

We will blast off momentarily at 2pm ET

Recordings will be available to ACS members after two weeks http://acswebinars.org

Contact ACS Webinars ® at acswebinars@acs.org

Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand® ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

www.acs.org/2joinACS

How has ACS Webinars[®] benefited you?

"Gives me great ideas for topics to explore with my students, and ways to do so. Even when I don't adapt the topic directly into a lesson plan or lab activity, sharing the scope of what 'chemistry' is and can be helps to motivate the students, and keep me engaged too."

Fan of the Week

Amy Naylor, Instructor, Mitchell Community College

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Beginning in 2014 all recordings of ACS Webinars will be available to current ACS members two weeks after the Live broadcast date.

Live weekly ACS Webinars will continue to be available to the general public.

Upcoming ACS Webinars[®] www.acs.org/acswebinars

Thursday, July 31, 2014

"Drug Discovery Series "The Role of Chemistry in Clinical Trials: The Big Expense & Lessons Learned"

Graham Johnson, NuPharmAdvise LLC Dr. Jay Sisco, JM Sisco Pharma Consulting Dr. John Morrison, Bristol-Myers Squibb

Thursday, August 7, 2014

"How to Write Abstracts that Capture Your Audience"

Celia Elliott, University of Illinois at Urbana-Champaign **Patricia Blum**, University of Illinois at Urbana-Champaign


Contact ACS Webinars ® at acswebinars@acs.org

ACS Webinars welcomes the NASA Wallops Visitor Center!

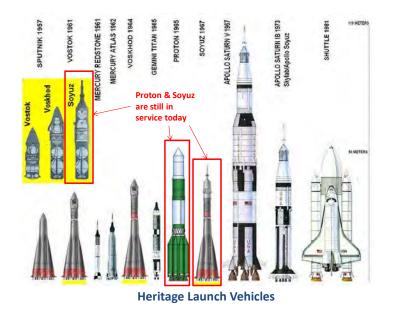
11

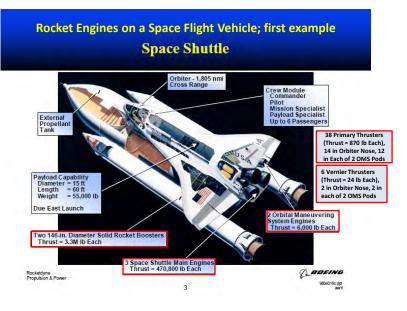
12

www.acswebinars.org

Rocket Science 101: Engineering and Propulsion

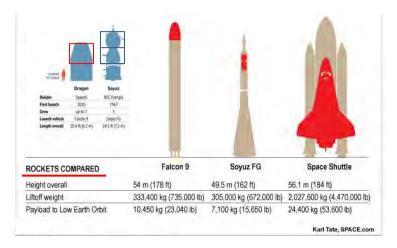
Host: Mike David, ACS Moderator: David, Harwell, ACS Presenter: Larry de Quay, NASA Stennis Space Center July 24, 2014

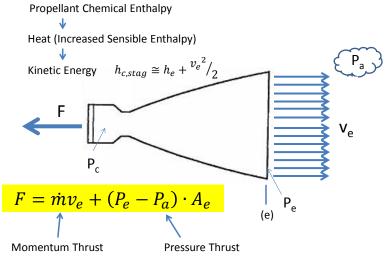

Audience Question:


Have you ever seen a live space vehicle launch in person?

Rocketry History c. 67 AD Hero of Alexandria's "aeolipile" rotating steam jet, basic principle of reaction used in jets & roo ~970 AD Chinese invention of rockets; Feng Jishen is believed by many to be the main inventor. 1232 Battle of Kai-fung-fu. Incendiary powder packets were tied to arrows. 1275 Rockets used as weapons during Invasion of Japan by Kublai Kahn. 1379 Battle for Isle of Chiozza. Powder rockets used to set defending tower on fire. 1792 Battle of Seringapatam, Indian armies under Tipu Sultan used rockets against British. 1805 Powder rockets with 2000 yard range demonstrated by Congreve of England. 1806 British use Congreve rockets in attacks against Boulogne, France. 1807 Copenhagen razed by 25,000 powder rockets. 1814 British use rockets during War of 1812 in the United States, incl. Fort McHenry in Baltimore Harbor ("rockets' red glare" in the "Star Spangled Banner"). 1903 Tsiolkovsky published first treatise on space travel advocating liquid rockets, "The Exploration of Cosmic Space by Means of Reaction Devices." 1919 Goddard wrote "A Method of Reaching Extreme Altitudes." 1923 Oberth wrote "The Rocket into Interplanetary Space." 1926 Goddard launched a liquid rocket to an altitude of 184 ft. in 2.5 sec. Opel flew aircraft propelled by solid rocket propellant charges mounted on a glider. 1935 Rocket launched to an altitude of 7500 ft. by Goddard. 1937 Peenemunde Research Institute established. 1938 Early model of V-2 attained altitude of 40,000 ft. and range of 11 miles. 1942 JATOs used in World War II. 1947 Rocket-powered Bell X-1 completed first piloted supersonic flight in history. 1956 Bell X-2 reached altitude of 126,000 ft. and speed of 2150 mph. 1957 Sputnik launched (first man-made satellite). 1958 Explorer I launched (America's first satellite). 1961 Yuri Gagarin launched into orbit on Vostok I (first person in space). 1969 Neil Armstrong and Buzz Aldrin land and then walk on the moon.

International Space Launch Vehicl 350 325 325 300 300 275 275 EMBRY-RIDDLE 250 250 Ae nautical University 225 225 Naro 1 200 200 Dnepr 175 Unha 3 Shavit 175 150 125 150 Safir 125 100 100 75 75 50 50 25 Atlas 5 Zenit Long March 3B Proton Angara 5 Ariane 5 H-2B Soyuz Falcon 9 GSLV Delta 4 Heavy Falcon Heavy Pegasus Space Launch System (SLS) Vega Minotaur 1 & 2 Delta 2 Long March 4C Blue = U.S.A. Red = Russia Antares Minotaur 4 & 5 Brown = Ukraine Green = Europe Long March 2C Orange = Japan Gray = China Purple = India Others: South Korea (Naro 1), North Korea (Unha 3), Israel (Shavit), Iran (Safir)

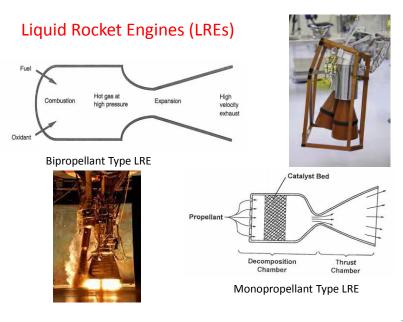



Rocket Engines on a Space Flight Vehicle; second example

21

Payload Size and Weight Comparisons of Two Currently Operational Space Launch Vehicles and the Space Shuttle

Thrust



23

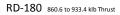
The Different Types of Chemical Rocket Engines

- Liquid (Propellant) Rocket Engines (LREs)
- Solid (Propellant) Rocket Engines (SREs)
- Hybrid Rocket Engines (HREs)

25

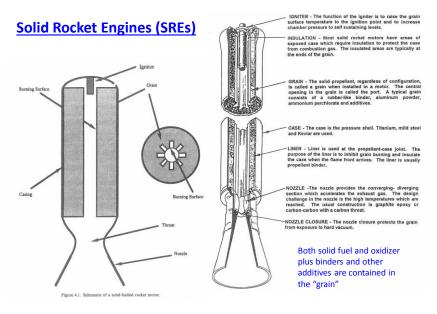
			Saturation Temperature at 1 Bar			
Name	Chemical Formula			°R	°F	
Liquid Fluorine	F ₂	Oxidizer	85.1	153.1	-306.	
Liquid Oxygen	0 ₂	Oxidizer	165.2	297.4	-162.	
Nitrous Oxide	N₂O	Oxidizer	184.7	332.4	-127.	
Hydrogen Peroxide	H ₂ O ₂	Oxidizer or Monopropellant	424.2	763.6	303.	
Nitrogen Tetroxide (NTO)	N ₂ O ₄	Oxidizer	294.8	530.7	71	
Liquid Hydrogen	H ₂	Fuel	20.3	36.6	-423	
Liquid Methane	CH ₄	Fuel	111.8	201.2	-258	
RP-1	CH _{1.953}	Fuel	475.7	856.2	396	
Octane	C ₃ H ₈	Fuel	398.8	717.8	258	
Ethanol	C ₂ H ₅ OH	Fuel	351.6	632.8	173	
Isopropyl Alcohol (IPA)	C ₃ H ₇ OH	Fuel	355.4	639.7	180	
Hydrazine	N_2H_4	Fuel or Monopropellant	387.0	696.7	237	
Monomethylhydrazine (MMH)	CH ₃ (NH)NH ₂	Fuel	364.3	655.7	196	
Unsymetrical Dimethyl- hydrazine (UDMH)	(CH ₃) ₂ N ₂ H ₂	Fuel	337.1	606.8	147	
Hydroxyl Ammonium Nitrate (HAN)	H ₄ N ₂ O ₄	Monopropellant	>418	>752.4	>292.	
Nitromethane	CH ₃ NO ₂	Monopropellant	373.9	673.1	213	
Nitroglycerin	C ₃ H ₅ N ₃ O ₉	Monopropellant	323.2	581.7	122	
Tetranitromethane	CN ₄ O ₈	Monopropellant	398.7	717.7	258	
Ethylene Nitrate	C ₂ H ₄ N ₂ O ₆	Monopropellant	N/A	N/A	N/A	

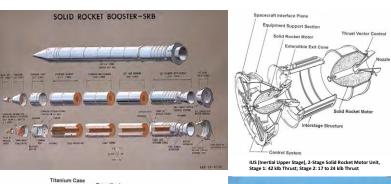
Typical Propellants for LREs (Liquid Rocket Engines):

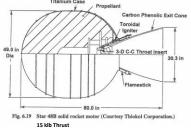


2.40 m = 94"

27

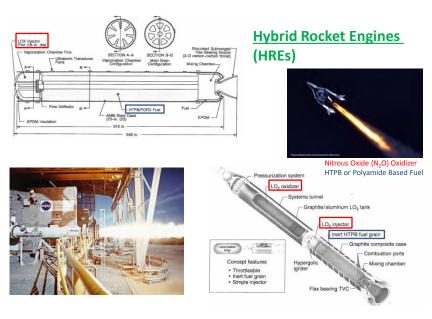

1.68 m = 66"

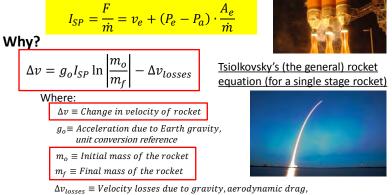




29

Name	Abbrev. Name or Acronym	Chemical Formula	Туре	16% and 18% in
Aluminum (fine powder)	AI	AI	Fuel	Grain respectively for Space Shuttle and
Zirconium (powder)	Zr	Zr		Ariane 5 Solid
Ammonium Perchlorate	AP	NH ₄ CIO ₄		Rocket Motors
Ammonium Nitrate	AN	NH4NO3	Oxidizer	
Ammonium Dinitamine	AND	NH ₃ (NH)(NO ₂) ₂		69.6% and 68% in
Potassium Perchlorate	KP	KCIO ₄		
Potassium Nitrate	KN	KNO ₃	Oxidizer, Visible Flame Suppresant	grain respectively for Space Shuttle and
Potassium Sulphate	KS	K25O4	Visible flame Suppresent	Ariane 5 Solid
Cyclotetramethylene- tetrantromine	нмх	$C_{d}H_{S}N_{S}O_{S}$	Solid	Rocket Motors
Cyclotetra methylene - trini tromine	RDX	C ₃ H ₆ N ₆ O ₆	Crystal/	
Nitroguanadine	NQ	CH ₄ N ₄ O ₂	Filler	
Hydroxyl-terminated Polybutadiene	нтрв	Ces4HeeeNaO20 Ces6HeereNsO13 C73H110O6 Ce7HeeAO C72H1000	Fuel, Binder	-
Carboxyl-terminated Polybutadiene	СТРВ	C ₇₂ H ₁₀₈ O C ₇₂ H ₁₀₈ O	(polybutadiene type)	~14% in grain for
Polybutadiene acrylonitrile acrylic acid	PBAN	C ₆₇₁ H ₉₉₉ N ₁₉ O ₁₆		Space Shuttle and
Polybutadiene acrylic acid	PBAA	C ₂₀ H ₁₀₄ O ₄		A marie o
Polyethylene Glycol	PEG	C2nH4n+2On+1		Solid Rocket
Polycaprolactone polyol	PCP	C564H599O217	Fuel, Binder	Motors
Polyglycol adipate	PGA	C10H16O5	(polyether or	
Polypropylene glycol	PPG	C ₅₂ H ₁₀₈ O ₁₇	polyester type)	
Polyurethane polyester or polyether	PU	$C_{536}H_{587}N_{12}O_{140}$		
Methyl Aziridinyl Phosphine Oxide	MAPO	C _p H ₁₈ N ₃ OP		
Isophorone diisocyanate	IPDI	C11H18N2O2	Curing Agent	
Toluene -2,4-diisocyanate	TDI	C ₃ H ₆ N ₂ O ₂	or Crosslinker	
Hexamethylene diisocyanate	HMDI	C ₈ H ₁₂ N ₂ O ₂	(reacts with	
Dimeryl diisocyanate	DDI	C10H12N4O3	polymer binder)	
Trimethylol propane	TMP	C6H14O3		


Typical Fuels, Oxidizers, Binders, and Other Additives in SRE Propellant Grains


Туре	Advantages	Disadvantages				
LREs	Throttle-able	More Complex				
	Can test prior to use/launch	Lower Propellant Mass Fraction				
	Higher I _{SP} (Specific Impulse)	Leaking & Boiloff Issues				
	Can be multiple use (booster, sustainer, orbital adjustments)	More preparation time before use/launch				
	Can be shut off any time after start	Complex pumps often required				
	Simple operation	Can only have pre-set throttle vs. time				
	High propellant mass fraction (boosters)	Cannot be shut off once started				
SREs	Easily scalable to higher thrust levels/classes	Fuel and oxidizer (all propellants) in combustion chamber				
	Ready and useable at moment's notice	I_{SP} (Specific Impulse) lower than LREs				
	Efficient packaging	Difficult to test; Cannot test same engine prior to its use/launch				
HREs	Throttle-able	Fuel surface non-uniform regression and erosion issues				
	Simpler operation than LREs	I_{SP} (Specific Impulse) lower than LREs				
	Can be shut off any time after start	Cannot test same engine prior to its use/launch				
		Limited operational and proven experience				

Comparison of the Types of Chemical Rocket Engines

33

$F = \dot{m}v_e + (P_e - P_a) \cdot A_e$ Thrust Equation from Slide 10

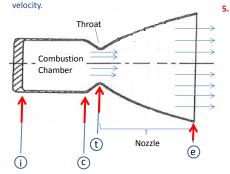
Specific Impulse, the most important engine performance measurement

steering, and earth's (planet's) rotation

Higher I_{SP} results in higher Δv , higher payload mass, lower initial propellant mass, or combinations of these

Audience Question:

What is the change in velocity, Δv , needed to get from the Earth's surface to the ISS (International Space Station); which is in LEO (Low Earth Orbit) between 330 and 435 km (205 and 270 miles) above the surface?


- 1,220 km/hr (760 mph)
- 4,830 km/hr (3,000 mph)
- 19,950 km/hr (12,400 mph)
- 28,160 km/hr (17,500 mph)
- 40,230 km/hr (25,000 mph)

Assume that the Earth is not rotating at time of launch (this does make a difference)

35

Determining I_{SP} (Specific Impulse) and thrust of a rocket engine or designing a rocket engine to have the desired or maximum practicable I_{SP} and thrust requires use of thermochemistry and thermodynamics.

- 1. Station 'i:' Mass flow rate of propellants into the combustion chamber at (injector) are set.
- Station 'c:' <u>Thermochemistry</u> is used to determine temperature of combustion product gas mixture and mole (or mass) fractions of constituent gases in this gas mixture.
- Station 'c' to Station 't' (throat): <u>Thermodynamics</u> is used to determine change in gas properties and velocity.
 - if gas velocity at station 't' is not sonic, combustion chamber pressure (or throat diameter) is changed and step 2. is repeated (iterative process).
- 4. Station 't' to Station 'e:' Thermodynamics is used to determine change in gas properties and

Station 'e:' Velocity and pressure of the gas mixture are used to calculate thrust and I_{SP}.

Note: For steps 3. and 4., <u>Thermochemistry</u> is also used to determine change in mole fractions of constituent gases for "Shifting Equilibrium" analysis; overestimates I_{SP} by ~1 to 4%

"Frozen Equilibrium" analysis; no change in const. gas mole fractions between Stations 'c' and 'e'; underestimates I_{SP} by ~1 to 4%

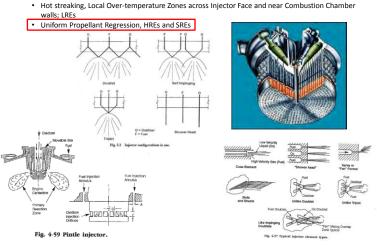
$I_{\mbox{\scriptsize SP}}$ and Other Performance Data, Existing & Operational LREs

Engine	Propellants	O/F MR	Thrust, vacuum		Thrust, sea level		I _{sp} , vac.	I., s.l.	
			(kN)	(klb _f)	(kN)	(klb _i)	(sec)	(sec)	
Vulcain (HM60)	LOX/LH ₂	6.20	1075	241	815	183	431	31	
SSME (RS-25)	LOX/LH ₂	6.03	2285	513	1825	410	455	36	
HM7 B	LOX/LH ₂	5.14	62	14	N/A	N/A	445	N/A	
RL-10	LOX/LH ₂	5.00	68	15	N/A	N/A	410	N/A	
J-2	LOX/LH ₂	5.50	1052	236	N/A	N/A	425	N/A	
F-1	LOX/RP-1	2.27	7893	1772	6880	1544	304	26	
RS-27	LOX/RP-1	2.25	1043	234	934	210	295	26	
XLR-105-5	LOX/RP-1		370	83	250	56	309	21	
11D58	LOX/Kerosene		850	191	N/A	N/A	348	N/A	
RD 170	LOX/Kerosene	2.63	8060	1809	7425	1667	337	30	
RD 180	LOX/Kerosene	2.72	4150	932	3830	860	338	31	
AJ-26	LOX/RP-1	2.74	1755	394	1581	355	332	29	
Merlin 1C	LOX/RP-1	~2.5 - 2.8	480	108	420	94	305	27	
Merlin 1C Vac.	LOX/RP-1	~2.5 - 2.8	411	92	N/A	N/A	342	N/A	
Viking 5C	N ₂ O ₄ /UDMH	1.70	725	163	678	152	278	24	
RD 253	N ₂ O ₄ /UDMH		1670	375	1410	317	316	26	
Aestus	N ₂ O ₄ /MMH	2.05	29	7	N/A	N/A	324	N/A	

I_{SP} and Other Performance Data, Existing and Operational SREs

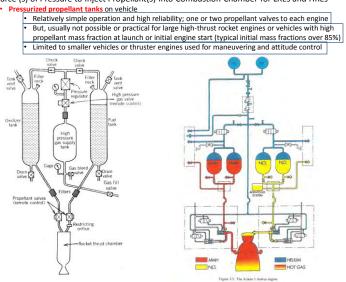
Engine	Propellants and their Mass Fractions	Thrust, vacuum		Thrust, sea level		Ise, vac.	Ispy S.I.
		(kN)	(klb _f)	(kN)	(klb _f)		(sec)
Space Shuttle SRM	AP 69.6%, AI 16%, PBAN 14%, FeO 0.4%	15012	3370	14700	3300	268	~226
Ariane 5 MPS	AP 68%, AI 18%, PBAN 14%	6470					
AJ-60A	(Nominally Same as Space Shuttle SRM)	1270	285	1270	285	275	~245
IUS, Stage 1, Orbus 21	(Nominally Same as Orbus 6)	185	42	N/A	N/A	296	N/A
IUS, Stage 2, Orbus 6E	(Nominally Same as Orbus 6)	75.3 to 79.3	16.9 to 17.8	N/A	N/A	289-304	N/A
Star 48B	AP 71%, AI 16%, HTPB 11%	68.6 to 78.0	15.4 to 17.5	N/A	N/A	292	N/A
Star 27	AP 72%, AI 16%, HTPB & Other Binders, Additives 12%	23.2 to 28.5	5.2 to 6.4	N/A	N/A	291	N/A
Orbus 6	AP 68%, AI 18%, HTPB & Other Binders, Additives 14%	75.7 to 106.0	17.0 to 23.8	N/A	N/A	290	N/A

37

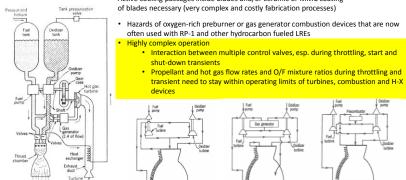

Audience Question:

LREs that use hydrogen and oxygen propellants have the highest I_{SP}. However, there are various reasons that designers often select SREs, HREs, or LREs with different propellants for particular flight vehicles or stages thereof. Which of the following is false and would therefore **not** be a reason that a designer might design or select a rocket engine that uses a fuel propellant other than hydrogen?

- Liquid hydrogen density is much less than the density of other propellants
- Hydrogen molecules are smaller than those of other propellants
- Saturation temperature of hydrogen is below -400 °F
- Hydrogen is a toxic substance
- Hydrogen is colorless and odorless


Rocket Engine Design Issues and Challenges:

- Combustion Processes
 - Propellant Atomization, Vaporization and Mixing; Injector Design and Performance; is Essential
 - Prevention of Ignition Quenching (mainly during start transients)
 - Combustion Stability (Prevent coupling between chamber pressure and propellant flow rates)
 - Pogo, coupling between vehicle acceleration and propellant flows


Rocket Engine Design Issues and Challenges:

Source (s) of Pressure to Inject Propellant(s) into Combustion Chamber for LREs and HREs

Rocket Engine Design Issues and Challenges:

- Source (s) of Pressure to Inject Propellant(s) into Combustion Chamber for LREs and HREs (Continued)
 - Pump Fed Rocket Engines (lower pressures in vehicle propellant tanks , lighter weight tanks & vehicle) But the price is more complexity and a host of other design issues to address
 - High flow rate and rotational speed (10,000 to 45,000 rpm) pumps needed
 - Gas turbines used to drive pumps (turbopumps); very high power density
 - Additional combustion or high heat flux (H-X) devices for gases to drive these turbines
 - Turbine blades , discs, blisks; high thermal and dynamic stresses
 - Hot streaking issues are amplified (across full injector face, not just along walls) Active cooling passages inside blades and/or ceramic or MMC coating

STAGED-COMBUSTION CYCLE

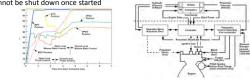
Rocket Engine Design Issues and Challenges (Continued):

Material Properties and Limitations

- Combustion chamber gas temperatures above melting point of wall materials or are where
- material strength is reduced significantly; need for fuel rich or all fuel flow along walls
- Containment of pressures vs. wall thicknesses; Weight constraints

NOER CYCLE

- Differential thermal expansion and rates of thermal expansion between mating parts; often with close fit tolerances
- Thermal ratcheting, changes engine performance and also related to fit tolerances Active cooling required for LREs
 - Propellant(s) used as coolant for Combustion Chamber, Throat, and Nozzle walls
 - Also serves to pre-heat propellant(s) prior to injection into Combustion Chamber
 - Flowing coolant is barrier between inner walls in contact with hot gases and outer
 - walls that contain pressure (reduces amount of differential pressure acting on inner walls) Film cooling, using fuel propellant, along chamber, throat, and nozzle walls also used
 - Results in some energy losses Solid propellant itself and stagnant gas regions used to provide thermal barriers between
 - hot gases and pressure containment casings for SREs and HREs
- High temperature materials used as barriers between hot gases and pressure containing
- parts of throats and nozzles for SREs and HREs; Carbon-Carbon, Phenolics, Graphite Ablative material used for nozzle cooling; some LREs, SREs, and HREs
 - Mechanical joint sealing of hot gases; metal seals vs. non-metallic seals
 - Dynamic shaft seals of turbopumps; high pump speeds, keep propellants on pump-side
- isolated from hot gases on turbine side (pump fed LREs and HREs) Throat and nozzle wall stress induced corrosion; OH, H, O, plus for SREs Cl, HCl, other acids
- Throat and Nozzle erosion; high gas velocities; mainly with SREs as they have solid particles in hot gas mixtures
- Propellant compatibility and hazards:
 - · Flammability of Oxygen, Fluorine, and other oxidizers (metals and other materials of rocket engine are all potential fuels)
 - Hydrogen embrittlement of metals; mainly at high temperatures or pressures

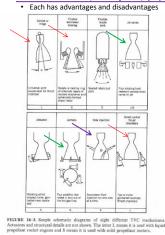

Rocket Engine Design Issues and Challenges (Continued):

- Material Properties and Limitations (Continued)
 - · Propellant compatibility and hazards (Continued):
 - Cryogenic propellants; incl. handling, storage
 - They vaporize at room pressure & temperature
 - Reduced material toughness (ductility) at low temperatures
 - Differential thermal expansions and rates thereof at low temperatures
 - Low temperature seals; sealing materials less pliable, more brittle
 - Need for helium purges and pressurants for LH propellant systems or where vehicle weight constraints dictate (does not liquify or freeze at LH temperatures, inert gas
 - having the lowest mass density)
 - More prone to leak, esp. hydrogen and helium (smallest of molecules) · Coking (carbon buildup) on H-X walls with RP-1 and other hydrocarbon fuels
 - · A solution to this is use of oxidizer-rich combustion devices (mentioned on prior slides)

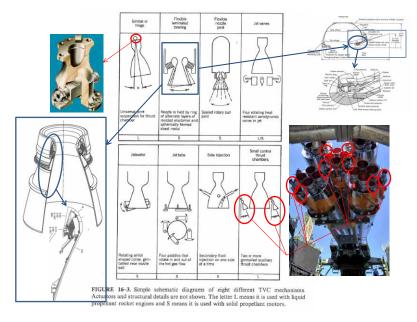
 - Thermal runaway hazards of monopropellants Highly toxic propellants; MMH, UDMH, N₂O₄, H₂O₂, others
 - SRE Propellant Storage and Handling, High Hazards; Static electricity and unwanted heat sources

Throttling

- Often needed for controlling vehicle flight trajectory velocity vs. time or position profile
- Optimum use of propellant as rocket travels through atmosphere and gains altitude Prevent exceeding 'g' (acceleration) limits of vehicle structure (as its mass decreases)
- Complex for LREs, esp. those that are pump fed (as described on prior sheets)
- SREs can only throttle to preset profile; cannot adjust during operation
- SREs cannot be shut down once started



43


Rocket Engine Design Issues and Challenges (Continued):

Thrust Vector Control (TVC)

- Needed for Steering Rocket, Controlling its flight trajectory
- Three methods generally used currently; (Engine) "Gimbal," "Flexible Laminated (Nozzle) Bearing,"
- and "Gimbaled Auxiliary Thrust Chambers"
- Two others used in early designs; "Jet Vanes" and "Jet Tabs"
- One other method, "Side Injection," proposed and experimented with, but not yet employed

Thrust Vector Control; Schematic Diagrams

45

Summary:

 Chemical rocket engines used in many applications that are part of everyday life;

Spacecraft and satellites for research, exploration, weather & earth monitoring, communications; Also used for weapons delivery systems, entertainment

- Three types of chemical rocket engines; LREs, SREs, HREs
- The importance of I_{SP} specific impulse (the most important performance measure)
 - · Thrust is important, but it's not the only thing
- Thermochemistry is essential for rocket engine design and analysis
- Thermodynamics is also needed for design and analysis of rocket engines; Downstream from the combustion/exothermic reaction process
- There are a many other design challenges and details that go into rocket engine design; "Yes, it really is "Rocket Science."

References:

"Space Transportation System Training Data: Space Shuttle Main Engine Orientation" Boeing BC98-04, June 1998

Brown, C. D. (1996). "Space Propulsion," <u>AIAA Education Series</u>, ed. Przemieniecki, J. S., American Institute of Aeronautics and Astronautics, Washington, DC.

Hill, P. G. & Peterson, C. R. (1992). <u>Mechanics and Thermodynamics of Propulsion, 2nd Edition</u>, Addison-Wesley Publishing Company, Inc., Reading, MA.

Huzel, D. K. & Huang, D. H. (1992). "Modern Engineering for Design of Liquid-Propellant Rocket Engines," <u>Progress in</u> <u>Astronautics and Aeronautics</u>, Volume 147, ed. Seebass, A. R., American Institute of Aeronautics and Astronautics, Washington, DC.

National Aeronautics and Space Administration Press Kit/October 2012, SpaceX CRS-1 Mission, First Cargo Resupply Services Mission Press Kit

NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), Version 9.1

Orbital Sciences Corporation Brochure, "Antares Medium-Class Launch Vehicle," ©2013 Orbital Sciences Corporation D12_00084

Orbital Sciences Corporation Brochure, "Antares Medium-Class Launch Vehicle Fact Sheet," ©2014 Orbital Sciences Corporation FS007_06_2429

SpaceX and MDA ™ Press Kit/September 2013, CASSIOPE (and Upgraded Falcon 9) Mission Demonstration Press Kit

Sutton, G. P. & Biblarz, O. (2001). <u>Rocket Propulsion Elements; An Introduction to the Engineering of Rockets, 7th Edition,</u> John Wiley & Sons, New York, NY.

Turner, M. J. L. (2000). Rocket and Spacecraft Propulsion, Springer-Praxis Publishing Ltd, Chichester, UK.

Upcoming ACS Webinars[®] www.acs.org/acswebinars

Thursday, July 31, 2014

"Drug Discovery Series

"The Role of Chemistry in Clinical Trials: The Big Expense & Lessons Learned"

Graham Johnson, NuPharmAdvise LLC Dr. Jay Sisco, JM Sisco Pharma Consulting Dr. John Morrison, Bristol-Myers Squibb

Thursday, August 7, 2014

"How to Write Abstracts that Capture Your Audience"

Celia Elliott, University of Illinois at Urbana-Champaign Patricia Blum, University of Illinois at Urbana-Champaign

Contact ACS Webinars ® at acswebinars@acs.org

How has ACS Webinars[®] benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand[®] ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars[®]

www.acs.org/acswebinars

Thursday, July 31, 2014

"Drug Discovery Series

"The Role of Chemistry in Clinical Trials: The Big Expense & Lessons Learned"

Graham Johnson, NuPharmAdvise LLC Dr. Jay Sisco, JM Sisco Pharma Consulting Dr. John Morrison, Bristol-Myers Squibb

Thursday, August 7, 2014

"How to Write Abstracts that Capture Your Audience"

Celia Elliott, University of Illinois at Urbana-Champaign Patricia Blum, University of Illinois at Urbana-Champaign

Contact ACS Webinars ® at acswebinars@acs.org