

Join a global community of over 150,000 chemistry professionals

Find the many benefits of ACS membership!

http://bit.ly/ACSmembership

Benefits of ACS Membership

Chemical & Engineering News (C&EN)

The preeminent weekly digital and print news source.

NEW! ACS SciFinder

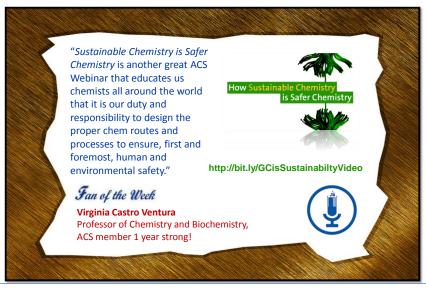
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator

Your source for leadership development, professional education, career services, and much more.

http://bit.ly/ACSmembership

@AmericanChemicalSociety



https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars ® at acswebinars@acs.org

How has ACS Webinars benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public every Thursday from 2-3pm ET!

www.acs.org/acswebinars

An individual development planning tool for you!

ChemIDP.org

What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science

- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://acsoncampus.acs.org

www.gcande.org

Upcoming ACS Webinars www.acs.org/acswebinars

Thursday, September 20, 2018

A Novel Strategy for the Treatment of Chronic Pain: Antagonising PAR2 with a Monoclonal Antibody Co-produced with ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

Pete Thornton AstraZeneca

Nurulain Zaveri Astraea Therapeutics

Thursday, September 27, 2018

Who Will Win the #ChemNobel? Predicting the 2018 Nobel Laureate(s) in Chemistry Co-produced with Chemical & Engineering News

Experts

Carmen Drahl

Lauren Wolf C&EN

Beam Therapeutics

University of Strasbourg

Contact ACS Webinars ® at acswebinars@acs.org

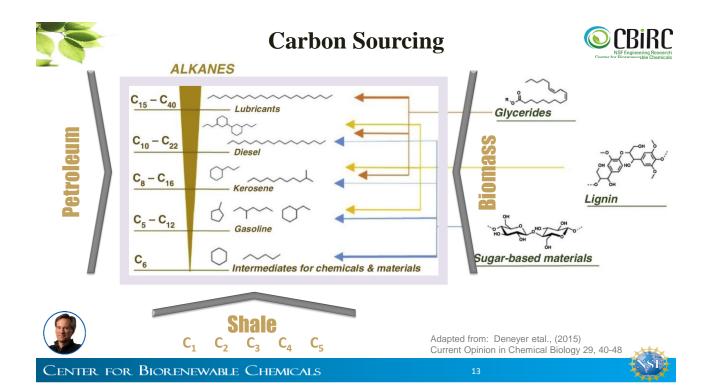
Bioprivileged Molecules: A New Paradigm for Biobased Chemical Development

www.acs.org/acswebinars

Co-produced with the ACS Green Chemistry Institute

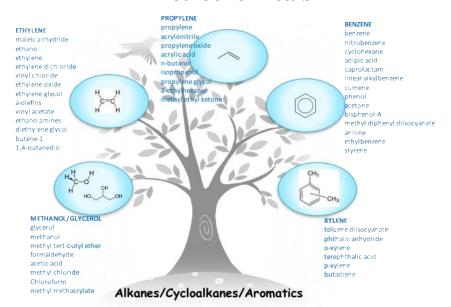
Bioprivileged Molecules

A New Paradigm for Biobased Chemical Development



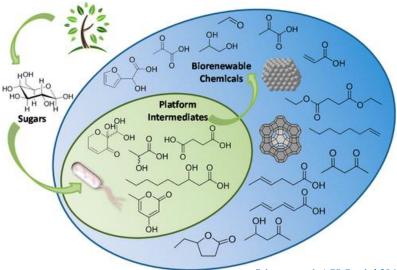
Peter Keeling & Brent Shanks *Iowa State University*

Biobased Chemicals


CENTER FOR BIORENEWABLE CHEMICALS

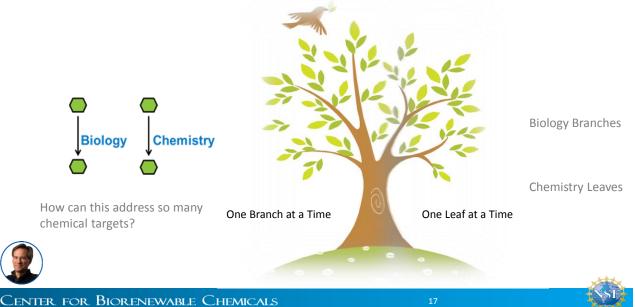
Petrochemicals

CENTER FOR BIORENEWABLE CHEMICALS


1

Integrating Biology/Chemistry

Schwartz et al. ACS Catal. 4:2060-2069 (2014)


CENTER FOR BIORENEWABLE CHEMICALS

Biobased Chemicals

Risks, Costs and Return

Risks: Transition from lab to pilot to semi-works and full scale is frequently difficult.

• Need to focus on fewer biological systems & combine with chemical catalysis for diversification.

Costs: Capital costs are very significant and not fully derisked.

• Need to find ways to move step-wise through scale levels for commercialization.

Return: Competing with commodity chemicals is challenging

• Need to identify higher value opportunities

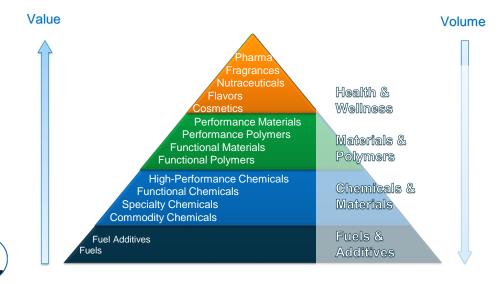
Bioprivileged Molecules

Bioprivileged molecules are defined as biology-derived chemical species that can be efficiently converted to a diversity of chemical products including both novel molecules and drop-in replacements.

Shanks, Keeling *Green Chem.* **19**:3177-3185 (2017)

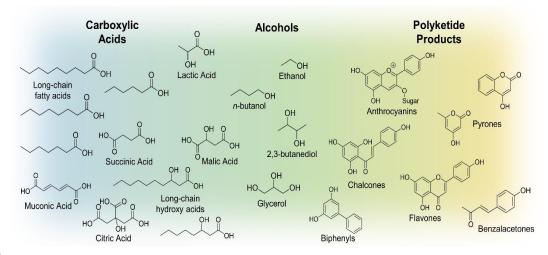
CENTER FOR BIORENEWABLE CHEMICALS

19


When was the last new petrochemical compound commercialized?

- 1-5 years
- 6-10 years
- 11-15 years
- 16-20 years
- Greater than 20 years

Start with Higher Value MVP


2

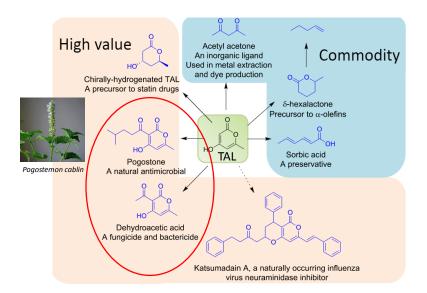
Biology-Derived Molecules

Schwartz et al. Curr. Opin. Biotechnol. 38:54-62 (2016)

CENTER FOR BIORENEWABLE CHEMICALS

NSI

What are the number of possible $C_6H_xO_y$ chemical compounds?


- About 30,000
- About 20,000
- About 15,000
- About 10,000
- About 5,000

23

Triacetic Acid Lactone

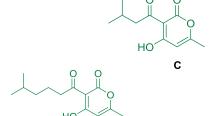
NSE

CENTER FOR BIORENEWABLE CHEMICALS

Synthesis of Pogostone and Analogues

CENTER FOR BIORENEWABLE CHEMICALS

25



Antimicrobial Activity

Organisms	Α	В	С	D	Е	F	G
Cryptococcus neoformans	+						+
Geotrichum capitatum	+		+				+
Candida kefyr	+					+	
Candida geochares	+						+
Candida krusei	+		+				+
Yarrowia lipolytica	+		+				+
Trichosporon mucoides			+	+			+
Protohteca wickehamii	+	+	+	+	+	+	+
Ogataea polymorpha	+		+				+
Candida intermedia	+		+				
Candida dubliniensis	+		+				
Cyberlindnera fabianii	+		+				+
Candida tropicalis	+		+				+
Rhodotorula mucilaginosa							+
Candida glabrata	+		+				
Candida parapsilosis							
Saccharomyces bayanus	+		+				+
Hanseniaspora guilliermondii	+		+				+
Cornebacterium glutamicum							+
Staphylococcus saprophyticus							+
Staphylococcus haemolyticus							+
Enterobacter cloacae							+
Chryseobacterium indologenes							+

CENTER FOR BIORENEWABLE CHEMICALS

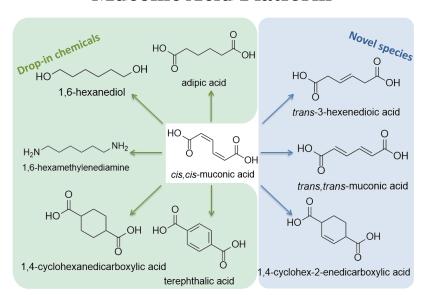
Insecticidal & Repellency

Pogostone Analogs

Compound	Insecticidal								
Compound	0.025%	0.05%	0.1%	0.15%	0.25%				
Pogostone Analog 1	0		10	55 ± 5	$\textbf{77.1} \pm \textbf{10.4}$				
Pogostone Analog 2	0		30	55 ± 25	80				
Pogostone Analog 3			0	5	0				
Pogostone Analog 4				10					
Natural Pyrethrins	0	0	0	20	10				

Danallant	Spatial Repellency					
Repellent	15 mins	90 mins	150 mins			
Control (acetone treated & evaporated)	-7.5	5	-5			
DEET	20	50	56.7			
Pogostone A	7.5	45	25			
Pogostone B	KD	KD	KD			
Pogostone C	35	67.5	62.5			
Pogostone F	30	15	22.5			
Pogostone G	7.5	15	5			

Center for Biorenewable Chemicals



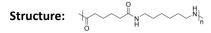
Muconic Acid Platform

Norris and Coats, Pesticide Toxicology Lab

NSF

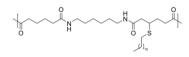
CENTER FOR BIORENEWABLE CHEMICALS

Bioadvantaged Nylon



The mechanical properties of conventional Nylon 6,6 drop by 40% with the absorption of 2% moisture.

Application – Automotive Parts


Polymer: Nylon 6,6

Water
Absorption: 4.12 wt% increase

Bioadvantaged Nylon 6,6 (5 wt% HDA)

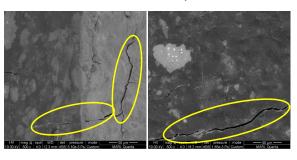
0.69 wt% increase

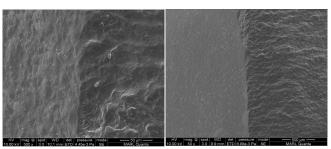
CENTER FOR BIORENEWABLE CHEMICALS

29

Physical Properties

Sample	T _m (°C)	ΔH _m (J/g)	Crystallinity (%)	T _c , Maxima	ΔΗ _c (J/g)	T _{d50}
BAN 0	254.92± 1.98	76.285±1.68	51.9	226.16±1.79	75.19±2.34	431
BAN 5	249.47±0.75	62.06±0.80	53.6	224.06±0.02	64.06±4.56	430
BAN 20	229.27±0.94	43.55±1.50	44.0	196.86±0.93	47.98±0.53	437
BAN 40	194.80±1.60	26.94±3.03	31.6	156.85±0.45	34.55±4.13	444
BAN 50	170.02±0.04	23.26±0.30	23.4	114.29±1.69	21.78±2.27	447
BAN 60	-	-	21.0	-	-	448
BAN 80	-	-	0	-	-	451
BAN 100	-	-	-	-	-	452

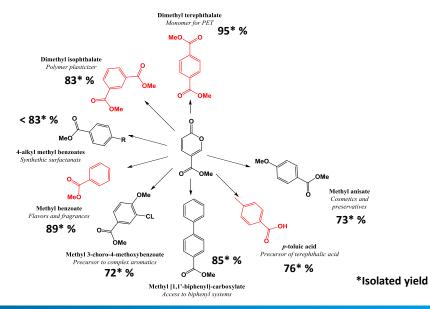

NSI


Halide Resistance Test

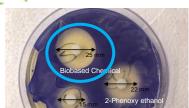
Conventional Nylon

Bioadvantaged Nylon

CENTER FOR BIORENEWABLE CHEMICALS


21

Coumalate Platform



CENTER FOR BIORENEWABLE CHEMICALS

Compounds were tested against a wild type strain of Escherichia coli K-12 expressing a purple chromogenic protein to improve visualization.

MIC Testing

	Industry Standard	Pyrone Derivatives * < 0.5 wt% MIC (minimum inhibitory concentration)							
Contaminating bacteria	Phenoxyethan ol (PhE)	А	В	С	D	E	F	G	н
Escherichia coli	*	*			*		*		*
Aspergillus braciliennsis	*				*		*		
Pseudomonas aeroginosa	*	*		*	*		*		
Staphylococcus aureus	*	*			*		*		
Salmonella typhimurium	*	*			*		*		
Salmonella abony	*	*			*		*		
Clostridium sporogenes	*	*			*		*		
Candida albicans	*	*			*		*		

* Salmonella Typhimurium ATCC 14028, Salmonella Abony NCTC 6017, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 6538, Clostridium sporogenes ATCC 11437, Candida albicans ATCC 10231 and Candida albicans ATCC 90028

CENTER FOR BIORENEWABLE CHEMICALS

33

Novel Molecules

Consumer Goods, Materials, Chemicals

Petrochemicals

- · Shifting consumer demand
- · Lack of alternatives

Biobased Chemicals

- Consumer opportunity
- · Novel alternatives

Thank You

CENTER FOR BIORENEWABLE CHEMICALS

3!

Bioprivileged Molecules: A New Paradigm for Biobased Chemical Development

Slides available now and an invitation to view the edited recording will be sent when available.

www.acs.org/acswebinars

Co-produced with the ACS Green Chemistry Institute

www.gcande.org

Upcoming ACS Webinars www.acs.org/acswebinars

Thursday, September 20, 2018

A Novel Strategy for the Treatment of Chronic Pain: Antagonising PAR2 with a Monoclonal Antibody Co-produced with ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

Pete Thornton AstraZeneca

Nurulain Zaveri Astraea Therapeutics

Thursday, September 27, 2018

Who Will Win the #ChemNobel? Predicting the 2018 Nobel Laureate(s) in Chemistry Co-produced with Chemical & Engineering News

Experts

Experts

Carmen Drahl

Lauren Wolf C&EN

Beam Therapeutics

University of Strasbourg

Contact ACS Webinars ® at acswebinars@acs.org

Bioprivileged Molecules: A New Paradigm for Biobased Chemical Development

Slides available now and an invitation to view the edited recording will be sent when available.

WWW.acs.org/acswebinars

Co-produced with the ACS Green Chemistry Institute

How has ACS Webinars benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

@AmericanChemicalSociety

@AmericanChemicalSociety

https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars ® at acswebinars@acs.org

41

Benefits of ACS Membership

Chemical & Engineering News (*C&EN*)

The preeminent weekly digital and print news source.

NEW! ACS SciFinder

ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator

Your source for leadership development, professional education, career services, and much more.

http://bit.ly/ACSmembership

ACS Webinars®does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

43

Upcoming ACS Webinars *www.acs.org/acswebinars*

Thursday, September 20, 2018

A Novel Strategy for the Treatment of Chronic Pain: Antagonising PAR2 with a Monoclonal Antibody Co-produced with ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

Pete Thornton AstraZeneca

Nurulain Zaveri Astraea Therapeutics

Thursday, September 27, 2018

Who Will Win the #ChemNobel? Predicting the 2018 Nobel Laureate(s) in Chemistry Co-produced with Chemical & Engineering News

Experts

Carmen Drahl

Lauren Wolf C&EN

Nicole Gaudelli Beam Therapeutics

Joseph Moran University of Strasbourg

Contact ACS Webinars ® at acswebinars@acs.org