

We will begin momentarily at 2pm ET

Recordings will be available to ACS members after one week WWW.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org

Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand® ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

How has ACS Webinars[®] benefited you?

"For me these are really fun events, with surprisingly broad benefits. There are so many issues I am trying to learn more about, and these ACS Webinars have covered many of them! It is especially helpful to hear what questions other participants have and also appreciate having access to the slides BEFORE the presentation."

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

All recordings of ACS Webinars[®] will be available to current ACS members one week after the Live broadcast date.

Live weekly ACS Webinars[®] will continue to be available to the general public.

Upcoming ACS Webinars® www.acs.org/acswebinars

Thursday, February 5, 2015

"**Natural Product Chemistry:** Benefits of Pterostilbene on Health, Memory, and Anxiety"

Dr. Agnes Rimando, Research Chemist, U.S. Department of Agriculture Dr. Dave Harwell, Assistant Director of Industry Member Programs, American Chemical Society

Thursday, February 12, 2015

"Sweet Science: Chocolate Chemistry for Valentine's Day"

Dr. Richard Hartel, Professor Food Engineering, University of Wisconsin-Madison

Dr. Gregory Ziegler, Professor of Food Science, Penn State University

Contact ACS Webinars® at acswebinars@acs.org

Join the ACS Division of Medicinal Chemistry Today!

The MEDI Division is one of the largest ACS Divisions having ~9,600 members from 79 countries. The Division prepares and publishes Annual Reports in Medicinal Chemistry. This is a 600+ page volume containing timely reviews of progress in many therapeutic areas and on important new technologies, written by expert medicinal chemists. This volume is provided free to members each year, and members have on-line access to previous volumes in the series.

Find out more about the ACS MEDI Division! www.acsmedchem.org

American Association of Pharmaceutical Scientists

DEVELOPING SCIENCE. IMPACTING HEALTH.

A professional, scientific association with approximately 11,000 members employed in industry, academia, and government worldwide from diverse scientific backgrounds such as pharmaceutics, biopharmaceutics, chemistry, biology, engineering, and medicine.

A Robust Networking Community and Countless Opportunities Await within AAPS

AAPS offers Nine Sections to Concentrate Your Experience

- Unite scientific disciplines into forums to share experiment results
- Explore and disseminate research finding
- Exchange ideas
- Examine regulatory and ethical concerns

Find out more about AAPS and membership today!

American Association of Pharmaceutical Scientists

AAPS Scientific Sections:

- Analysis and Pharmaceutical Quality
- Biotechnology
- Clinical Pharmacology and Translational Research
- Drug Discovery and Development Interface
- Formulation Design and Development
- Manufacturing Science and Engineering
- Physical Pharmacy and Biopharmaceutics
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism
- Regulatory Sciences

Find out more at the <u>AAPS website</u>

🤊 aans'

15

		Co-produced sion of Medicinal Chemi sociation of Pharmaceut Scientists (AAI
Module 1: lı	nproving Drug Design Efficiency and Efficacy	
Jan 29	Designing Better Drug Candidates	
Feb 26	Strategies to Improve Solubility of Drug Candidates	Dr. Michael Walker
Module 2: A	ctivity/Potency Screening for Drug Lead & Candidate Opt	imization
Mar 19	Fragment-Based Drug Design Strategies	Dr. Dan Erlanson
April 30	Screening Strategies	
May 28	PAINS (Pan-Assay Interference Compounds)	Dr. Jonathan Baell
June 25	Positron Emission Tomography (PET) Labeling in Drug Discovery & Development	Dr. Lei Zhang
July 30	X-Ray Crystallography in Drug Discovery	Dr. Jon Mason & Dr. Miles Congreve
Module 3: E	nabling Drug Discovery	
Aug 27	Choices and Trends in Solid Dosage Form Section	Dr. Scott Trzaska & Dr. Ron Smith
Sept 24	Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies	Dr. Evan Thackaberry
Module 4: P	harmacokinetics	
Oct 29	Pharmacokinetic Considerations in Drug Design and Development	Dr. Punit Marathe
Nov 19	Prodrugs in Drug Discovery	Dr. John Higgins

This session of the 2015 Drug Design and Delivery Symposium is sponsored by ACS Publications This Symposium is co-produced by ACS Webinars, the ACS Division of Medicinal Chemistry and AAPS

- Attrition and Compound Quality
- Druglike & Leadlike molecular properties
- Ligand efficiency metrics in optimisation

Root Causes of Clinical Efficacy Attrition

Evidence for progression of unoptimised compounds

- **Pfizer: '4 Pillars' for phase II success** (Morgan et al, *Drug Discovery Today* 2012, **17**, 419; Bunnage, et al *Nat. Chem. Biol.* 2013, **9**, 195)
 - Exposure at target; Binding to target; Pharmacological response; Target linked clinically to disease modification
 - Low confidence in *exposure* amongst failed candidates: "cannot conclude mechanism tested adequately in 43% of cases"

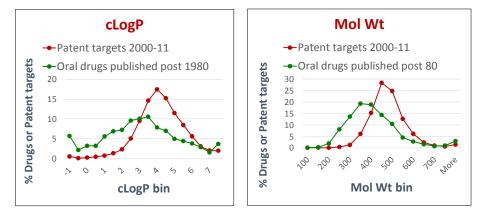
Root Causes of Clinical Efficacy Attrition

Evidence for progression of unoptimised compounds

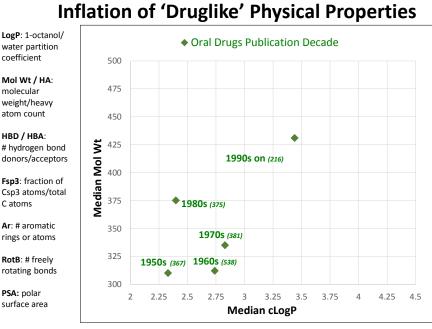
- AstraZeneca: '5Rs' (Cook et al, Nat. Revs. Drug Disc. 2014, 13, 419)
 - 'Right': Target & Tissue (4Ps); Safety; Patient; Commercial potential
 - 29% Clinical efficacy failures "dose limited by compound characteristics or tissue exposure not established"
 - Decision making process: 38% projects advanced to clinic had *low* confidence in safety & 78% of these eventually failed due to toxicity

19

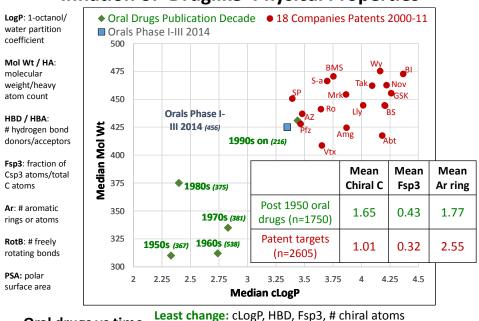
Root Causes of Clinical Efficacy Attrition


Evidence for progression of unoptimised compounds

- FDA submissions (Sacks et al, JAMA 2014, 311, 378)
 - 50% unsuccessful 1st time, 29% of which had dose or clinical end point issues
- Medicinal Chemist's accountability: compound-related failure


Fundamental Assertion

Physicochemical properties of molecules drive all aspects of compound quality: from target affinity to ADME & toxicity



Compounds patented by the leading 18 Companies carry increased ADME & toxicity risk versus recently marketed drugs

Drug data: Leeson et al, Med. Chem. Comm. 2011, 2, 91, oral drugs updated to 2014; Patent targets 2000-11 from 18 companies: Leeson & St-Gallay, NRDD 2011, 10, 749

Drug data: Leeson et al, Med. Chem. Comm. 2011, 2, 91, oral drugs updated to 2014; Patent targets 2000-11 from 18 companies: Leeson & St-Gallay, NRDD 2011, 10, 749

Inflation of 'Druglike' Physical Properties

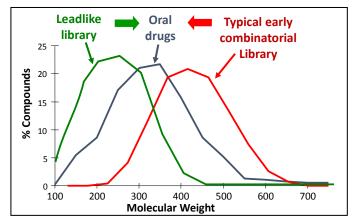
Oral drugs vs time Least change: cLogP, HBD, Fsp3, # chiral atoms Most change: Mol Wt, HBA, RotB, PSA, Ar; all increasing²³

Will the probability of success in a portfolio of drug candidates increase when its physicochemical & experimental properties more closely resemble those of marketed drugs?

a) Yesb) Noc) Don't know

Some Causes of 'Molecular Obesity'

- Increasing potency: by adding atoms in optimisation?
- HTS: hit selection? Mean published HTS hit ~ 1μM & cLogP ~ 4
- Synthesis: choosing hits suitable for parallel chemistry?
- Newer targets: eg protein-protein interactions
- Target product profile: disease risk/benefit can lead to acceptance of greater safety risk & dosing inconvenience


Post 1990 oral drugs (n=216)	Median cLogP	Median Mol Wt
Kinase, HIV prot., HCV (n=45)	4.64	556
Others (n=171)	3.07	420

• Local culture: company physical property differences *not* driven by target & comparable to target class variation

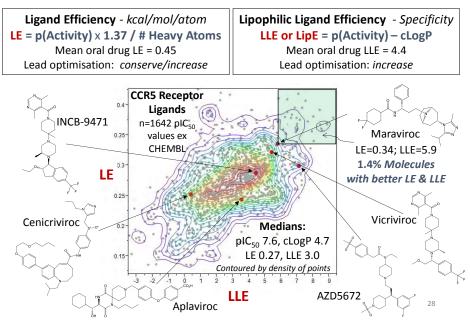
Potency 'obsession': Hann, MedChemComm. 2011, 2, 349; HTS hit selection: Keserű & Makara, Nat. Rev. Drug Disc. 2009, 8, 203; Dahlin & Walters, Future Med. Chem. 2014, 6, 1265; Synthetic pragmatism: Keserű et al, Chem. Soc. Rev., 2014, 43, 5387; Company culture: Leeson & St-Gallay, Nat. Rev. Drug Disc. 2011, 10, 749; Leeson & Springthorpe, Nat. Rev. Drug Disc. 2007, 6, 881

Optimisation: the 'Leadlike' Hypothesis

Mol Wt & LogP tend to increase in optimisation

'Leadlike' lead: Affinity >0.1µM; Mol Wt 100-350; cLogP 1-3

Leadlikeness: Teague et al, Angew. Chem. Int . Ed. 1999, **38**, 3743; Oprea et al, J. Chem. Inf. Comput. Sci. 2001, **41**, 1308; Hann et al, J. Chem. Inf. Comput. Sci. 2001, **41**, 856; Synthetic challenges: Doveston et al., Org. Biomol. Chem. 2015, **13**, 859) 26

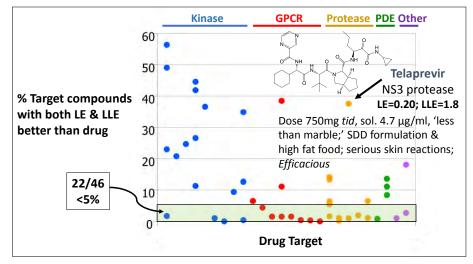


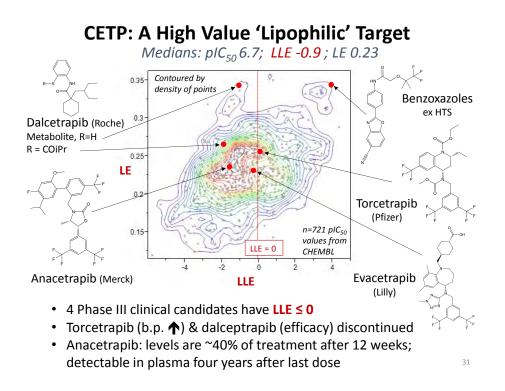
Lipophilicity - LogP & LogD_{7.4} - a Key Property

Lipophilicity: Waring, *Exp. Op. Drug Disc.* 2010, **5**, 235; **ADME/potency balanc**e: Hann & Keserű, *Nat. Rev. Drug Disc.* 2012, **11**, 355; Gleeson et al. *Nat. Rev. Drug Disc.* 2011, **10**, 197

Ligand Efficiency Metrics - 'Bang for Your Buck'

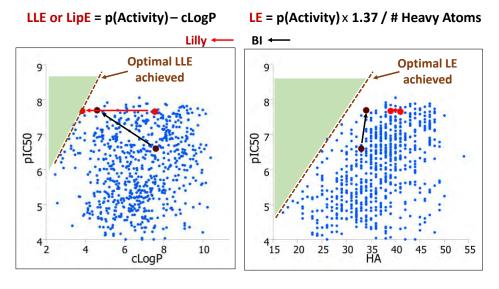
Hopkins et al, Nat. Rev. Drug Disc., 2014, 13, 105




Structure of Maraviroc Bound to CCR5

Oral Drug Ligand Efficiencies: 46 Drugs, 25 Targets

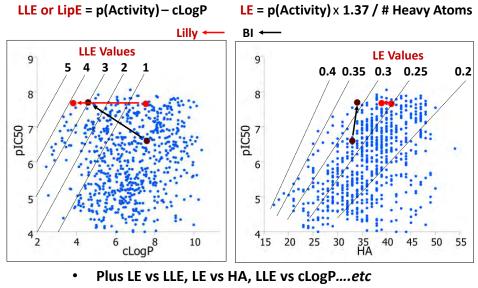
% LE + LLE better vs drug: kinases 22%; other targets 2.7%; Only in class 1.5%. LE & LLE contribute equally to % score


Details of Drugs & Targets: Hopkins et al, Nat. Rev. Drug Disc., 2014, 13, 105 Telaprevir: Kwong et al, Nat. Biotech. 2011, 29, 993

CETP: Less Lipophilic Inhibitors $C \rightarrow N \& O$, hydrophilic substituents, control HA Fernandez et al (Lilly), Bioorg. Med. Chem. Lett. 2012, 22, 3056 **'Mitigate** lipophilicity' LE + LLE LogP values % better not cited 1.4% Δ LLE = 3.8 Δ LE = 0.01 Torcetrapib (Pfizer) pIC₅₀ 7.7 Lilly lead pIC₅₀ 7.7 cLogP 3.8; HA 39; LLE 3.9 LE 0.27 cLogP 7.6; HA 41; LE 0.1; LE 0.26 Trieselmann et al (BI), J. Med. Chem. 2014, 57, 8766 'Reduce LE + LLE lipophilicity' % better LogP values 0.28% tracked Δ LLE = 4.1 Δ LE = 0.04 BI hit pIC₅₀ 6.6 BI lead pIC₅₀ 7.7 cLogP 7.6; HA 33; LLE -1.0; LE 0.27 cLogP 4.6; HA 34; LLE 3.1; LE 0.31

Tracking Optimisation Trajectories

CETP illustrated - applicable to any target



33

34

Tracking Optimisation Trajectories

CETP illustrated - applicable to any target

• Easy to do & you will learn something

What viable strategies, other than seeking druglike physicochemical properties, can medicinal chemists apply to increase the output of new drugs?

- a) Invest in novel synthetic methods to expand chemical space of parallel synthesis (eg greater Csp3 content) & produce improved leadlike screening collections
- Employ predictive multi-parameter computational tools (eg, clearance, permeability, dose, solubility, LogD, hERG, Cyp inhibition etc) from hit i.d. onwards
- c) Ensure excellent collaboration with ADME & safety scientists
- d) Ensure timely terminations of compound series or projects making little/slow progress
- e) Others?

35

Designing Better Candidates: Lessons Learned

- Compound quality contributes to clinical attrition
- The physicochemical property spaces occupied by patented molecules and marketed drugs are different
- In optimisation, lead molecules often increase in size and lipophilicity
- Ligand efficiencies, measures of potency per unit of lipophilicity & size, are frequently optimised for the targets of marketed drugs
- Tracking potency vs lipophilicity & size in optimisation can help steer projects towards drug like space, even with challenging targets

Acknowledgements

GlaxoSmithKline

Martin Bayliss James Butler Paul Feldman Darren Green Mike Hann Alan Hill Mike Palovich Anthony Taylor Rob Young **GSK Chemistry Council GSK Scientists** AstraZeneca Andy Davis John Dixon David Payling Jan-Erik Nyström Brian Springthorpe Steve St-Gallay Simon Teague Mark Wenlock AZ Global Chemistry Forum AZ Scientists

Academia & Industry Paul Gleeson Andrew Hopkins György Keserű Jonathan Mason Tudor Oprea David Rees Chuck Reynolds

37

"Without convincing evidence to the contrary, drugs should be made as hydrophilic as possible without loss of efficacy." Hypothesis proposed by: Hansch et al, J. Pharm. Sci. 1987, **76**, 663

Slide Titles & References

- Inflation of 'Druglike' Physical Properties
 - Phase I-III orals: <u>http://www.citeline.com/;</u> Drug properties vs time: Leeson & Davis, *J. Med. Chem* 2004, 47, 6338; Leeson & Springthorpe, *Nat. Rev. Drug Disc.* 2007, 6, 881; Proudfoot, *Bioorg. Med. Chem. Lett.* 2005, 15, 1087; Leeson et al, *Med. Chem. Comm.* 2011, 2, 91; Walters et al, *J. Med. Chem.* 2011, 54, 6405; Phase I-III properties: Wenlock et al, *J. Med. Chem.* 2003, 46, 1250; Blake, *Medicinal Chemistry*, 2005, 1, 649; Oprea, *J. Comp.-Aid. Mol. Des.* 2002, 16, 325
- Optimisation: the 'Leadlike' Hypothesis
 - Optimisation, lead-drug pairs: Hann, J.Chem. Inf. Comput. Sci. 2001, 41, 856; Oprea, J. Chem. Inf. Comput. Sci. 2001, 41, 1308; Perola, J. Med. Chem. 2010, 53, 2986; Giordanetto, Drug Disc. Today 2011,16, 722; Optimisation, literature start-finish pairs: Morphy, J. Med. Chem. 2006, 49, 2969; Keseru, Nat. Rev. Drug Disc. 2009, 8, 203; Macarron, Nat. Rev. Drug Disc. 2011, 10, 188; Ferenczy J. Med. Chem. 2013, 56, 2478; LLE optimisations: Hopkins, Nat. Rev. Drug Disc., 2014, 13, 105
- Ligand Efficiency Metrics 'Bang for Your Buck'
 - Debate: Shultz, ACS Med. Chem. Lett. 2014, 5, 2; Murray et al, ACS Med. Chem. Lett. 2014, 5, 616; Kenny et al, J. Comput. Aided Mol. Des. 2014, 28, 699

Slide Titles & References

- CETP: A High Value 'Lipophilic' Target
 - LE & LLE data: Hopkins et al, Nat. Rev. Drug Disc., 2014, 13, 105; CETP review: Mantlo & Escribano. J. Med. Chem. 2014, 57, 1; Anacetrapib: Gotto et al, Am. J. Cardiol. 2014, 113, 76; Benzoxazoles, eg Bioorg. Med. Chem. Lett. 2010, 20, 1019
- Tracking Optimisation Trajectories
 - Lipophilic efficiency: Leeson & Springthorpe, Nat. Rev. Drug Disc. 2007, 6, 881; Freeman-Cook et al, Fut. Med. Chem. 2013, 5, 113; Shultz, Bioorg. Med. Chem. Lett. 2013, 23, 5992; Tarcsay et al, J. Med. Chem. 2012, 55, 1252; Hopkins et al, Nat. Rev. Drug Disc, 2014, 13, 105
- Controlling Risk: Compound Quality Guidance
 - Multi-parameter optimisation schemes & scoring: eg, Wager et al, ACS Chem. Neurosci. 2010, 1, 435; Bickerton et al Nature Chem.2012, 4, 90

Additional References

- DMPK data. Gleeson, J. Med. Chem., 2008, 51, 817; Waring, Bioorg. Med. Chem. Lett., 2009, 19, 2844; Johnson et al, Bioorg. Med. Chem. Lett., 2009, 19, 55; Varma et al, J. Med. Chem. 2010, 53, 1098
- Toxicity. Phys props: Hughes et al, Bioorg. Med. Chem. Lett. 2008, 18, 4872; Peters et al, Drug Discovery Today 2012, 17, 325; Sutherland et al, J. Med. Chem. 2012, 55, 6455; Luker et al, Bioorg. Med. Chem. Lett., 2011, 21, 5673; Critique: Muthas et al, Med. Chem. Commun. 2013, 4, 1058; dose/exposure: Wager et al, J. Med. Chem. 2013, 56, 9771; Stepan et al, Chem. Res. Toxicol. 2011, 24, 1345; Sakatakis et al, Chem. Res. Toxicol. 2012, 25, 2067; Chen et al, Hepatology 2014, 58, 388;
- Ionisation. Charifson & Walters, J. Med. Chem. 2014, 57, 9701
- Aromaticity. Ritchie & Macdonald, J. Med. Chem. 2014, 57, 7206; Young et al, Drug Disc. Today 2011, 16, 822
- Drug targets. Paolini et al, Nature Biotechnology 2006, 7, 805
- Beyond Ro5. Doak et al, Chemistry & Biology 2014, 21, 1115
- Critique. Kenny & Montanari, Comput Aided Mol Des. 2013, 27, 1
- Review. Meanwell, Chem. Res. Toxicol. 2011, 24, 1420

Join us February 26, 2015 for the 2nd Session!

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html

Upcoming ACS Webinars[®] www.acs.org/acswebinars

43

Thursday, February 5, 2015

"Natural Product Chemistry: Benefits of Pterostilbene on Health, Memory, and Anxiety"

Dr. Agnes Rimando, Research Chemist, U.S. Department of Agriculture Dr. Dave Harwell, Assistant Director of Industry Member Programs, American Chemical Society

Thursday, February 12, 2015

"Sweet Science: Chocolate Chemistry for Valentine's Day"

Dr. Richard Hartel, Professor Food Engineering, University of Wisconsin-Madison

Dr. Gregory Ziegler, Professor of Food Science, Penn State University

Contact ACS Webinars ® at acswebinars@acs.org

American Association of Pharmaceutical Scientists

DEVELOPING SCIENCE. IMPACTING HEALTH.

A professional, scientific association with approximately 11,000 members employed in industry, academia, and government worldwide from diverse scientific backgrounds such as pharmaceutics, biopharmaceutics, chemistry, biology, engineering, and medicine.

A Robust Networking Community and Countless Opportunities Await within AAPS

AAPS offers Nine Sections to Concentrate Your Experience

- Unite scientific disciplines into forums to share experiment results
- Explore and disseminate research finding
- Exchange ideas
- · Examine regulatory and ethical concerns

Find out more about AAPS and membership today!

Join the ACS Division of Medicinal Chemistry Today!

The MEDI Division is one of the largest ACS Divisions having ~9,600 members from 79 countries. The Division prepares and publishes Annual Reports in Medicinal Chemistry. This is a 600+ page volume containing timely reviews of progress in many therapeutic areas and on important new technologies, written by expert medicinal chemists. This volume is provided free to members each year, and members have on-line access to previous volumes in the series.

Find out more about the ACS MEDI Division! www.acsmedchem.org

How has ACS Webinars[®] benefited you?

47

"For me these are really fun events, with surprisingly broad benefits. There are so many issues I am trying to learn more about, and these ACS Webinars have covered many of them! It is especially helpful to hear what questions other participants have and also appreciate having access to the slides BEFORE the presentation."

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand[®] ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

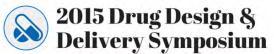
NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

51

52

#ACSWebinars Co-produced by


Scientists (AAPS)

ACS Division of Medicinal Chemistry American Association of Pharmaceutical

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Module 1: lı	mproving Drug Design Efficiency and Efficacy	
Jan 29	Designing Better Drug Candidates	Dr. Paul Leeson
Feb 26	Strategies to Improve Solubility of Drug Candidates	Dr. Michael Walker
Module 2: A	ctivity/Potency Screening for Drug Lead & Candidate Opt	imization
Mar 19	Fragment-Based Drug Design Strategies	Dr. Dan Erlanson
April 30	Screening Strategies	Dr. David Swinney
May 28	PAINS (Pan-Assay Interference Compounds)	Dr. Jonathan Baell
June 25	Positron Emission Tomography (PET) Labeling in Drug Discovery & Development	Dr. Lei Zhang
July 30	X-Ray Crystallography in Drug Discovery	Dr. Jon Mason & Dr. Miles Congreve
Module 3: E	nabling Drug Discovery	
Aug 27	Choices and Trends in Solid Dosage Form Section	Dr. Scott Trzaska & Dr. Ron Smith
Sept 24	Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies	Dr. Evan Thackaberry
Module 4: P	Pharmacokinetics	
Oct 29	Pharmacokinetic Considerations in Drug Design and Development	Dr. Punit Marathe
Nov 19	Prodrugs in Drug Discovery	Dr. John Higgins