

Have you discovered the missing element?

http://bit.ly/benefitsACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand[®] ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.

http://bit.ly/benefitsACS

How has ACS Webinars[®] benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Learn from the best and brightest minds in chemistry! Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members after the Live broadcast date via an invitation email. www.acs.org/acswebinars

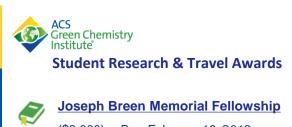
Broadcasts of ACS Webinars[®] continue to be available to the general public LIVE every Thursday at 2pm ET!

www.acs.org/acswebinars

An individual development planning tool for you!

- Know your career options
- Develop strategies to strengthen your skills
- Map a plan to achieve your career goals

ChemIDP.org



ACS

Chemistry for Life*

www.gcande.org

(\$2,000) - Due February 16, 2018

Sponsors international and domestic students (undergraduate and above) based on estimated travel expenses, up to \$2,000, for a green chemistry technical meeting, conference or training program (students are encouraged to consider the GC&E Conference).

Kenneth G. Hancock Memorial Award

(\$1,000 cash and \$1,000 travel stipend) - Due February 16, 2018

Sponsors international and domestic students (undergraduate and graduate), up to \$2,000, for the GC&E Conference.

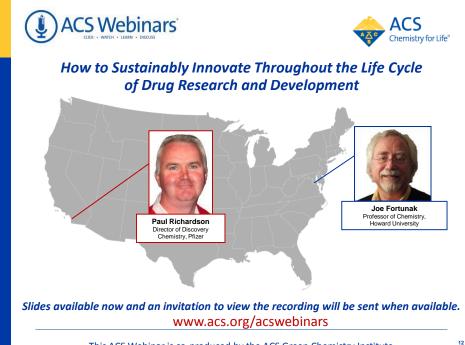
http://bit.ly/GClawards

Upcoming ACS Webinars www.acs.org/acswebinars

11

Thursday, January 11, 2018

Painting a Brighter Future with Chemistry: Innovating with Higher Performing and More Sustainable Pre-composite Polymers Jim Bohling, Dow Chemical Company Stan Brownwell, Dow Chemical Company



Thursday, January 18, 2018

Science-Based Carbon Reduction Targets: An Entry Ticket to Carbon-Based Business Benefits

Valerie Patrick, President, Fulcrum Connection Bryan Tweedy, Manager, Office of Career and Professional Resources, ACS

Contact ACS Webinars[®] at acswebinars@acs.org

This ACS Webinar is co-produced by the ACS Green Chemistry Institute

Where We Stand Today !!!

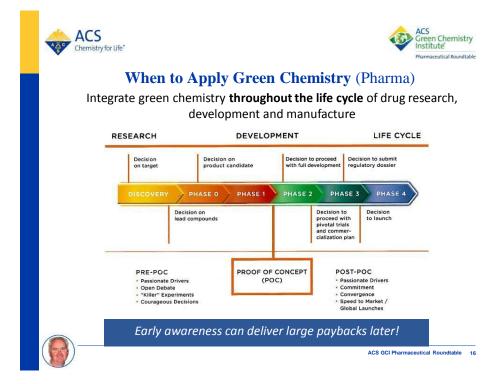
Drug companies must adopt green chemistry

"Green chemistry can deliver for people, planet and profit. Those who embrace it will reap the benefits in future. Those who fail to evolve may cease to be relevant".

Nature, 2016, 534, 27

ACS GCI Pharmaceutical Roundtable 13

What is Green Chemistry?



- The highest efficiency potential that exists for each chemical process.
- Green Chemistry is a privileged opportunity for innovation and represents an emerging new frontier of exploration.
- The achievement of superior synthetic efficiency will ultimately deliver a competitive advantage.

OPRD., 2006, 10, 315.

ACS GCI Pharmaceutical Roundtable 15

Green Chemistry provides a platform to align Corporate environmental, social, and economic goals.

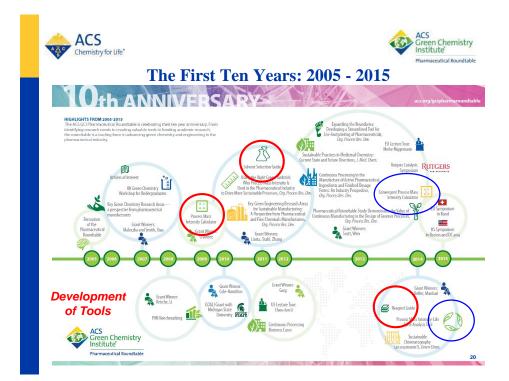
ACS GCI Pharmaceutical Roundtable

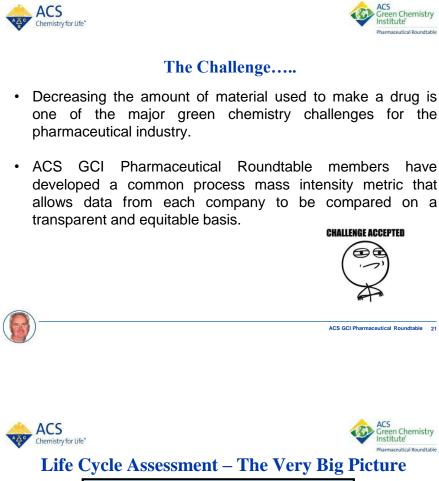
In 2005, the ACS Green Chemistry Institute and global pharmaceutical corporations developed the ACS GCI Pharmaceutical Roundtable to encourage innovation while catalyzing the integration of green chemistry and green engineering in the pharmaceutical industry.

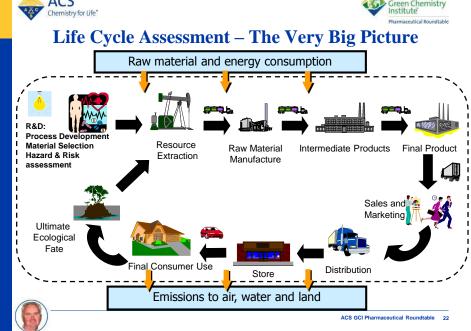
Membership Snapshot Grants Tools Publications Pre

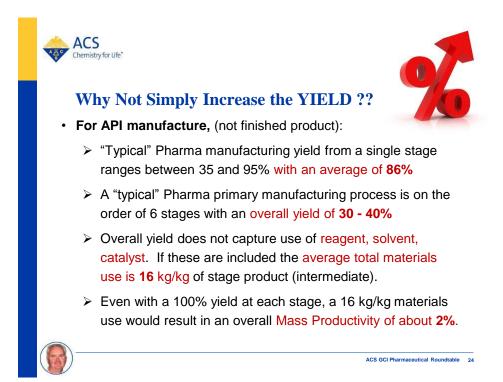
Member companies who are part of the ACS GC Pharmaceutical Roundbable come together to catalyse innovative approaches to improving process efficiency and product quality frequest prevales to star and engineering. By working together, the Roundbable provides leadership and influence throughout the industry and supply chain. For example, the Pharmaceutical Roundbable has awarded over 5.1.3 million dollars in fluiding to durther lay research priorities for greener chemistries. In addition, the Roundbable contrust to develop a valuable set of tools including a softwire leaderton public. Process Mass intensity/LCA calculator, and a poverful reagent guide.

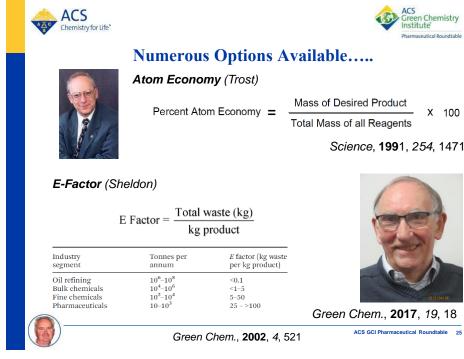

The ACS GCI Pharmaceutical Roundtable invites all corporations meeting the definition of membership to consider joining. Companies are encouraged to join if they are committed to the integration of green chemistry and green engineering into the business of drug discovery and production.


ACS GCI Pharmaceutical Roundtable 17




acs.org/gcipharmaroundtable




Why Metrics ???

"You can't manage what you don't measure."

- We measure what we care about ↔ we care about what we measure
- Standardize measurement of chemical process greenness when possible
- · Proper choice of metrics is critical for 'behavior of system
- · Green metrics correlate to process economics

Process Mass Intensity (PMI) Metric

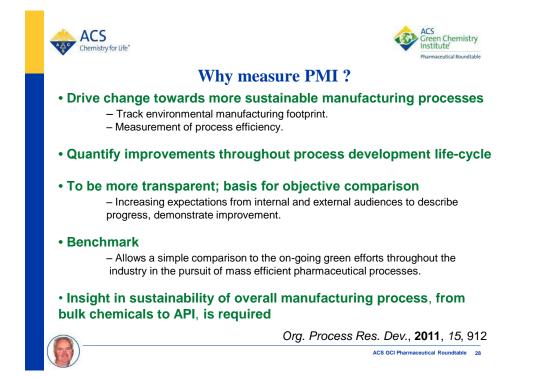
Process mass intensity = <u>quantity of raw materials input (kg)</u> quantity of bulk API out (kg)

Where:

<u>**Process**</u> is all steps of a synthetic path from **commonly available materials** to the final bulk active pharmaceutical ingredient ("API").

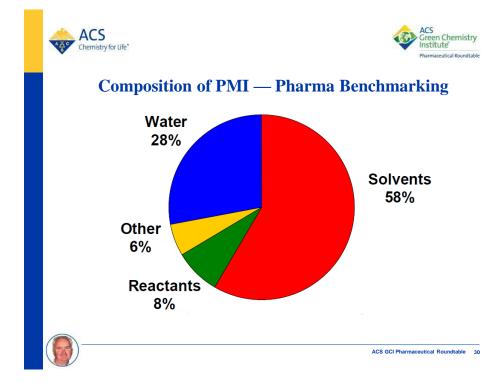
<u>**Raw Materials**</u> are all materials including water that are used directly in the process of synthesizing, isolating, and purifying the API final form.

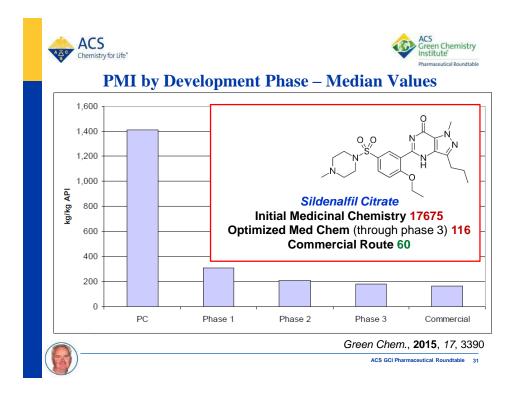
Bulk API out is the final form of the active ingredient that was produced in the synthesis, dried to the expected specification.



What is the E-Factor and the PMI Value for an "IDEAL" Sustainable/Green Process?

- E-factor = PMI = 0
- E-factor = 0, PMI = 1
- E-factor = PMI = 1
- E-factor = 1, PMI = 0
- All of the above




What component of a chemical process contributes most to the overall Process Mass Intensity?

- Reagents
- Water
- Catalyst
- Solvents
- Any of the above

29

PMI Calculator Tool

PMI Excel Spreadsheet

- Spreadsheet with embedded
 Calculations.
- Only need to fill in amounts of reagents, solvents, and aq.
- Spreadsheet calculates step and overall PMI for linear sequences.
- Calculates overall PMI as well as separate PMI for solvents, water, and reagents.

Name/Number		1
	Value	Units
Physical Batch Size		
Assay Purity		
Assay Batch Size		
Yield		
Assay Kg product		
Product Purity		
		Physical Ch
Raw Materials		(kg)
Substrates		
Reagents		
Solvents		
Aqueous		
PROCESS S	ТЕР МЕ	TRICS
Mass Substrate (k		0
Mass Reagents (k		0
Mass Solvents (kg		0
Mass Aqueous (kg	1)	
Step PMI		#DIV/0
Step PMI Excludin	g H2O	#DIV/0
Cumulative PN	/1	#DIV/0
Cumulative PMI Exclu	idina H20	O #DIV/0

Convergent PMI Tool

Step Name/Number	2		20						
	Value	Units	26 Step 1 Input Table						
Physical Batch Size	155	kg	28 Assay Batch Size (input pure) kg						
Substrate Assay Purity	99%	wt%	28 Assay Kg product (output pure) kg						
Assay Batch Size	153.5	kg	30						
Molar Yield	91%		Ray Materials Physical Units						
Assay Kg product	217	kg	31 Charge Office 32 Main Substrate (Enter only 1 substrate, prepopulated from assay batch size)						
Product/Intermediate Purity	100%	wt%	32 Main Substrate (Enter only 1 substrate, prepopulated from assay batch size) 33 0.00 kg						
			34 Fragment Substrates (fill top down)						
Raw Materials	Physical Charge	Units	36 None kg						
Substrates			36 None kg						
Product from step 1	155	kg	38 Reagents						
Reagents			39 kg 40 kg						
Diisopropylethylamine	105	kg	40 kg I4 4 → H Instructions / Summary Table _ Final Product PHI / Fragment 1 PMI / Fragment						
4-chlorobenzoyl chloride	147	kg	IN Y W DISpoculars & Sommary Table & Final Product PPit & Hagment 1PPit & Hagme						
		kg							
Solvents									
2-MeTHF	700	kg	• Up to 11 step linear sequence						
heptane	450	kg							
		kg							
Aqueous			 Up to 3 branches for convergent 						
2N HCI	420	kg	op to e blanches tel controlgent						
25% NaCl	220	kg							
		kg	synthesis (11 steps per branch)						
PROCESS S	TEP METRICS		-,,						
Mass Substrate (kg)		155	Multiple branch points possible in a						
Mass Reagents (kg)		252	Manpio branon pointo podoibio in a						
Mass Solvents (kg)		1150							
Mass Aqueous (kg)		640	single step						
Step PMI		10.1	olligio otop						
Step PMI Substrate, Reagents, S	olyopto	7.2							
Step PMI Substrates and Reagen		1.9	 Up to 44 step linear sequence if treating 						
Step PMI Solvents	165	5.3							
Step PMI Water		2.9							
Cumulative PMI		19.0	additional steps as branches						
Cumulative PMI Substrate, Reag	onte Solvente	14.0	'						
Cumulative PMI Substrate, Reag		3.2							
Cumulative PMI Solvents	iveagenta	10.8	ACS GCI Pharmaceutical Roundtable 33						
		5.0							
Cumulative PMI Water		5.0							

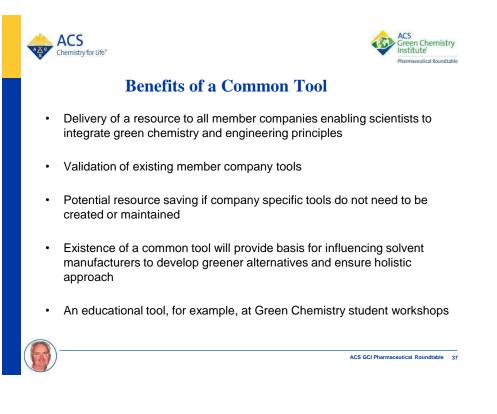
Development of a Solvent Guide

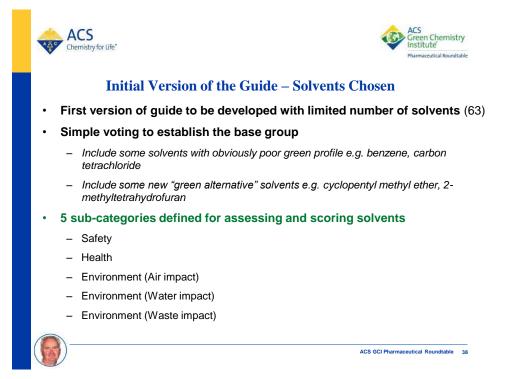
- During pharmaceutical process development solvent selection is key in determining the sustainability of future commercial production methods.
- Benchmarking has demonstrated that solvents contribute to >50% of materials used in manufacture of bulk active pharmaceutical ingredients.
- Several individual member companies have developed solvent selection guides internally.

Audience Challenge Question

The toxicity of benzene is now well-known. However, which of the following is NOT a previous use of this solvent?

- An additive to gasoline (petrol)
- As after-shave lotion
- To decaffeinate coffee
- A deep-cleaning detergent
- All of the above





Common Themes Evolve....

- Worker Safety including carcinogenicity, mutagenicity, reprotoxicity, skin absorption/sensitization and toxicity
- Process Safety including flammability, potential for high emissions through high vapour pressure, static charge, potential for peroxide formation and odour issues
- Environmental and Regulatory Considerations including ecotoxicity and ground water contamination, potential EHS regulatory restrictions, ozone depletion potential, photoreactive potential. Compliance with regulations and company guidelines

Solvent Guide

ACS GCI Pharmaceutical Roundtable Solvent Selection Guide

www.acs.org/gcipharmaroundtable

	Substance Information			So	oring Informa	ation	
Solvent Class	Solvent Name	CAS Number	Safety	Health	Env (Air)	Env (Water)	Env (Waste
Acid	ACETIC ACID	64-19-7	3	6	6	3	6
Acid	ACETIC ANHYDRIDE	108-24-7	3	6	6	2	7
Acid	FORMIC ACID	64-18-6	2	6	5	4	7
Acid	METHANE SULPHONIC ACID	75-75-2			6	6	10
Acid	PROPIONIC ACID	79-09-4	2	5	6	4	6
Alcohol	1-BUTANOL	71-36-3	3	5	5	5	3
Alcohol	1-PROPANOL	71-23-8	4	4	6	2	6
Alcohol	2-BUTANOL	78-92-2	4	5	6	3	5
Alcohol	2-METHOXYETHANOL	109-86-4	4	9	5	3	7
Alcohol	BENZYL ALCOHOL	100-51-6	4	3	4	2	4
Alcohol	ETHANOL	64-17-5	4	3	5	1	6
Alcohol	ETHYLENE GLYCOL	107-21-1	3	3	5	1	7
Alcohol	ISOAMYL ALCOHOL	123-51-3	3	4	5	3	4
Alcohol	ISOBUTANOL	78-83-1	3	5	4	3	3
Alcohol	ISOPROPYL ALCOHOL (IPA)	67-63-0	5	5	6	2	6
Alcohol	METHANOL	67-56-1	3	5	6	3	6
Alcohol	T-BUTANOL	75-65-0	3	5	7	2	6
Aromatic	BENZENE	71-43-2	5	10	6	6	2
Aromatic	TOLUENE	108-88-3	5	7	6	6	2
Base	PYRIDINE	110-86-1	3	6	7	7	6
Base	TRIETHYLAMINE (TEA)	121-44-8	4	7	5	7	4
Dipolar aprotic	ACETONITRILE	75-05-8	3	5	6	4	6
Dipolar aprotic	DIMETHYL ACETAMIDE (DMAC)	127-19-5	2	7	3	7	7

The Numbers behind the Guide....

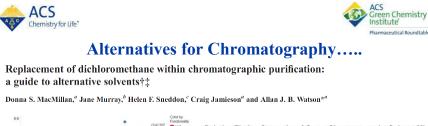
	Substance Information		I			Safety	Scoring	Information				
	Sabetanoo mermaden		Fla	mmability		Auto lanit		Static Cond	ctivity	Peroxide	Former	
						Auto Ignition						
			Boiling	Flash		Temperature		Conductivity		Peroxide		TOTAL
Solvent Class	Solvent Name	CAS Number	Point (°C)	Point (°C)	Score	(°C)	Score	(pS/m)	Score	formation	Score	SCORE
Acid	ACETIC ACID	64-19-7	117.9	39	1	426	1	1.12E+06	1	N	0	3
Acid	ACETIC ANHYDRIDE	108-24-7	139.5	53.9	1	390	1	4.76E+07	1	N	0	3
Acid	FORMIC ACID	64-18-6	101	69	1	520	0	6.40E+09	1	N	0	2
Acid	METHANE SULPHONIC ACID	75-75-2	167	189	1	500	0			N	0	
Acid	PROPIONIC ACID	79-09-4	141.15	51	1	465	0	1.00E+05	1	N	0	2
Alcohol	1-BUTANOL	71-36-3	117.73	37	1	343	1	9.00E+05	1	N	0	3
Alcohol	1-PROPANOL	71-23-8	97.2	23	2	412	1	2.00E+06	1	N	0	4
Alcohol	2-BUTANOL	78-92-2	99.51	24	1	390	1	3.00E+06	1	2	1	4
Alcohol	2-METHOXYETHANOL	109-86-4	124.1	39	1	285	1	9.30E+08	1	1	1	4
Alcohol	BENZYL ALCOHOL	100-51-6	205.31	93	1	436	1	1.80E+08	1	2	1	4
Alcohol	ETHANOL	64-17-5	78.29	12	2	363	1	1.43E+08	1	N	0	4
Alcohol	ETHYLENE GLYCOL	107-21-1	197.3	111	1	398	1	1.16E+08	1	N	0	3
Alcohol	ISOAMYL ALCOHOL	123-51-3	131.1	43	1	350	1	1.40E+05	1	N	0	3
Alcohol	ISOBUTANOL	78-83-1	108	27	1	415	1	2.00E+06	1	N	0	3
Alcohol	ISOPROPYL ALCOHOL (IPA)	67-63-0	82.3	12	2	360	1	6.00E+07	1	2	1	5
Alcohol	METHANOL	67-56-1	64.6	11	2	464	0	4.40E+07	1	N	0	3
Alcohol	T-BUTANOL	75-65-0	82.4	11	2	478	0	1.00E+08	1	N	0	3
Aromatic	BENZENE	71-43-2	80.09	-11	2	498	0	1.00E-01	3	N	0	5
Aromatic	TOLUENE	108-88-3	110.63	4	2	480	0	1.00E+00	3	N	0	5

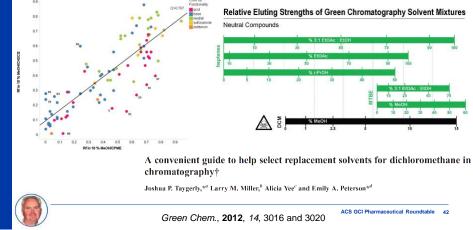
Similar worksheets exist for "Health" (reprotoxic, carcinogenic and mutagenic effects, toxicity, skin effects etc), "Environment (Air impact)" (Volatility, Odour, ozone depletion Potential), "Environment (Water impact)" (persistence, ecotoxicity, solubility, etc.), and "Environment (Waste)" (potential for incineration, potential for recycling).

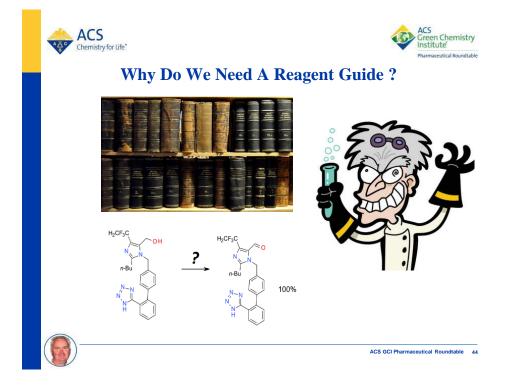
Example for Safety Scoring....

Flammability

Score (color/number)	Flammability category	Flash Point (FP) and/or Boiling Point (BP)
Red (3)	Extreme flammability	FP ≤ 23°C and BP ≤ 35°C
Yellow (2)	Flammability of concern	FP ≤ 23°C and BP > 35°C
Green (1)	No concern	FP > 23°C
Green (0)	No concern	No FP

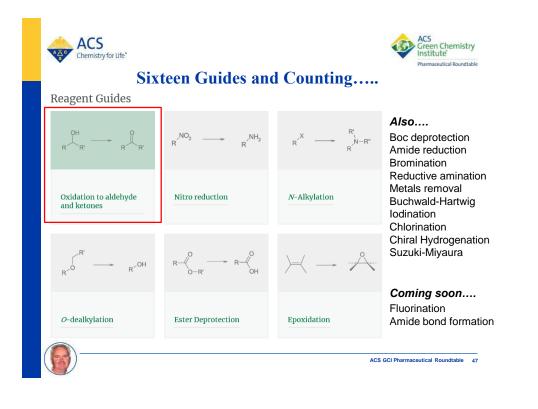

Peroxide Formation

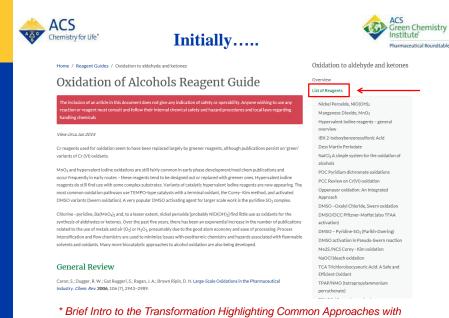

Score (color/number)	Peroxide former	Risk
Red (1)	1 – High risk	Known risk
	2 – Medium risk	
Green (0)	N – No risk	No known risk

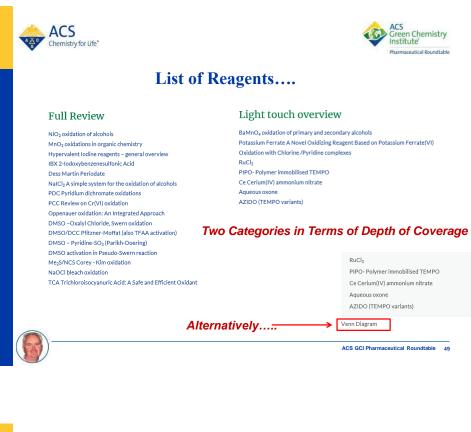

ACS GCI Pharmaceutical Roundtable 41

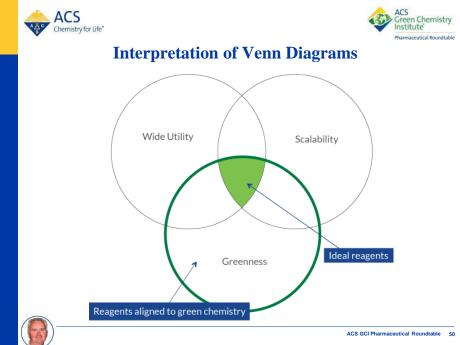
tical Roundtable

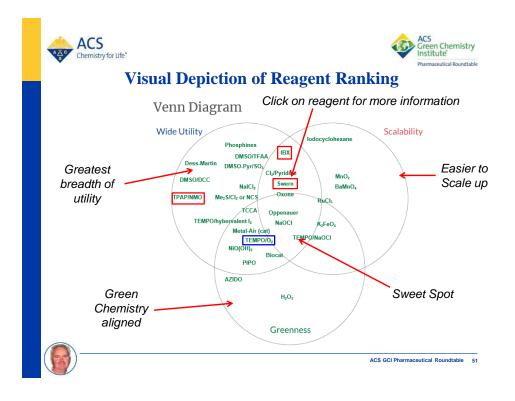
011011110	www.a try/me							~		nem	istry	//res	sear	<u>ch-ir</u>	<u>nno</u>	atio	n/to	ols-	tor-c	reer	<u>)-</u>
Purifica	ation	G	Gree	n Cł	nrom	nato	grap	ohy	deci	sion	tre	e (G	Gree	n Cl	hem	. 20	14,	16, ·	4060))	
Solven	t	G	SK.	, Pfi:	zer,	San	nofi s	solv	ent o	quid	es						One po		Avoidir escope?	-	matography Recrystallization/
					ves t							ide	cou	olinc	15				. T	1	7
					herr						um		oou	philig	J O	SF			ange re		Flash Chromatog Reverse-phase MI
																				7 5	7
																	Mak	ing Fla	sh Chre	matoers	aphy more Sustai
																So	Mak vent C		-	omatogra	aphy more Sustain Reuse and
Table 2 Illu	strative re	presen	itation	of the a	midatio	on datas	set.°									So			-		
Table 2 Illu: Solvent										de Cou							vent C	hoice	Ei	fficiency	
	Ary	yl Acid	d – Ary	yl Amir		Ar	yl Acid		yl Ami	ne	Al	kyl Aci		yl Ami PyBOP		All	went C	hoice d – All	-	me	
Solvent		yl Acid	d – Ary	yl Amir	10	Ar	yl Acid		yl Ami	ne T3P	Al	kyl Aci				All HATU **	vent C tyl Aci COMU	hoice d - All DIC HOBI	eyl Ami PyBOP	ine T3P	
Solvent	Ary HATU C	yl Acid	d – Ary DIC HOBt *	yl Amir PyBOP *	T3P I	Ar HATU (yl Acid COMU **	DIC HOBi *	yl Ami	ne T3P **	Al	kyl Aei COMU				All HATU *** **	ivent C tyl Aci COMU	d – All DIC HOBt	Ef cyl Ami PyBOP	ine T3P ** **	
Solvent TBME CPME CH ₂ Cl ₂ DMC	Ary HATU C	yl Acid	d – Ary DIC HOBt *	yl Amir PyBOP *	10	Ar HATU (yl Acid COMU **	DIC HOBi *	yl Ami PyBOP	ne T3P ** **	**	kyl Aci COMU	DIC HOBi	PyBOP		All HATU ** *	yl Aci cOMU	d – All DIC HOB(*	yl Ami yBOP ** **	ine T3P ** **	
Solvent TBME CPME CH ₂ Cl ₂	Ary HATU C	y l Acid	d – Ary DIC HOBt *	yl Amir PyBOP *	T3P I	Ar HATU (yl Acid COMU **	DIC HOBi *	yl Ami PyBOP	ne T3P **	AI HATU	kyl Aei COMU		PyBOP		All HATU *** **	tyl Aci COMU	d – All DIC HOBt	syl Ami PyBOP ** **	ine T3P ** **	
Solvent TBME CPME CH ₂ Cl ₂ DMC DMF	Ary HATU C	yl Acid COMU	d – Ary DIC HOBt *	yl Amir PyBOP * *	10 T3P	Ar HATU * **	yl Acid COMU **	DIC HOB(* *	yl Ami PyBOP * **	ne T3P ** *	**	kyl Aci COMU **	DIC HOB(PyBOP		All HATU *0 *0 *8 *8	yl Aci COMU ** **	d – All DIC HOBt *	yl Ami yBOP ** ** **	ine T3P ** ** **	






Online at "reagentguides.com"


The reagent guides purpose is to encourage chemists to choose a 'greener' choice of reaction conditions. The guides aim to achieve this by providing transparency through the use of Venn diagrams in addition to improving understanding by discussion and up to date references.


S	\bigotimes	\bigstar
The Reagent Guides Select the chemical transformation of interest VIEW •	How to Interpret the Venn Diagrams	Ethos of the Reagent Guides
		Name: reagent Password: guide

Audience Challenge Question

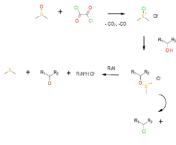
Due to the cheap reagents involved, and it's tolerance to a wide variety of functional groups, the Swern oxidation was once widely used. Why do chemists tend to look for alternatives today?

- The reaction requires cryogenic temperatures
- To avoid the use of chlorinated solvents
- The odor of Me₂S as a by-product
- The reaction liberates CO
- All of the above

Tetrahedron, 1978, 34, 1651.

For Each Reagent.....

DMSO - Oxalyl Chloride, Swern oxidation


Mechanism + Description

The Swern oxidation is one of a related series of oxidations based on activated DMSO. In the Swern varient, oxalyl chloride generates the dimethylchlorosulfonium chloride. Reaction with the alcohol produces an oxy sulphonium ion which undergoes base – catalyzed elimination to give the ketone and MegS.

General comments

This non-catalytic oxidation that avoids heavy metals was once widely used. Drawbacks are that it

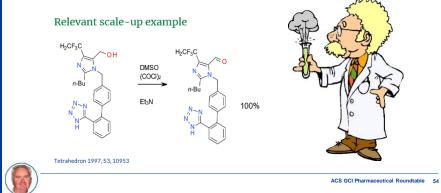
need cryogenic temperatures (-60 °C) and generates Me₂S as a by-product. Other issues

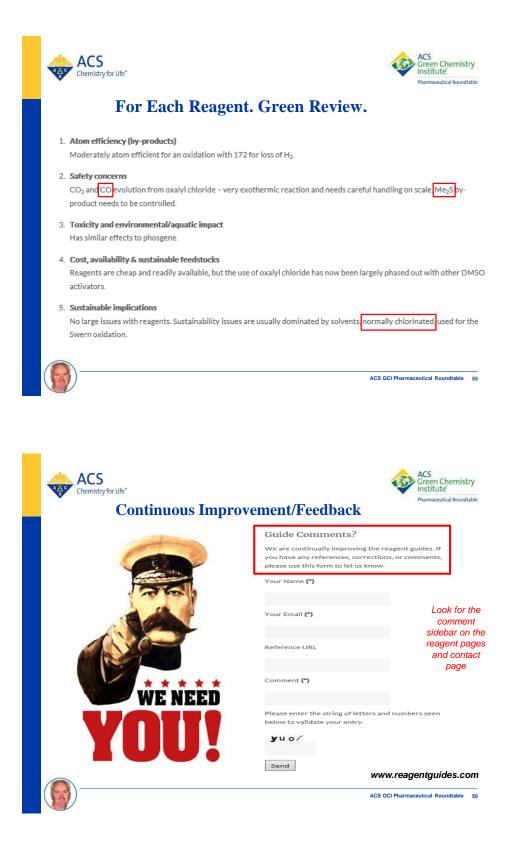
include dealing with exothermic chemistry and the potential for side reactions to occur if the temperature is not well-controlled. Other activators that give more controlled reactions and allow operation at higher temperatures have generally replaced oxalyl chloride.

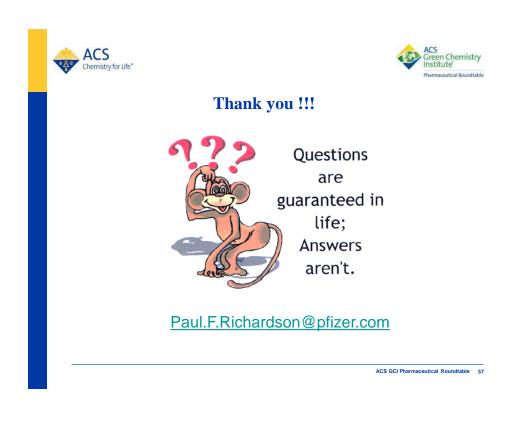
The highly exothermic nature of Swern-type oxidations and the need for cryogenics to minimize side reactions make these oxidations good candidates for continuous flow reactions.

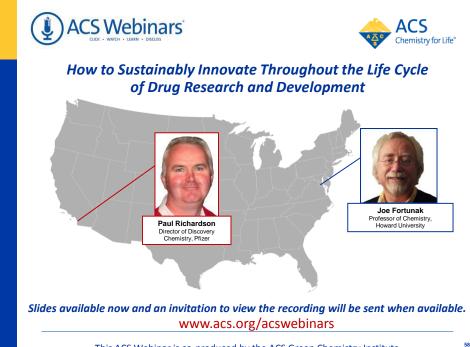
ACS GCI Pharmaceutical Roundtable 53

Chemistry for Life"


Key references


Omura, K.; Swern, D. Oxidation of alcohols "activated dimethyl sulfoxide. A preparative, steric and mechanistic study. *Tetrahedron.* **1978**, 34 (11), 1651-1660.


Mancuso, A. J.; Brownfain, D. S.; Swern, D. Structure of the dimethyl sulfoxide-oxalyl chloride reaction product. Oxidation of heteroaromatic and diverse alcohols to carboynl compounds. J. Org. Chem. 1979, 44 (23), 4148–4150.


For Each Reagent.....

Russell McConnell, J.; Hitt, J. E.; Daugs, E. D.; Rey, T. A. The Swern Oxidation: Development of a High-Temperature Semicontinuous Process. *Org. Process Res. Dev.* 2008, 12 (5), 940-945.

This ACS Webinar is co-produced by the ACS Green Chemistry Institute

ACS

Chemistry for Life*

www.gcande.org

Sponsors international and domestic students (undergraduate and above) based on estimated travel expenses, up to \$2,000, for a green chemistry technical meeting, conference or training program (students are encouraged to consider the GC&E Conference).

Kenneth G. Hancock Memorial Award

(\$1,000 cash and \$1,000 travel stipend) - Due February 16, 2018

Sponsors international and domestic students (undergraduate and graduate), up to \$2,000, for the GC&E Conference.

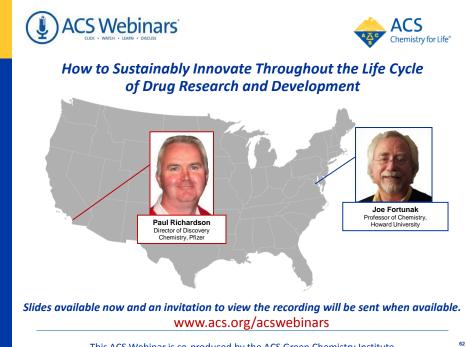
http://bit.ly/GClawards

Upcoming ACS Webinars www.acs.org/acswebinars

61

Thursday, January 11, 2018

Painting a Brighter Future with Chemistry: Innovating with Higher Performing and More Sustainable Pre-composite Polymers Jim Bohling, Dow Chemical Company Stan Brownwell, Dow Chemical Company



Thursday, January 18, 2018

Science-Based Carbon Reduction Targets: An Entry Ticket to Carbon-Based Business Benefits

Valerie Patrick, President, Fulcrum Connection Bryan Tweedy, Manager, Office of Career and Professional Resources, ACS

Contact ACS Webinars[®] at acswebinars@acs.org

This ACS Webinar is co-produced by the ACS Green Chemistry Institute

How has ACS Webinars[®] benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand[®] ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.

http://bit.ly/benefitsACS

65

66

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars [®] at acswebinars@acs.org

Upcoming ACS Webinars *www.acs.org/acswebinars*

67

Thursday, January 11, 2018

Painting a Brighter Future with Chemistry: Innovating with Higher Performing and More Sustainable Pre-composite Polymers Jim Bohling, Dow Chemical Company Stan Brownwell, Dow Chemical Company

Thursday, January 18, 2018

Science-Based Carbon Reduction Targets: An Entry Ticket to Carbon-Based Business Benefits

Valerie Patrick, President, Fulcrum Connection Bryan Tweedy, Manager, Office of Career and Professional Resources, ACS

Contact ACS Webinars [®] at acswebinars@acs.org