
 - (A) 70.0%
- **(B)** 80.0%
- **(C)** 90.0%
- **(D)** 100.%

- 11. A 1.0 g sample of which substance contains the largest number of molecules?
 - (A) HN₃
- (B) N_2H_4
- (C) H₂O₂
- **(D)** HCl
- Molar Mass, g·mol⁻¹ **12.** What is the maximum mass of PbI₂ that can be PbI₂ precipitated by mixing 25.0 mL of 0.100 M Pb(NO₃)₂ with 35.0 mL of 0.100 M NaI?
- (A) 0.807 g (B) 1.15 g (C) 1.61 g (D) 2.30 g
- 13. Which statement is not a principle (postulate) of kinetic molecular theory?
 - (A) The molecules of a gas are in rapid random motion.
 - (B) The molecules of an ideal gas exhibit no attractive forces.
 - (C) The collisions of gaseous molecules with one another and the walls of their container are elastic.
 - (D) Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.
- 14. When a sample of an ideal gas is heated from 25°C to 50°C the average kinetic energy of the molecules increases. Which ratio gives the correct relationship between the average kinetic energies at the higher temperature to the lower temperature?
 - **(A)** 2:1

- **(B)** $\sqrt{2} \cdot \sqrt{1}$
- (C) 323:298
- **(D)** $\sqrt{323}$: $\sqrt{298}$
- 15. A partially filled tank of propane contains both a liquid and a gas phase. Which of these statements about the contents of the two phases are correct?
 - I. The two phases have the same potential energy but different kinetic energies.
 - II. The two phases have the same molar masses but different densities.
 - (A) I only
- **(B)** II only
- (C) Both I and II
- (D) Neither I nor II
- **16.** Which property or I. electrical conductivity properties of metals can be | II. malleability accounted for by the electron sea model?
 - (A) I only
- (B) II only
- (C) Both I and II
- (**D**) Neither I nor II
- 17. In a crystal of a typical metallic element, an atom has how many nearest neighbors?
 - (A) 4
- **(B)** 6
- **(C)** 12
- **(D)** 16

- 18. Which aqueous solution has the highest osmotic pressure at 25°C? (Assume all ionic compounds ionize completely in solution.)
 - (A) $0.1 \text{ M Al}_2(SO_4)_3$
- **(B)** $0.1 \text{ M Na}_{2}\text{CO}_{3}$
- (C) 0.2 M KMnO_4
- **(D)** $0.3 \text{ M C}_6\text{H}_{12}\text{O}_6$
- **19.** Which statement is correct at 25°C and 1 atm pressure?
 - (A) ΔG_f° for Hg(l) = 0 kJ·mol⁻¹
 - **(B)** ΔH°_{f} for $I_{2}(g) = 0 \text{ kJ-mol}^{-1}$
 - (C) ΔH_f° for $H_2O(1) = 0 \text{ kJ-mol}^{-1}$
 - **(D)** S° for $O_2(g) = 0$ J·mol⁻¹·K⁻¹
- **20.** What is the relationship among the magnitudes of the enthalpies of combustion (ΔH_{comb}), fusion (ΔH_{fus}) and vaporization (ΔH_{vap}) for a hydrocarbon such as hexane, C_6H_{14} ?
 - (A) $\Delta H_{\text{fus}} < \Delta H_{\text{comb}} < \Delta H_{\text{van}}$
 - **(B)** $\Delta H_{\text{vap}} < \Delta H_{\text{fus}} < \Delta H_{\text{comb}}$
 - (C) $\Delta H_{\text{comb}} < \Delta H_{\text{van}} < \Delta H_{\text{fus}}$
 - **(D)** $\Delta H_{\text{fus}} < \Delta H_{\text{vap}} < \Delta H_{\text{comb}}$
- **21.** Which choice represents the signs for ΔS and ΔH for the sublimation of a compound that is occurring at constant temperature?
 - (A) $\Delta S < 0, \Delta H < 0$
- **(B)** $\Delta S < 0, \Delta H > 0$
- (C) $\Delta S > 0, \Delta H > 0$
- **(D)** $\Delta S > 0$, $\Delta H < 0$
- 22. Determine $\Delta H_{\rm rxn}$ for this reaction in kJ·mol-1

$$2NH_3(g) + \frac{5}{2}O_2(g) \rightarrow$$

2.07	ı
$2NO(g) + 3H_2O(g).$	

 $H_2O(g)$ -241.8 $NH_3(g)$ -46.1NO(g)90.3

 ΔH°_{f} , kJ·mol⁻¹

- **(A)** -105.4 **(B)** -226.3
- **(C)** -452.6
- **(D)** -637.0
- 23. The enthalpy of fusion for NaF(s) at its melting point (992°C) is 29.3 kJ·mol⁻¹. What is the value of ΔS_{fus} ° in J·mol⁻¹·K⁻¹?
 - **(A)** 43.2
- **(B)** 33.9
- **(C)** 29.5
- **(D)** 23.2
- **24.** For the reaction at 25°C,

$$C_2H_4(g) + H_2(g) \rightleftharpoons C_2H_6(g)$$

$$K_{\rm p} = 5.67 \times 10^7$$

What is ΔG° for this reaction in kJ·mol⁻¹?

- **(A)** -0.436 **(B)** -3.71
- (C) -19.2
- **(D)** -44.2

25. What is the rate law for a reaction, $A + 2B \rightarrow C$, based on the rate data?

$[\mathbf{A}]_{o}, \mathbf{mol} \cdot \mathbf{L}^{-1}$	[B] _o , mol·L ⁻¹	Initial Rate, mol·L ⁻¹ ·min ⁻¹
0.20	0.10	300
0.40	0.30	3600
0.80	0.30	14400

- (A) Rate = k[A][B]
- **(B)** Rate = $k[A][B]^2$
- (C) Rate = $k[A]^2[B]$
- **(D)** Rate = $k[A]^2[B]^3$
- **26.** For the irreversible reaction; $A \rightarrow B$, which graph gives a straight line for a reaction that is second order in A?
 - (A) [A] vs. time
- **(B)** 1/[A] vs. time
- (C) $[A]^2$ vs. time
- **(D)** $1/[A]^2$ vs. time
- 27. A sample of a radioactive element that contains 1.0×10^3 nuclei decays to 6.2×10¹ nuclei in 10. minutes. What is its specific decay constant?
 - (A) 6.2 min^{-1}
- **(B)** 1.2 min^{-1}
- (C) 0.28 min^{-1}
- **(D)** $0.062 \, \text{min}^{-1}$
- 28. The oxidation of SO₂ to H₂SO₄ in acid rain is thought to occur by the following mechanism.

$$\begin{split} &SO_2(aq) \ + \ 2H_2O(l) \to HSO_3^-(aq) \ + \ H_3O^+(aq) \\ &2HSO_3^-(aq) \ + \ O_2(aq) \to S_2O_7^{2-}(aq) \ + \ H_2O(l) \\ &S_2O_7^{2-}(aq) \ + \ 3H_2O(l) \to 2SO_4^{2-}(aq) \ + \ 2H_3O^+(aq) \end{split}$$

Which species in this mechanism can be given the following designations?

	reactant	catalyst	intermediate
(A)	SO ₂ (aq)	$H_2O(1)$	$HSO_3^-(aq), H_3O^+(aq)$

- **(B)** $SO_2(aq)$
- $HSO_3^-(aq) S_2O_7^{2-}(aq)$
- (C) $SO_2(aq)$, $H_2O(1)$ $S_2O_7^{2-}(aq)$ $HSO_3^{-}(aq)$
- (**D**) $SO_2(aq)$, $H_2O(1)$ none
- $HSO_3^-(aq), S_2O_7^{2-}(aq)$
- **29.** For the reaction; $H_2(g) + I_2(g) \rightarrow 2HI(g)$, the rate law is Rate = $k[H_2][I_2]$.

Which of the mechanisms given is consistent with this rate law?

I.		II.				
$I_2 \rightleftharpoons I + I$	(fast)	$I_2 \rightleftharpoons I + I$	(slow)			
$H_2 + I + I \rightarrow 2HI$	(slow)	$H_2 + I + I \rightarrow 2HI$	(fast)			

- (A) I only
- (B) II only
- (C) Either I or II
- (D) Neither I nor II

- **30.** The rate of a reaction at 100°C is four times the rate at 50°C. What is its activation energy?
 - (A) 1152 kJ·mol⁻¹
- (**B**) 80.1 kJ·mol⁻¹
- (C) 54.0 kJ·mol⁻¹
- (**D**) 27.8 kJ·mol⁻¹
- **31.** The equilibrium system, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, has $K_p = 11$. For which equilibrium system is $K_p = 0.091$?
 - (A) $2NO_2(g) \rightleftharpoons N_2O_4(g)$
- **(B)** $NO_2(g) \rightleftharpoons 1/2 N_2 O_4(g)$
- (C) $2N_2O_4(g) \rightleftharpoons 4NO_2(g)$ (D) $1/2N_2O_4(g) \rightleftharpoons NO_2(g)$
- 32. A 1.0 L evacuated tank is charged with HI(g) to a pressure of 1.0 atm at 793K. Some of the HI(g) forms $H_2(g)$ and $I_2(g)$ according to the equilibrium;

$$2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g) \quad K_p = 0.016$$


What is the pressure (in atm) of HI at equilibrium?

- **(A)** 0.11
- **(B)** 0.13
- **(C)** 0.80
- **(D)** 1.6
- 33. A solution of 0.10 M NaZ has a pH = 8.90. What is the K_a of HZ?
 - **(A)** 1.6×10^{-4}
- **(B)** 1.6×10^{-5}
- (C) 6.3×10^{-10}
- **(D)** 6.3×10^{-11}
- **34.** What is the pH of a solution made by adding 0.41g of NaC₂H₃O₂ to 100. mL of $0.10 \text{ M HC}_2\text{H}_3\text{O}_2$?

Molar mas	s, g·mol ^{−1}			
$NaC_2H_3O_2$	82.0			
K _a				
$HC_2H_3O_2$	1.8×10 ⁻⁵			

- (A) 4.44
- **(B)** 4.70
- (C) 5.05
- **(D)** 8.95

35. The curve represents the titration of

- (A) a diprotic acid.
- **(B)** two monoprotic acids with the same K_a s but different concentrations.
- (C) two monoprotic acids with different K_a s but the same concentrations.
- (**D**) two monoprotic acids with different K_a s and different concentrations.

- **36.** Which silver compound is the most soluble in water?
 - (A) AgCl $K_{\rm sp} = 1.8 \times 10^{-10}$
 - **(B)** Ag₂CO₃ $K_{sp} = 8.5 \times 10^{-12}$
 - (C) AgBr $K_{sp} = 5.4 \times 10^{-13}$
 - **(D)** $Ag_3PO_4 K_{sp} = 8.9 \times 10^{-17}$
- 37. When connected to a Standard Hydrogen Electrode (SHE) electrons flow from an unknown half cell to the SHE. Which statement is correct?
 - (A) The unknown half cell is the anode.
 - (B) Oxidation occurs at the SHE.
 - (C) E_{red}° for the unknown half cell is positive.
 - **(D)** E_{cell}° is negative.
- **38.** Given these standard

$Co^{3+}(aq) + e^{-} \rightarrow Co^{2+}(aq)$	$E^{\circ} = 1.82 \text{ V}$
$Co^{2+}(aq) + 2e^- \rightarrow Co(s)$	$E^{\circ} = -0.28 \text{ V}$

reduction potentials, what is the standard reduction potential for $Co^{3+}(aq) + 3e^{-} \rightarrow Co(s)$?

- (A) 2.10 V
- **(B)** 1.54 V
- (C) 1.26 V
- **(D)** 0.42 V

39. The cell

 $Al(s) \mid Al^{3+}(aq, 0.001 \text{ M}) \mid Cu^{2+}(aq, 0.10 \text{ M}) \mid Cu(s)$ has a standard cell potential, $E^{\circ} = 2.00 \text{ V}$. What is the cell potential for this cell at the concentrations given?

- (A) 2.07 V
- **(B)** 2.03 V **(C)** 1.97 V **(D)** 1.94 V
- **40.** Ethanol reacts with dichromate ions in acid solution according to the equation;

$$C_2H_5OH(1) + Cr_2O_7^{2-}(aq) + H^+(aq)$$

$$\rightarrow$$
 CO₂(g) + Cr³⁺(aq) + H₂O(l)

What is the coefficient for H⁺(aq) when this equation is balanced with the smallest whole number coefficients?

- (A) 10
- **(B)** 12
- **(C)** 14
- **(D)** 16

41. Given these standard

$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	$E^{\circ} = 0.80 \text{ V}$
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	$E^{\circ} = -0.13 \text{ V}$

reduction potentials, what is the free energy change (in kJ·mol⁻¹) for the reaction

$$Pb(s) + 2Ag^{+}(aq) \rightarrow Pb^{2+}(aq) + 2Ag(s)$$
?

- **(A)** -180
- **(B)** −90
- **(C)** 90
- **(D)** 180
- 42. Chromium metal can be produced by the electrolysis of molten CrO₂. What current in amperes operating for 100 minutes is needed to produce 104 grams of this metal?
 - **(A)** 193
- **(B)** 96.5
- **(C)** 64.3
- **(D)** 32.2

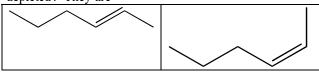
- 43. What is the frequency of light with a wavelength of 480 nm?
 - (A) $1.60 \times 10^{-6} \text{ s}^{-1}$
- **(B)** $6.25 \times 10^5 \text{ s}^{-1}$
- (C) $6.25 \times 10^{14} \text{ s}^{-1}$
- **(D)** $1.44 \times 10^{20} \text{ s}^{-1}$
- **44.** Which set of quantum numbers (n, l, m_l) is forbidden?
 - (A) 3, 2, 0
- **(B)** 3, 1, -1
- (C) 2,0,0
- **(D)** 1, 1, 0
- **45.** Which characteristic of an atomic orbital is most closely associated with the magnetic quantum number, m₁?
 - (A) size

- (B) shape
- (C) occupancy
- (D) orientation
- **46.** Which element exhibits the successive ionization energies given in the table?

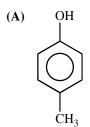
3	Ionization Ener	rgy, kJ·mol ⁻¹
	1 st	738
	$2^{\rm nd}$	1451
	$3^{\rm rd}$	7733
	4^{th}	10540
	5 th	13628

- (A) Na
- **(B)** Mg
- (C) A1
- (D) Si
- 47. The energies of the 3s, 3p and 3d orbitals in a multielectron atom increase in that order. To which factor(s) can this order be attributed?
 - **I.** the relative penetrations of these orbitals near the
 - II. the relative average distance of the electron from the nucleus
 - (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- **48.** Which element has the highest first ionization energy?
 - (**A**) Al
- (**B**) Si
- (C) P
- **(D)** S
- 49. What is the formal charge on the nitrogen atom in HNO₃?

- **(A)** 0
- **(B)** +1
- (C) +3
- **(D)** +5
- **50.** Which substance has the greatest lattice energy?
 - (A) CaO
- (B) KCl
- (C) MgI_2
- (**D**) BaS
- **51.** Given the bond energies, what is the $\Delta H_f^{\circ} N_2 H_4(g)$ in kJ·mol⁻¹?


$N_2(g) +$	$2H_2(g) \rightarrow$	$N_2H_4(g)$
------------	-----------------------	-------------

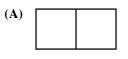
Bond Energies, kJ·mol ⁻¹		
N≡N	946	
N=N	418	
N-N	163	
N–H	389	
H–H	436	


- (A) 156
- **(B)** 99
- **(C)** –99
- **(D)** -156

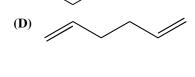
- **52.** Which species has a trigonal planar geometry?
 - (**A**) ClF₃
- **(B)** NCl₃
- (C) CO₃²⁻
- **(D)** I_3^-

- **53.** Which of the molecules listed have an sp³ hybridized central atom?
- I. PCl₃
- II. COCl₂
- III. SF₄
- (A) I only
- (B) I and III only
- (C) II and III only
- (**D**) I, II and III
- **54.** How many isomers exist for a square planar platinum compound which has four different groups attached to the platinum atom?
 - (A) one
- (B) two
- (C) three
- (**D**) four
- **55.** Molecules of which type(s) do not contain a C = O bond?
- I. amide
- II. amine
- III. ether
- IV. ester
- (A) II only
- (B) I and IV only
- (C) II and III only
- (D) III and IV only
- **56.** What is the relationship between the two molecules depicted? They are

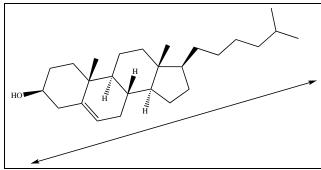
- (A) identical.
- (B) geometric isomers.
- (C) structural isomers.
- (D) enantiomers.
- **57.** For which compound is the –OH group the most acidic?



(B)


- (C) CH₃CH₂CH₂OH
- **(D)** (CH₃)₃COH

- **58.** The most notable difference between a saturated and an unsaturated fat containing the same number of carbon atoms is that the saturated fat
 - (A) melts at a higher temperature.
 - **(B)** melts at a lower temperature.
 - (C) releases much more energy when metabolized.
 - (D) releases much less energy when metabolized.
- **59.** Which C_6H_{10} isomer is the least stable?



60. The structure of cholesterol is shown.

What is the approximate length of this molecule (as indicated by the scale bar)? (1 Å = 1×10^{-10} m)

- (**A**) 1.75 Å
- **(B)** 17.5 Å
- (C) 175 Å
- **(D)** 1750 Å

END OF TEST

Olympiad 2009 National Exam Part 1

KEY

Number	Answer	Number Answer
1.	D	31. A
2.	C	32. C
3.	D	33. B
4.	В	34. A
5.	В	35. D
6.	\mathbf{A}	36. B
7.	D	37. A
8.	\mathbf{A}	38. D
9.	В	39. B
10.	C	40. D
11.	В	41. A
12.	\mathbf{A}	42. A
13.	D	43. C
14.	C	44. D
15.	В	45. D
16.	\mathbf{C}	46. B
17.	\mathbf{C}	47. A
18.	\mathbf{A}	48. C
19.	\mathbf{A}	49. B
20.	D	50. A
21.	C	51. B
22.	C	52. C
23.	D	53. A
24.	D	54. C
25.	\mathbf{C}	55. C
26.	В	56. B
27.	\mathbf{C}	57. B
28.	D	58. A
29.	A	59. A
30.	D	60. B