

Join a global community of over 150,000 chemistry professionals

Find the many benefits of ACS membership!

http://bit.ly/ACSmembership

Benefits of ACS Membership

Chemical & Engineering News (C&EN)

The preeminent weekly digital and print news source.

NEW! ACS SciFinder

ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator

Your source for leadership development, professional education, career services, and much more.

http://bit.ly/ACSmembership

3

@AmericanChemicalSociety



https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars ® at acswebinars @acs.org

How has ACS Webinars' benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

ACS Webinars

CLICK · WATCH · LEARN · DISCUSS

LIVE | Thursdays at 2pm ET

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars continue to be available to the general public every Thursday from 2-3pm ET!

www.acs.org/acswebinars

An individual development planning tool for you!

https://chemidp.acs.org

What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science

- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://acsoncampus.acs.org

#HeroesofChemistryACS Heroes of Chemistry Award

The ACS Heroes of Chemistry Award is the Annual award sponsored by the American Chemical Society that recognizes talented industrial chemical scientists whose work has led to the development of successful commercialized products ingrained with chemistry for the benefit of humankind.

Deadline: Friday, Feb. 1, 2019

2018 Winners:

SeattleGenetics

www.acs.org/heroes

ACS Division of Agricultural & Food Chemistry

AGFD brings together persons particularly interested in the chemistry of agricultural and food products, both raw and finished; to foster programs of general papers and symposia on special topics dealing with this field of chemistry; to promote such other activities as will stimulate activity in and emphasize the importance of research in agricultural and food chemistry.

Find out more about the ACS AGFD! https://agfd.sites.acs.org
AGFD Member News: https://agfd.sites.acs.org/agfdmembernews.htm
AGFD Application for Membership: https://agfd.sites.acs.org/agfdapplication.htm

Thursday, November 29, 2018 @ 2-3pm EST

Human Exosomes: An Ideal Vehicle for Delivery of Therapeutic RNAs to Cells and Organs

 ${\it Co-produced\ with\ the\ ACS\ Division\ of\ Medicinal\ Chemistry\ and\ the\ American\ Association\ of\ Pharmaceutical\ Scientists}}$

Experts

Hadi Valadi University of Gothenburg

Alexander Kapustin AstraZeneca

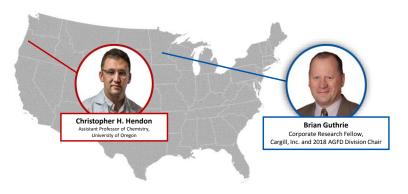
Tuesday, December 4, 2018 @ 1-2pm EST

Predicting the Biggest Chemistry Advances of 2019
Co-produced with Chemical & Engineering News

Experts

Chemical & Engineering News

Contact ACS Webinars ® at acswebinars@acs.org



THIS ACS WEBINAR WILL BEGIN SHORTLY...

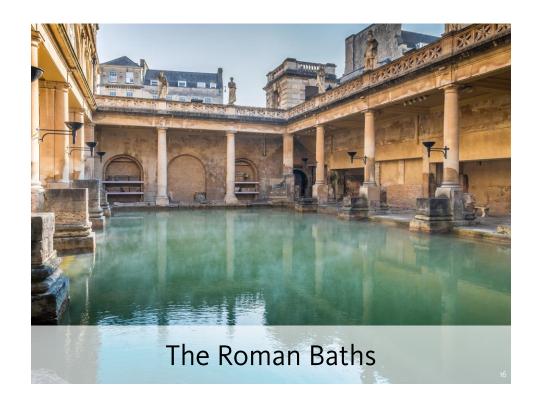
Coffee: A Chemical and Physical Perspective

Slides available now! Recordings are an exclusive ACS member benefit.

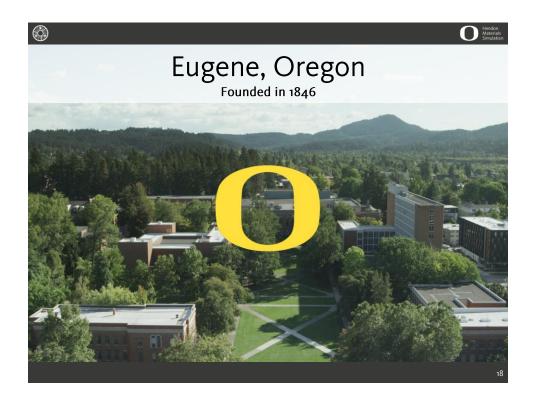
www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Agricultural Food & Chemistry

13


Coffee A Chemical and Physical Perspective

Christopher H. Hendon Assistant Professor of Chemistry World Coffee Leader 2016


w: pages.uoregon.edu/chendone: chendon@uoregon.edut: @chhendon

Coffee literature available at goo.gl/ Z 1 t X z x

Hendon Materials Simulation

Jenna L. Mancuso Electro-MOFs Heterogeneous catalysis

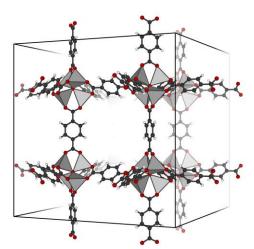
Min Chieh Yang Molecular redox Materials assembly

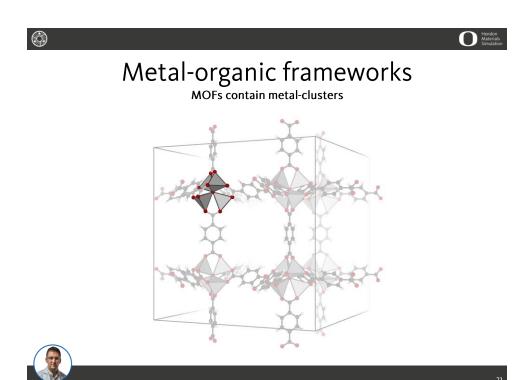
Computer-aided learning Materials discovery

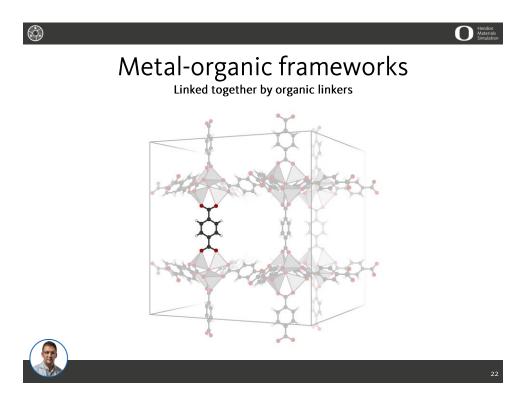
projects

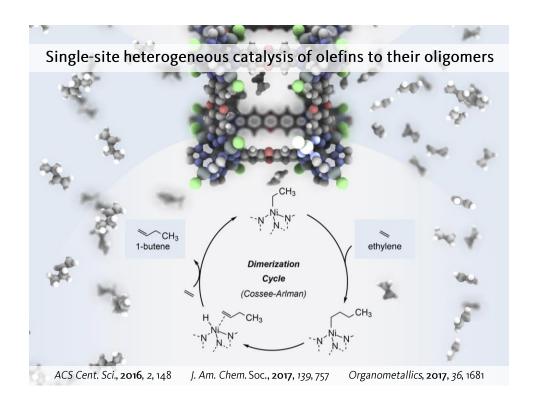
Photovoltaics
Defective semiconductors

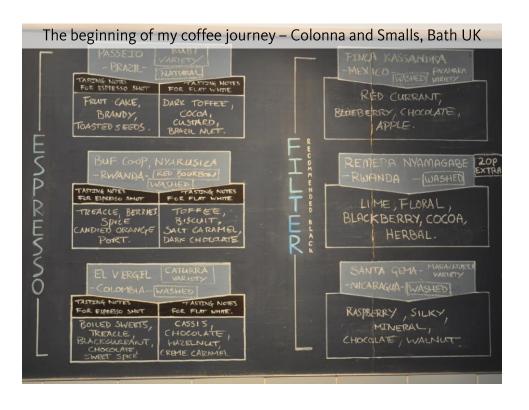
Metal carbides
Surface catalysis

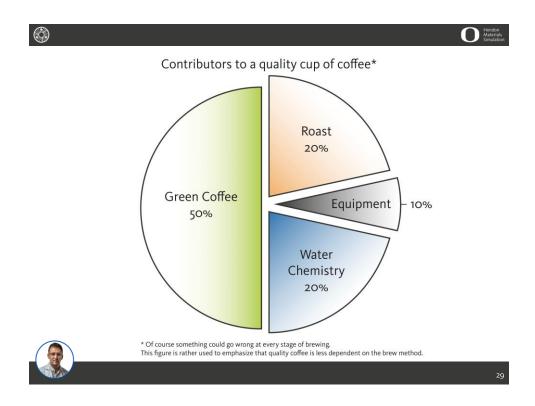

10

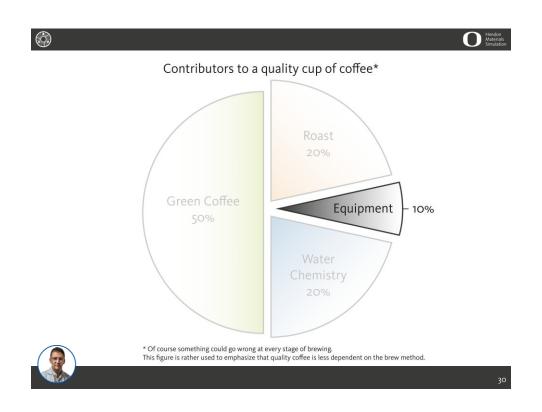


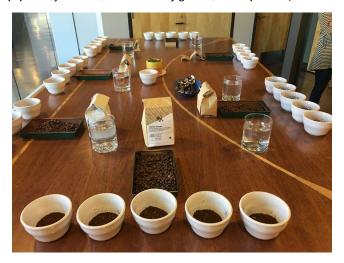

Metal-organic frameworks


A class of porous materials for energy storage and conversion




In what field do you work?


- · Coffee Industry
- Chemical Industry
- Academia
- Government
- Other



Coffee is graded on the cupping table No equipment, just water, coffee coarsely ground, and a spoon + 4 min brew time

Agriculture and Economics

Coffee market analysis

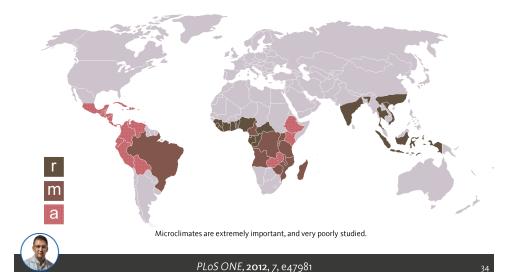
1.3% of USA GDP (\$225.2B in 2015)

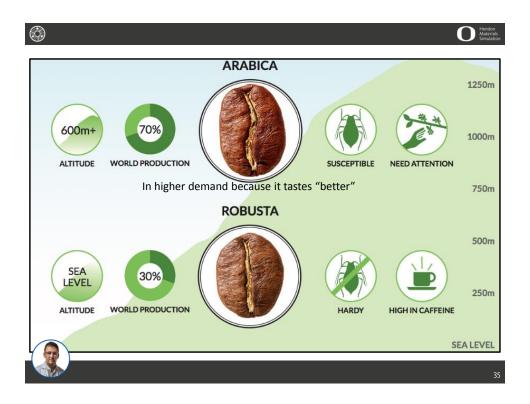
"Drip" (i.e. filter) coffee dominates the USA

Drip is 1.2 – 1.5 % w/w

Espresso-based beverages prolific in Europe
Espresso is 8 – 10 % w/w

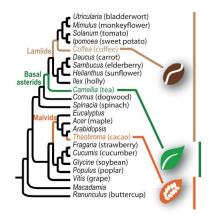
Coffee is kind of a big deal to other countries, too: Burundi — 25% GDP (~\$8B) is coffee, 90% population employed


33



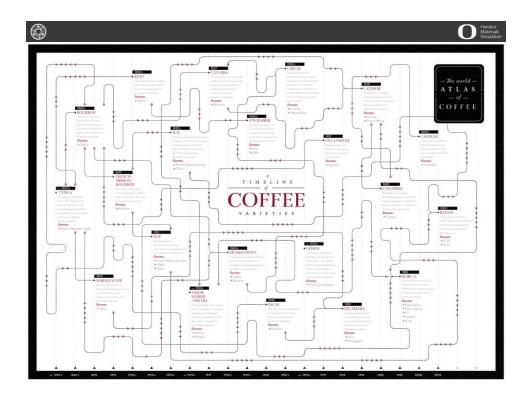
The Bean Belt

The balance between low CO₂ concentrations and high temperature

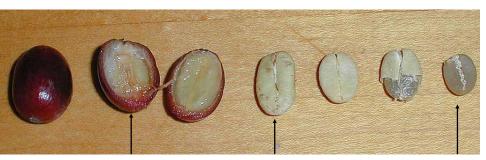


We have the genome for both Robusta and Arabica

PLANT GENOMICS


The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

France Denoeud, ^{1,2,3} Lorenzo Carretero-Paulet, ² Alexis Dereeper, ⁵ Gaëtan Droe, ⁶ Romain Guyot, ⁷ Marco Pietrella, ⁸ Chuntàng Zheng, ⁸ Adriana Alberti, ¹ François Anthony, ⁵ Giuseppe Aprea, ³ Jean-Marc Amy, ¹ Pasael Bento, ¹ Maria Bernard, ³ Stéphanie Boes, ⁶ Claudine Campa, ⁷ Alberto Cenci, ^{5,10} Marie-Christine Combes, ⁵ Dominique Crouzillat, ¹¹ Corinne Da Silva, ¹ Loretta Daddiego, ¹³ Fabien De Bellis, ⁶ Stéphane Dussert, ⁷ Olivier Garsmeur, ⁶ Thomas Gayraud, ⁷ Valentin Guignon, ¹⁰ Katharina Jahn, ^{9,13,14} Véronique Jamilloux, ¹⁵ Thierry Jeër, ⁷ Karine Labadie, ¹ Tianying Lan, ^{3,16} Julie Leeleere, ⁶ Maud Lepelley, ¹¹ Thierry Leroy, ⁶ Lei-Ting Li, ⁷ Pablo Librado, ⁸ Loredana Lopez, ⁷ Adriana Muñoz, ^{9,30} Benjamin Noel, ³ Alberto Pallavicini, ³ Gaetano Perrotta, ¹⁹ Valérie Poncet, ⁷ David Por, ⁸ Priyono, ²⁸ Michel Rigoreau, ¹⁹ Mathieu Rouard, ¹⁰ Julio Rozas, ¹⁰ Christine Tranchant-Dubreuli, ⁷ Robert VanBuren, ⁷⁷ Gjong Zhang, ⁷⁷ Alan C. Andrade, ²⁸ Xavier Argout, ⁶ Benoit Bertrand, ²⁸ Alexandre de Kochko, ⁷ Giorgio Graziosi, ^{20,28} Robert J Henry, ²⁶ Jayarama, ²⁷ Ray Ming, ⁷⁷ Chifumi Nagai, ²⁸ Steve Rounsley, ²⁰ David Samkoff, ⁹ Giovanni Giuliano, ⁸ Victor A. Albert, ^{4*}



Science, 2014, 345, 1181

Coffee begins life as a fruit Inevitably the fruit is removed to yield a green seed (~11% moisture content)

Fruit or mucilage Parchment Seed

Processing methods

The stage in which coffee is dried

Natural process

Pulped Washed process

Fruit or mucilage

Parchment

Seed

The chemistry of each processing method is widely unknown All coffee is then fermented for ~24 hours

39

Naturals historically came from places with water scarcity or environment in mind

Yemen, parts of Ethiopia, and more recently Brazil

A drying facility in Ethiopia

Defective naturals are UV active Why?

Int. J. Food Prop., 2017, 20, S331

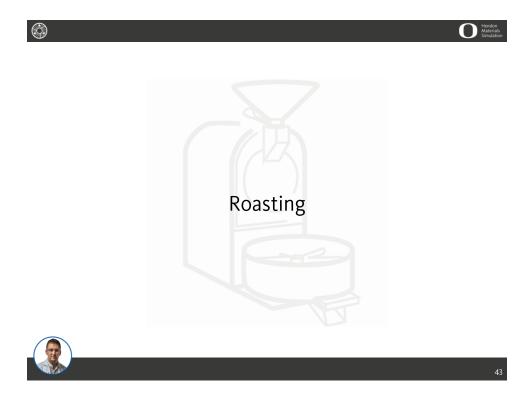
The 'best' coffees in the world

Kopi Luwak (Civet) — fallacy

41

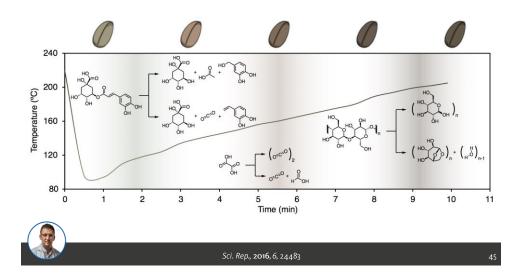
The 'best' coffees in the world

No particular country dependence


Although Brazilian, Sumatran, Vietnamese and Hawaii are typically the lowest scoring

Panama Geishas are typically the award winners

Natural and Washed



The roast profile

Kinetics: Gradient and time determine flavor development

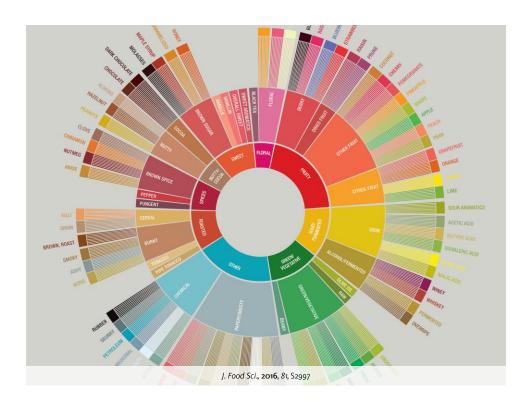
Dark roast coffee contains more caffeine?

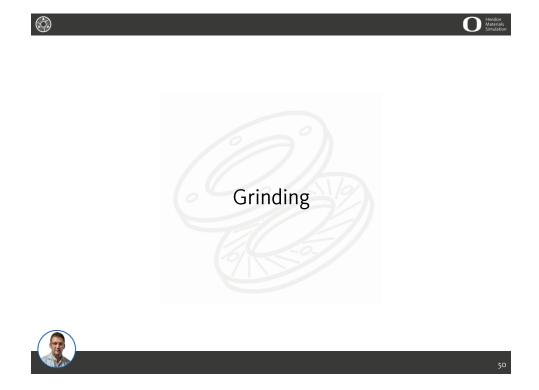
Fallacy

Table II. Caffeine Content of Espresso and Brewed Specialty Coffees		
Coffee and Origin	Amount	Caffeine Dose (mg)
Espresso coffees		
Big Bean Espresso, 1-shot	1 shot	75.8
Big Bean Espresso, 2 short shots	2 short shots	140.4
Big Bean Espresso, 2 tall shots	2 tall shots	165.3
Starbucks Espresso, regular, small	1 shot	58.1
Hampden Café Espresso	2 shots	133.5
Einstein Bros® Espresso, double	2 shots	185.0

Brewed specialty coffees		
Big Bean, regular	16 oz	164.7
Big Bean Boat Builders Blend, regular	16 oz	147.6
Big Bean Organic Peru Andes Gold, regular, country origin, Peru	16 oz	186.0
Big Bean French Roast, regular	16 oz	179.8
Big Bean Ethiopian Harrar, regular, country origin, Ethiopia	16 oz	157.1
Big Bean Italian Roast, regular, country origin, Brazil	16 oz	171.8
Big Bean Costa Rican French Roast, regular, country origin, Costa Rica	16 oz	245.1
Big Bean Kenya AA, regular, country origin, Kenya	16 oz	204.9
Big Bean Sumatra Mandheling, regular, country origin, Indonesia	16 oz	168.5
Hampden Café Guatemala Antigua	16 oz	172.7
Starbucks regular	16 oz	259.3
Royal Farms regular	16 oz	225.7
Dunkin' Donuts regular	16 oz	143.4
Einstein Bros regular	16 oz	206.3

J. Anal. Toxic., **2003**, *27*, 520

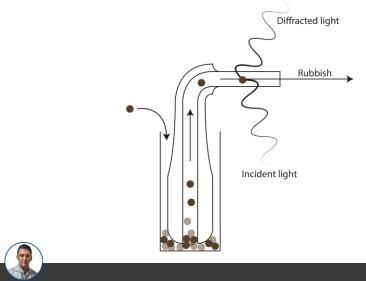

47

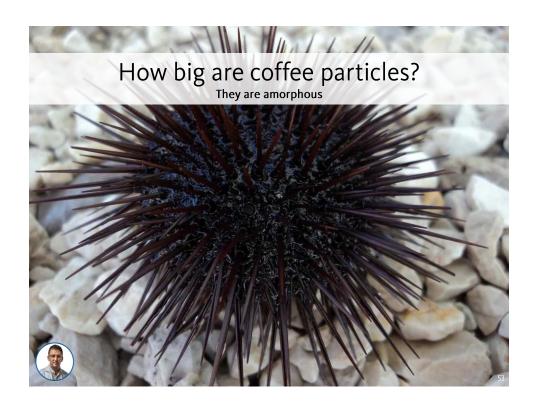


Some chemistry in roasted coffee

Compound	References	Compound	References
Hydrocarbons		Lactones	
Isoprene	Rhoades, 1958, 1960	γ-Butyrolactone	Viani et al., 1965
Alcohols Methanol Ethanol 2-Propanol 3-Methylbut-2-en-1-ol Linalool cis-Linalool oxide trans-Linalool oxide	Reichstein and Staudinger, 1962b Rhoades, 1958, 1960 Stoil et al., 1967 Stoil et al., 1967 Stoil et al., 1967	y-Valerolactone a-Methyl-y-butyrolactone 2,3-Dimethylbut-2-en-1,4- olide 3,4-Dimethylbut-2-en-1,4- olide 2,3,4-Trimethylbut-2-en- 1,4-olide	
Aldehydes Ethanal Propanal 2-Methylpropanal n-Butanal 3-Methylbutanal 2-Methylbutanal 2-Methylbutanal 2-Methylbutanal m-Pentanal 2-Methylbut-2-en-1-al m-Tolualdehyde (tentative)	Reichstein and Staudinger, 1926b Zlatkis and Sivetz, 1960 Rhoades, 1958, 1960 Rhoades, 1958, 1960 Rhoades, 1958, 1960 Reichstein and Staudinger, 1926b Zlatkis and Sivetz, 1960 Sullivan et al., 1959	Esters Methyl formate Methyl acetate Methyl propionate Methyl salicylate Methyl phenylacetate Ethyl formate Ethyl acetate Isopropyl formate Isoamyl acetate β-Phenylethyl formate Phenols and Phenol Ethers	Rhoades, 1958, 1960 Sullivan et al., 1959 Merritt et al., 1966 Stoll et al., 1967 Zlatkis and Sivetz, 1960 Gianturco et al., 1966 Stoll et al., 1967
Ketones Propanone Butanone 3-Hexanone trans-2-Penten-4-one Cyclopentanone	Bernheimer, 1880 Rhoades, 1958, 1960 Stoll <i>et al.</i> , 1967 Gianturco <i>et al.</i> , 1966	Phenol o-Cresol 2,6-Dimethylphenol Guaiacol 4-Ethylguaiacol 4-Vinylguaiacol o-Hydroxyacetophenone	Reichstein and Staudinger, 1926l Stoll et al., 1967 Stoll et al., 1967 Reichstein and Staudinger, 1926l Gianturco et al., 1966 Reichstein and Staudinger, 1926l

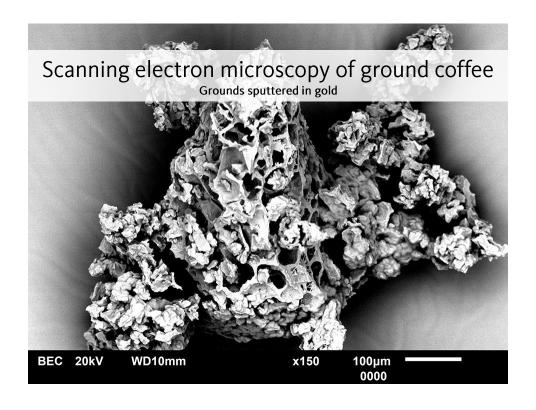
Conical vs. flat burrs

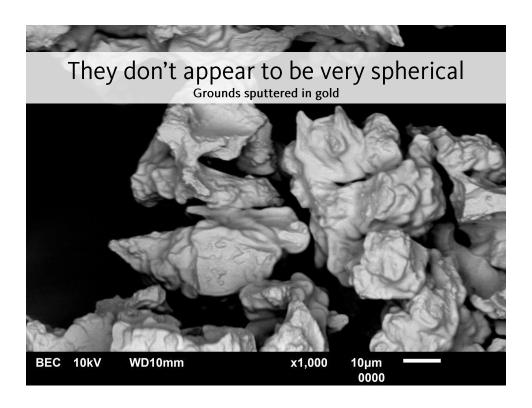

Different burrs produce different particle size distributions

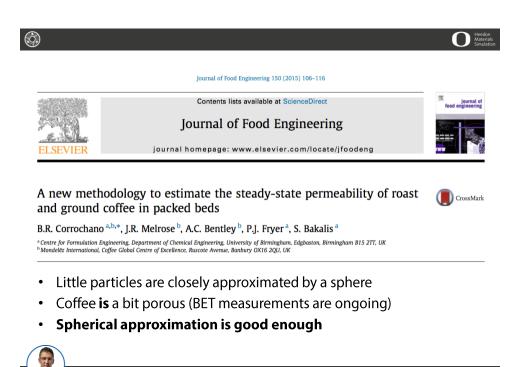


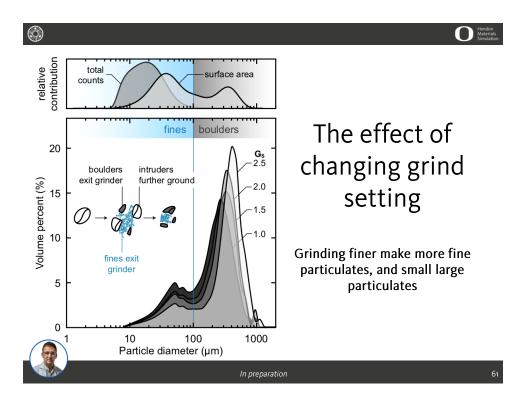
Laser diffraction particle size analysis

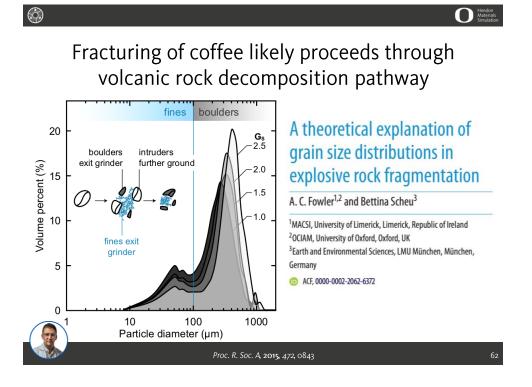
A process to determine particle size



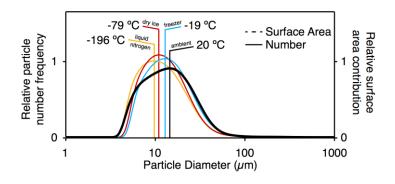




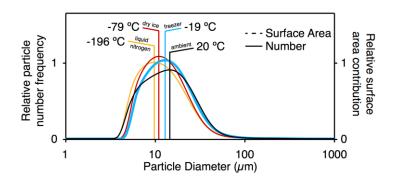




J. Food Eng., 2015, 150, 106

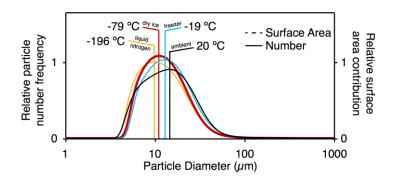


Cooling coffee before grinding augments the fine particle sizes


Sci. Rep., 2016, 6, 24483

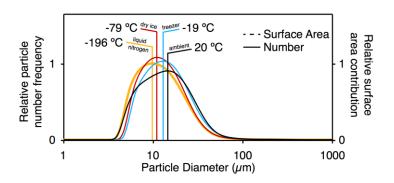
63

Cooling coffee before grinding augments the fine particle sizes

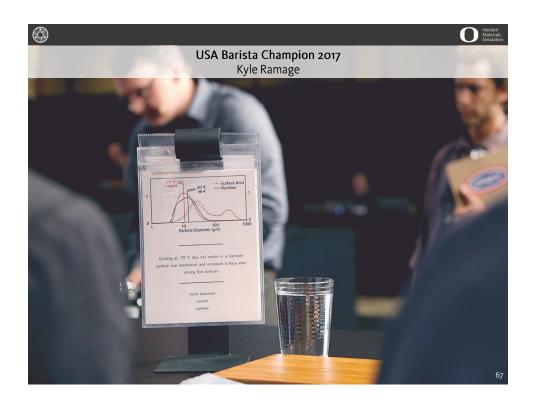


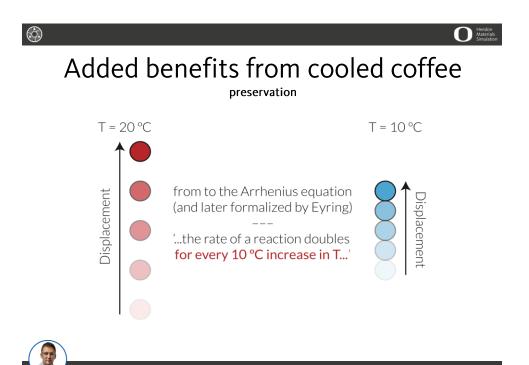
Sci. Rep., 2016, 6, 24483

Cooling coffee before grinding augments the fine particle sizes

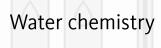

Sci. Rep., **2016**, *6*, 24483

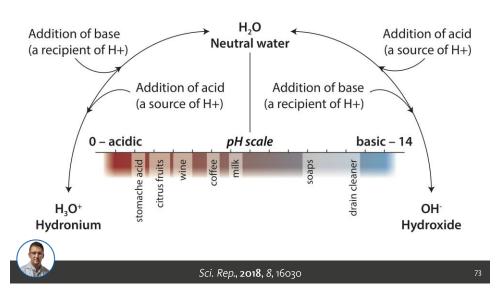
65

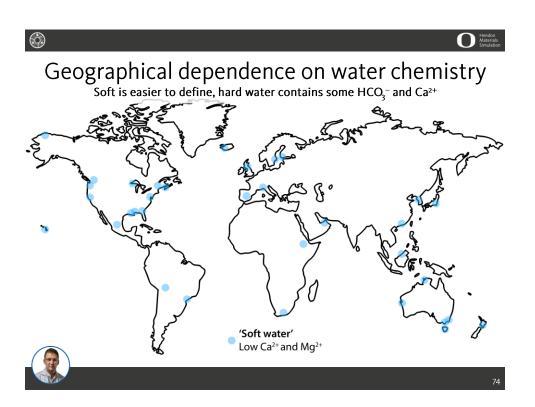


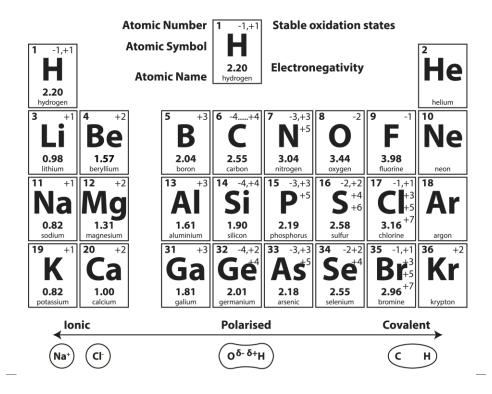

Cooling coffee before grinding augments the fine particle sizes

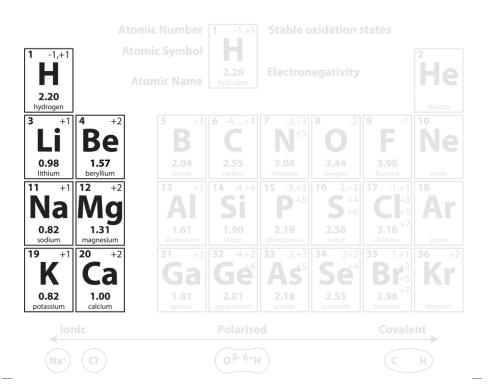
Sci. Rep., 2016, 6, 24483


roasted coffee is extremely hygroscopic

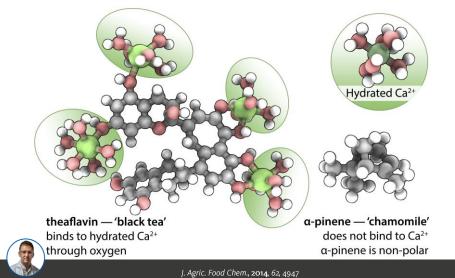




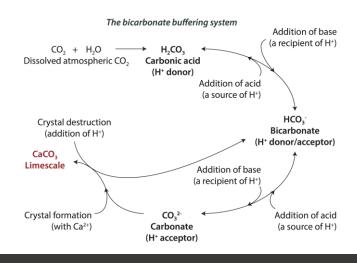



The water molecule

water is both an acid and a base

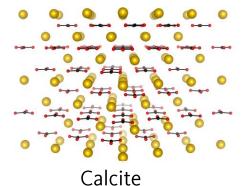


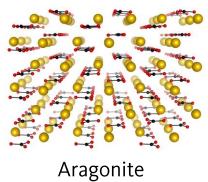
Metals binding to polar molecules


A high fidelity perspective of ionic strength

Bicarbonate (HCO₃⁻)

The buffer – minimizing pH fluctuations





Calcium carbonate

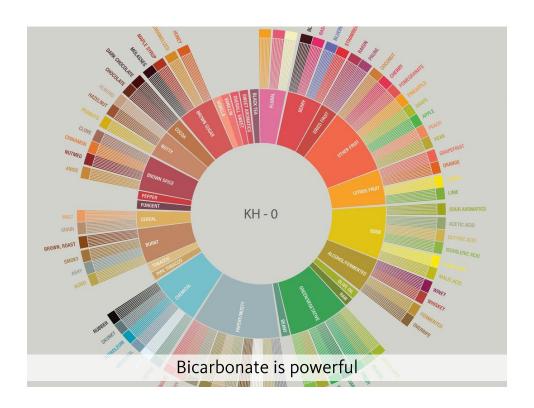
 $Ca^{2+} + 2(HCO_3^-)$ to yield CaCO3, a white insoluble solid

Sheet-like Shows up on the bottom of flat kettles

Jagged
Found on the end of taps

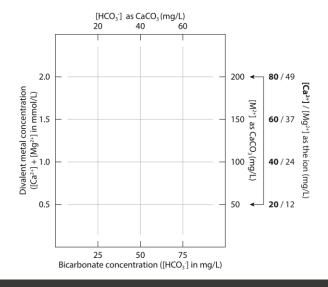
70

Audience Challenge Question

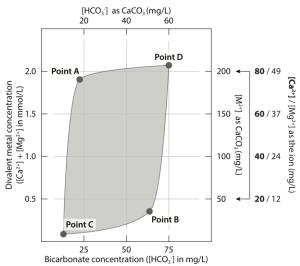

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Is your tap water high in Ca²⁺, HCO₃⁻, and other minerals? In other words, is your water hard?

- · My water is hard
- My water is soft
- I don't have a clue

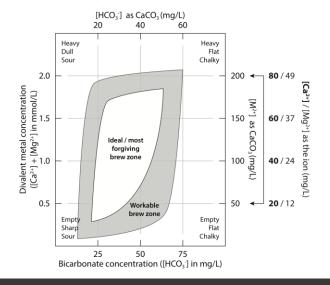


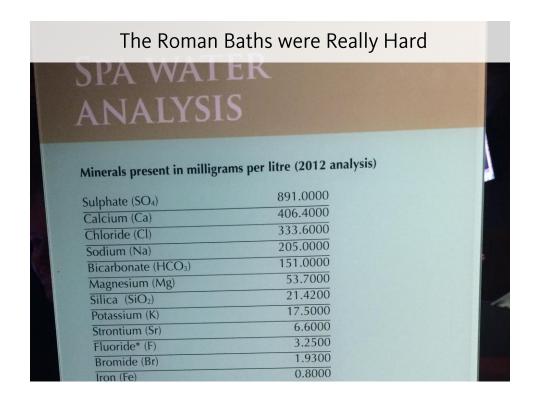
What water do we want for coffee?



83

Not too much of anything




Our empirical ideal brew zone

Water For Coffee 2, 2019

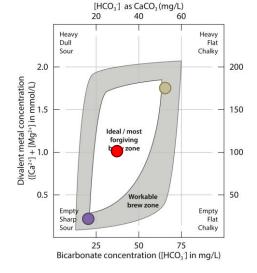
Some handy water recipes

for better or worse

The front and center

0.25 g/L MgSO₄.7H₂O (epsom salt) \sim 25 ppm Mg²⁺ as Mg²⁺

0.05 g/L NaHCO₃ (baking soda) ~35 ppm HCO₃- as HCO₃-

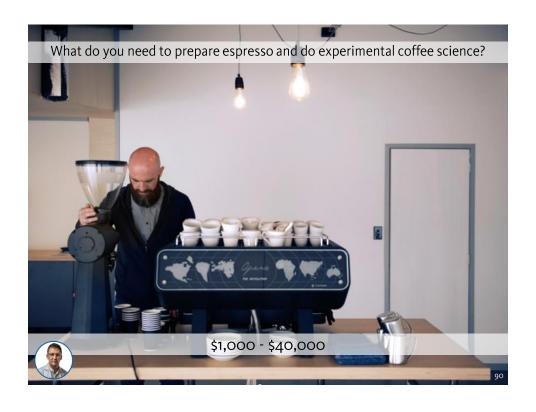

The 7 n' 7

0.3 g/L CaSO₄.2H₂O (gypsum salt) ~70 ppm Ca²⁺ as Ca²⁺ 0.11 g/L NaHCO₃ (baking soda)

~70 ppm HCO₃- as HCO₃-

The double rizzi banger

0.05 g/L MgSO₄.7H₂O (gypsum salt) ~5 ppm Mg²⁺ as Mg²⁺ **0.02** g/L NaHCO₃ (baking soda) ~15 ppm HCO₃ as HCO₃



The definition of espresso

The Specialty Coffee Association (SCA) defines espresso as "a **25-35mL** beverage prepared from **7-9 grams of coffee** through which clean water of 195°- 205 °F (**92°-95°C**) has been forced at **9-10 atmospheres of pressure**, and where the grind of the coffee is such that the brewing 'flow' time is approximately **20-30** seconds."

91

The definition of **espresso**

The Specialty Coffee Association (SCA) defines espresso as "a **25-35mL** beverage prepared from **7-9 grams of coffee** through which clean water of 195°- 205 °F (**92°-95°C**) has been forced at **9-10 atmospheres of pressure**, and where the grind of the coffee is such that the brewing 'flow' time is approximately **20-30** seconds."

7 g vs. 20 g baskets

The definition of espresso

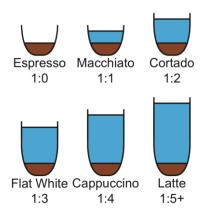
The Specialty Coffee Association (SCA) defines espresso as "a **25-35mL** beverage prepared from **7-9 grams of coffee** through which clean water of 195°- 205 °F (**92°-95°C**) has been forced at **9-10 atmospheres of pressure**, and where the grind of the coffee is such that the brewing 'flow' time is approximately **20-30** seconds."

Nobody makes espresso anymore

q3

Time: The one gospel

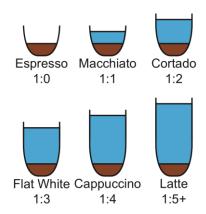
The Specialty Coffee Association (SCA) defines espresso as "a **25-35mL** beverage prepared from **7-9 grams of coffee** through which clean water of 195°- 205 °F (**92°-95°C**) has been forced at **9-10 atmospheres of pressure**, and where the grind of the coffee is such that the brewing 'flow' time is approximately


20-30 seconds.

The modern espresso menu

Espresso is a drink prepared with an espresso machine, and typically features about 10% coffee mass per mass of liquid

Implication: The volume/mass of the espresso determines the volume/mass of milk required to achieve drink definition.



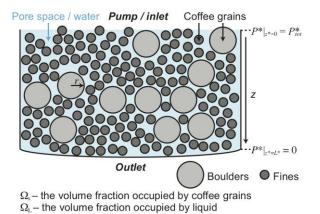
95

The Australian's ruined everything

A single espresso is half of the volume and physical shot produced when a 20 g basket is used.

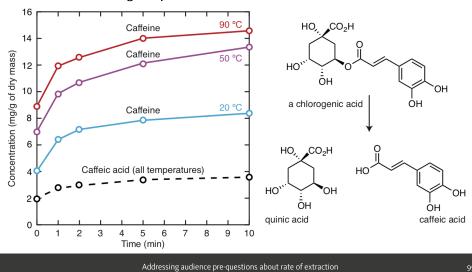
A double espresso is the entire liquid produced in a single extraction.

None of this would be a problem is we all made beverages based on concentrations of coffee in milk.



97

Development of a numerical model for extraction from a granular bed



In preparation

Experimental kinetics

isolating temperature and molecular dissolution rates

Implications, Conclusions, and Future Directions

- Many biochemical unanswered questions in processing (Nature/Pulped/Washed), as well as fermentation stage.
- No quantitative roasting studies on flavor development
- Very few relevant studies on extraction kinetics
- Room for improvement in grinder manufacturing
- Hundreds of other exciting questions, which are the basis for both my coffee lab and also the UC Davis endeavor

The collaborators

Roasters

Roseline (Portland, OR)
Tailored (Eugene, OR)
Supreme (Brisbane, Australia)
Spark (Sendai, Japan)
Gracenote (Boston, MA)
Counter Culture (Durham, NC)
Kittel (Montreal, Canada)
Lomi (Paris, France)

Stephen Leighton (Stafford, UK)

George Howell (Boston, MA)

Colonna (Bath, England)

Belleville (Paris, France)

Baristas

Maxwell Colonna-Dashwood Lesley Colonna-Dashwood Michael Cameron Dechen Morisco Brian Sung Benjamin Put Charlotte Malaval

Ben Kaminsky
Kyle Ramage
Matt Lewin
Craig Simon
Jérôme Grenier-Desbiens
Hidenori Izaki

Matthew Perger

Equipment manufacturers

Beckman Coulter
Mahlkönig
San Remo
Puqpress
La Marzocco
Reg Barber

Academics

Jamie Foster (Portsmouth, UK)
William Lee (Huddersfield, UK)
Justin Wilkinson (Cambridge, UK)
Zachary C. Kennedy (PNNL, WA)
Sean A. Fontenot (Oregon, OR)
Brent Melot (USC, CA)
Keith, T. Butler (Oxford, UK)
Rory W. Speirs (Melbourne, AUS)

And many many more

101

Some actionable information

Brew recipe: 60 g of coffee / L

The most common mistake in home brewing is using too little coffee and extracting for too long

Coarse grind (French Press, 4 min) Medium grind (pour over, 2.5 min) fine grind (Aeropress, 1.25 min)

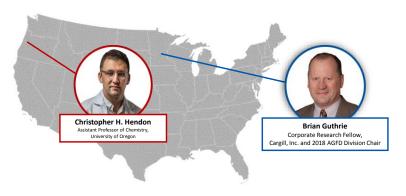
Water chemistry: Start with RO/DI/Milli-Q water

Keep bicarbonate below 50 mg/L 0.25 g/L MgSO₄.7H₂O (epsom salt)

~25 ppm Mg²⁺ as Mg²⁺

0.05 g/L NaHCO₃ (baking soda)

~35 ppm HCO₃- as HCO₃-


Coffee preference: VERY APPROXIMATELY

Acidic = East Africa, Chocolate and nuts = South/Central America

Coffee: A Chemical and Physical Perspective

Slides available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Agricultural Food & Chemistry

- 10

Upcoming ACS Webinars *www.acs.org/acswebinars*

Thursday, November 29, 2018 @ 2-3pm EST

Human Exosomes: An Ideal Vehicle for Delivery of Therapeutic RNAs to Cells and Organs

Co-produced with the ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

Experts

Hadi Valadi University of

Alexander Kapustin AstraZeneca

Tuesday, December 4, 2018 @ 1-2pm EST

Predicting the Biggest Chemistry Advances of 2019

Co-produced with Chemical & Engineering News

Michael Torrice
Chemical &

Jake Yeston Science

Experts

Chemical & Engineering News

Contact ACS Webinars ® at acswebinars@acs.org

ACS Division of Agricultural & Food Chemistry

AGFD brings together persons particularly interested in the chemistry of agricultural and food products, both raw and finished; to foster programs of general papers and symposia on special topics dealing with this field of chemistry; to promote such other activities as will stimulate activity in and emphasize the importance of research in agricultural and food chemistry.

Find out more about the ACS AGFD! https://agfd.sites.acs.org/agfdmembernews.htm
AGFD Application for Membership: https://agfd.sites.acs.org/agfdapplication.htm

Coffee: A Chemical and Physical Perspective

Slides available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Agricultural Food & Chemistry

How has ACS Webinars' benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars ® at acswebinars @acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN)

The preeminent weekly digital and print news source.

NEW! ACS SciFinder

ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator

Your source for leadership development, professional education, career services, and much more.

http://bit.ly/ACSmembership

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars @acs.org

Upcoming ACS Webinars www.acs.org/acswebinars

Thursday, November 29, 2018 @ 2-3pm EST

Human Exosomes: An Ideal Vehicle for Delivery of Therapeutic RNAs to Cells and Organs

 $Co-produced\ with\ the\ ACS\ Division\ of\ Medicinal\ Chemistry\ and\ the\ American\ Association\ of\ Pharmaceutical\ Scientists$

Experts

Hadi Valadi University of Gothenburg

Alexander Kapustin AstraZeneca

Tuesday, December 4, 2018 @ 1-2pm EST Predicting the Biggest Chemistry Advances of 2019 Co-produced with Chemical & Engineering News

Experts

Contact ACS Webinars ® at acswebinars@acs.org