

Contact ACS Webinars [®] at acswebinars@acs.org

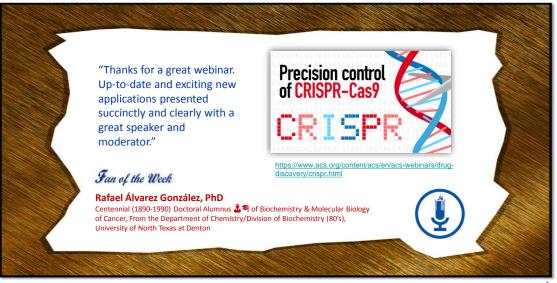
http://bit.ly/ACSnewmember

Benefits of ACS Membership

Chemical & Engineering News (*C&EN*) The preeminent weekly digital and print news source.

NEW! ACS SciFinder ACS Members receive 25 complimentary SciFinder[®] research activities per year.

NEW! ACS Career Navigator Your source for leadership development, professional education, career services, and much more.


http://bit.ly/ACSnewmember

Contact ACS Webinars [®] at acswebinars@acs.org

How has ACS Webinars' benefited you?

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars[®] continue to be available to the general public on Thursdays from 2-3pm ET!

www.acs.org/acswebinars

What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science

- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://acsoncampus.acs.org

#HeroesofChemistry ACS Heroes of Chemistry Award

Inspiring Hero Stories

View All Past Recipients >>

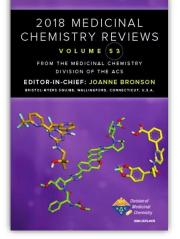
2018 Winners:

AstraZeneca

The **ACS Heroes of Chemistry Award** is the Annual award sponsored by the American Chemical Society that recognizes talented industrial chemical scientists whose work has led to the development of successful commercialized products ingrained with chemistry for

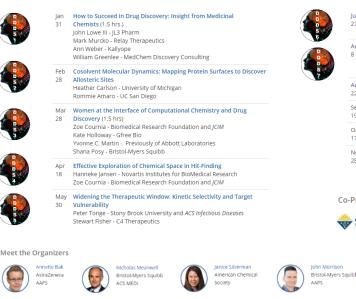

www.acs.org/heroes

the benefit of humankind.


An individual development planning tool for you!

https://chemidp.acs.org

Join the Division Today!



For \$25 (\$10 for students), You Will Receive:

- A free digital copy of our annual medicinal chemistry review volume (over 680 pages, \$160 retail price)
- Abstracts of MEDI programming at national meetings
- · Access to student travel grants and fellowships

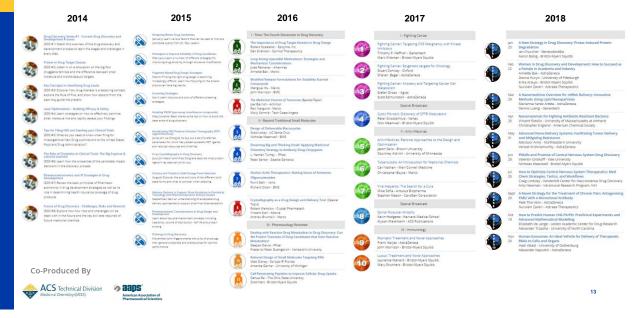
Find out more about the ACS MEDI Division! www.acsmedchem.org

2019 Drug Design and Delivery Symposium http://bit.ly/2019DDDS

11

- Precision Control of CRISPR-Cas9 Jun Amit Choudhary - Broad Institute of Harvard and MIT Venkat Krishnamurthy - AstraZeneca
- Aug Transformation of Recombinant Cells to FDA Approved Products: Clinical Development to Marketplace (New Date) Rodney Ho - University of Washington Venkat Krishnamurthy - AstraZeneca
- The Evolving Landscape of the Pharmaceutical CROs Bart DeCorte Mercachem Aug 22
- Compound Design in the Agricultural Areas Sep 19
 - Fides Benfatti Syngenta
- Oct To Be Announced 17
- Nov Prodrugs
- Jarkko Rautio University of Eastern Finland 28

Co-Produced By



12

Celebrating 6 years & Over 55 Drug Discovery Webinars!

http://bit.ly/acsDrugDiscoveryArchive

Upcoming ACS Webinars www.acs.org/acswebinars

What You Will Learn

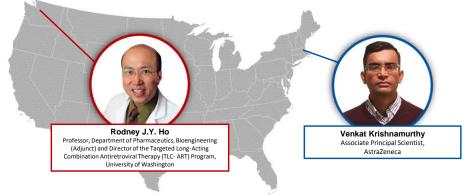
- The most common questions that have been asked by graduate students about legal aspects of their safety responsibilities in the lab
- Guidelines and resources for identifying and understanding researchers' regulatory responsibilities
- Lessons learned about practical aspects of managing regulations in the research lab setting

https://www.acs.org/content/acs/en/acs-webinars/professionaldevelopment/researcher-safety.html

What You Will Learn

- An overview of the evolving role of CROs in drug discovery in the past 20 years
- A profile of different outsourcing models that can be considered What to look for as you select a CRO to partner with

https://www.acs.org/content/acs/en/acs-webinars/drugdiscovery/outsourcing.html



THIS ACS WEBINAR WILL BEGIN SHORTLY...

Transformation of Recombinant Cells to FDA Approved Products: Clinical Development to Marketplace

The slides will not be shared for this broadcast. Recordings are an exclusive ACS member benefit. www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

16

SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

Transformation of Recombinant Cells into FDA Approved Products: Clinical Development to Marketplace *

Rodney J Y Ho, PhD, FAAAS, FAAPS

Professor and Presidential Entrepreneurial Fellow Director, Targeted and Long-acting Combination Anti-Retroviral Therapeutic (TLC-ART) Program

*Bak et al. J Pharm Sci. 2019 May 29. pii: S0022-3549(19)30360-0. doi: 10.1016/j.xphs.2019.05.027.

Disclosure

- 30+ Years as an HIV/HSV, Cancer and Pain Researcher
- Director of UM1 Targeted and Long-acting Combination Anti-Retroviral Therapeutic-TLC-ART Program
- · Professor at U Washington, and FHCRC member, Seattle
- Presidential Entrepreneurial Fellow
- Built Integrated HIV/AIDS and Cancer Programs
- Elected Fellow of
 - American Assoc. for the Advancement of Science (Science)
 - American Assoc. of Pharmaceutical Scientists
- Advisor to NIH on Grant and Center Reviews
- Editor, J. Pharmaceutical Sciences
- Dawson Biotechnology Award—Life Time Teaching & Research
- Biotechnology Achievement Award-One of the highest honors endowed by the AAPS
- Volwiler Research Achievement Award- a high honor of the AACP
- Luminary Award—Chinese Institute of Engineers USA
- Founding Member of Several Biotech Companies—Impel, NTN..
- Consultant to Major and Large Pharmaceutical Companies

20

Outline

- I. Chemical and Biologic versus Recombinant Cell Therapy
- II. Why Autologous Recombinant and Live Cells?
- III. Transformation of Autologous T cell from the same Patient as a Therapeutic Product
- IV. Health Outcomes and System Impact
- V. Summary

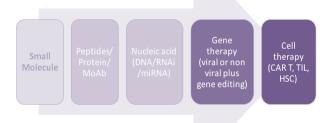
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Recombinant cells are: (Select all that apply)

- Used to produce proteins; some are marketed as FDA approved prescription pharmaceuticals
- (Fixed or killed) are available as therapeutic products
- Not yet approved by the FDA as live and functional cell therapeutic products
- Approved by the FDA as a part of a regenerative (stem-cell) medicine for spinal cord injury
- None of the above

* If your answer differs greatly from the choices above tell us in the chat!

I. Chemical and Biologic vs Recombinant Cell Therapy


- Chemical based therapeutics or small molecule drugs can be synthesized and the product homogeneity (purity) verified
- Biologics or large proteins (MW> 5-10kD) are often manufactured by recombinant cells and verification of product quality is more challenging (often not homogenous)
- The use of recombinant cells (not the protein produced by these cell) are even more complex as a therapeutic product

SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

I. Chemical and Biologic vs Recombinant Cell Therapy

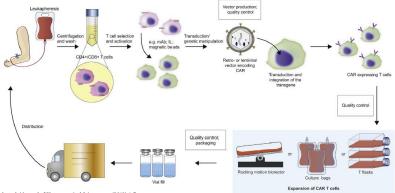
Increasing complexity of therapeutic product platform

Figure 1. Schematic representation of complexity in pharmaceuticals derived from different platforms.

The scale up and manufacturing of small molecules is well known to the industry and hence generally of lower complexity than biotechnology products. Small molecule drug substances can be made homogenously at nearly 100% purity, a target that larger peptides, proteins, nucleic acid therapeutics, and vectors are unable to achieve. In addition, cell products intended for reintroduction into patients such as viral delivery systems or cell therapy (e.g., chimeric-antigen receptor expressing recombinant autologous T or CAR T cell) include logistical and stability complexity. Thus, cell therapy is a considerably more complex therapeutic product platform than small molecules. MoAb, monoclonal antibody; TIL, tumor infiltrating lymphocytes; HSC, hematopoietic stem cells. (Bak et al., JPS 2019)

Ho, Biotechnology and Biopharmaceuticals, ed2, 2013; doi/book/10.1002/9781118660485

I. Chemical and Biologic vs Recombinant Cell Therapy


Intent	Stem Cell	Recombinant Cell					
Application	Self-renewal and regenerative medicine	Specific purpose, i.e., immunotherapeutic action					
Examples transplantation (H VOD (hepatic venc occlusive disease)	Hematopoietic stem cell transplantation (USCT) for	Modified autologous cell for cancer vaccine					
	VOD (hepatic veno-	Car T cell products as immuno-therapy					
	Bone marrow stem cell for leukemia						
		Provenge (Sipuleucel-T) autologous T cell vaccine (2010)					
FDA approval for use as cells that are modified and expanded in vivo for reinfusion as cell therapeutic product		Yescarta-CAR T autologous recombinant T cell for B-cell cancer (2017)					
		 Kymriah-CAR T autologous recombinant T cell for leukemia (2017) 					

Rationale for recombinant vs stem (self-renewal) cell therapy

W SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

I. Chemical and Biologic vs Recombinant Cell Therapy

Overall end-to-end (complex) process of a CAR T cell product

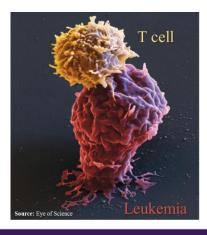
A. Bak et al. / Journal of Pharmaceutical Sciences xxx (2019) 1-7

Figure 3. Schematic overview of the needle-to-needle approach as described for the CTL019 CAR T cell production for early clinical trials. The process involves removing blood from the patient through the process of leukapheresis, separating the leucoytes, and clearing the sample for imputites such as anticoagulants and platelets, enriching for T-cells with separation at the level of CD4+(D8+T-cells, Folds). Folds) is folding the sample for imputites used in the level of CD4+(D8+T-cells, Folds) are to the set of contexponent to the level of CD4+(D8+T-cells, Folds) and the set of contexponent clear set of the set of contexponent of the level of CD4+(D8+T-cells, Folds) and the set of CD4+(D8+T-cells, Caluta D8+and H0+CAR and the transduced cells are allowed to expand in cell number (valorius methods have been described for this process including T-Hasks, culture bases and bioreactors are reviewed in ref.) before concentrating the CAR T cells (e.g., 5L cell culture is concentrated [up to 100×]) before reinfusion—typically 10 to 250 million cells in 10 to 50 mL volume per dose per patient.

25

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT


Current Chimeric Antigen Receptor or CAR T cell therapeutic products are personalized and individualized medicine because: (Select all that apply)

- Leukocyte or white blood cells collected from the subject are used as a starting point
- · Patient's own cells are transduced to express chimeric antigen receptors to clear cancer
- Transduced cells from cell-lines or other donors may induce a graft-vs-host response or rejection that aborts the function
- The recombinant leukocytes (T cell) verified to express chimeric antigen receptor or CAR (on T cells) are re-introduced into the same patient donor
- None of the above

* If your answer differs greatly from the choices above tell us in the chat!

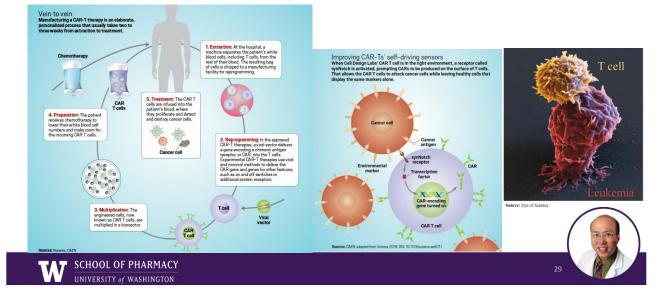
II. Why Autologous Recombinant and Live Cells?

Why these cells be better than platform than that of fixed cell vaccines such as PROVENGE[®] (*sipuleucel-T*) *autologous T cell product*?

II. Why Autologous Recombinant and Live Cells?

Isn't protein therapeutics made by recombinant cells are already complex and challenging enough?

- Chemical or small molecule (MW ~500-1kD) drugs are synthesized and their purity homogeneity readily verified
- Biologic or protein (MW> 5-10kD) drugs, manufactured with recombinant cells need tighter process controls as verification of final product quality is more challenging (often not homogenous)
- The use of recombinant cells (not the protein produced by these cell) are even more complex to produce therapeutic products such as Epoetin, Somatotropin, Herceptin (antibody)


SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

II. Why Autologous Recombinant and Live Cells?

Three essential elements for CAR T cell function

- Autologous T cells from the same patient to prevent rejection (due to interindividual variations in transplant antigen MHC)
- **Recombinant** A process used to transform the autologous T cell to recognize target marker (i.e., Chimeric Antigen Receptor or CAR)
- Live (functional) cell To produce cell-mediated processes (in the case of CAR-T, to seek out cancer cells and dock them via the chimeric antigen receptor and allow contact-mediated cancer cell killing function of T cells to proceed)

II. Why Autologous Recombinant and Live Cells?

CAR T cell therapeutic integrate all these three aspects

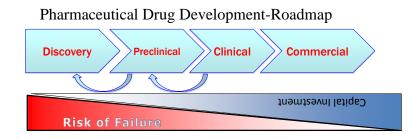
II. Why Autologous Recombinant and Live Cells?

CAR T (functional) cell therapy provides hope and cure for cancer

- Impressive outcomes of the two FDA approved CAR T cell therapies for B-cell cancers
- Works on a majority of previously non-responsive to current drug or biologic therapies
- Over 50% of subjects on the two tested and approved CAR T cell therapy (single infusion dose) experienced event-free survival

31

Audience Survey Question

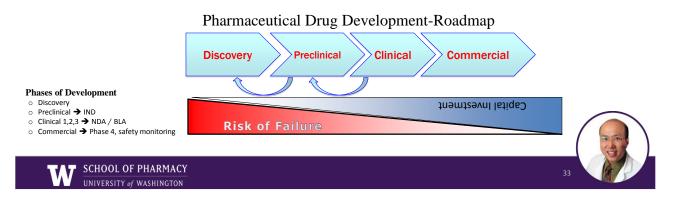

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

CAR T cell therapeutic product can be manufactured: (Select all that apply)

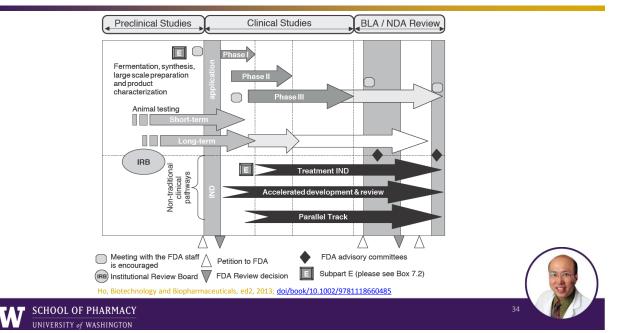
- With a process similar to making chemical drugs (e.g., Tylenol tablets)
- Only on site at the local blood and cancer research center
- Large-scale in batches intended for hundreds/thousands of people onsite
- At an off-site facility with clearly traceable quality, sterility and chain of custody
- But FDA regulations cover only the manufacturing plants and product released from the respective facility

* If your answer differs greatly from the choices above tell us in the chat!

III. Transformation CAR T cell into Therapeutic Product



Market Drivers for R&D and Clinical Development


- Financial ~\$2.3 billion annual gene and cell therapeutic market with 50% annual growth (BBC market analysis, 2018); \$17.4 billions by 2023.

- Promised to find a cure for incurable diseases (e.g., Cancer and HIV/AIDS)

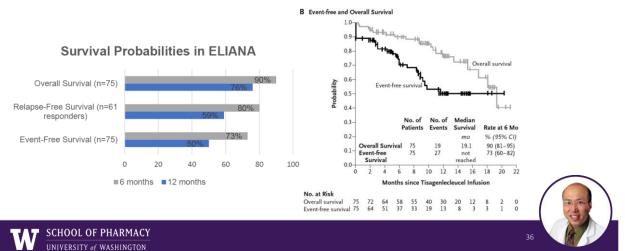
Manufacture, Logistics and Regulatory Assurance and Approval

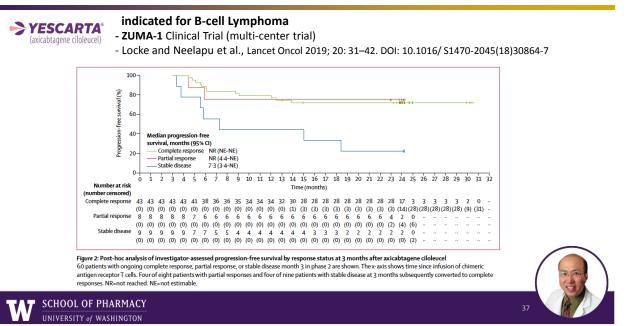
III. Transformation CAR T cell into Therapeutic Product

In 2017 two CAR T cell products were approved-impressive primary end point—overall remission (response) rate in 3 month or longer

KYMRIAH[®] VS. **SECARTA[®]** (axicabtagene ciloleucel)

- Kymarih (Tisagenlecleucel) indicated for Acute Lymphoblastic Leukemia (AML)
 - ELIANA Clinical Trial (multi-center pivotal trial)
 - A single 0.2-5.4 million CAR T cell/kg dose
 - Maude et al., N Engl J Med 2018;378:439-48. DOI: 10.1056/NEJMoa1709866
- Yescarta (Axicabtagene ciloleucel) indicated for Lymphoma
 - ZUMA-1 Clinical Trial (multi-center trial)
 - A single autologous CAR T cell dose of 2 million cells/kg
 - Locke and Neelapu et al., Lancet Oncol 2019; 20: 31–42. DOI: 10.1016/ S1470-2045(18)30864-7


SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON



indicated for B-cell Lymphoblastic Leukemia (AML)

- ELIANA Clinical Trial (multi-center pivotal trial)
- Maude et al., N Engl J Med 2018;378:439-48. DOI: 10.1056/NEJMoa1709866

III. Transformation CAR T cell into Therapeutic Product

With these impressive immunotherapeutic outcomes, many more cell-therapeutics are in the pipe-line

Generic [Trade] name	Conditions	Vector and intervention	Gene editing	Clinical Status	Sponsor
NY-ESO-1	Multiple myeloma, synovial sarcoma, myxoid/round cell liposarcoma, melanoma	Intravenous infusion with NY-ESO-1 redirected autologous T cells (CRISPR edited endogenous TCR and PD-1)	Ex vivo	Phase 1 (NCT03399448)	University of Pennsylvania
CTX001	β -thalassemia and sickle cell disease	Intravenous infusion with autologous CRISPR-Cas9 modified CD34+ Human Hematopoietic Stem and Progenitor Cells	Ex vivo	Phase 1/2 (NCT03655678)	CRISPR Therapeutics/ Vertex Pharmaceuticals
	B-cell leukemia and B-cell lymphoma	Intravenous infusion with CAR T cells	Ex vivo	Phase 1/2 trial (NCT03166878)	Chinese PLA General Hospital
UCART019	Esophageal cancer	Intravenous infusion with PD-1 knockout T- cells	Ex vivo	Phase 2 (NCT03081715)	Hangzhou Cancer Hospital/Anhui Kedgene Biotechnology Co.,Ltd
Voretigene neparvo-vec-rzyl [Luxturna]	Retinal dystrophy: Leber's congenital amaurosis	AAV2; single subretinal injection	In vivo	Approved 2017 (FDA)	Spark Therapeutics
GSK2696273 [Strimvelis]	Adenosine deaminase deficiency- severe combined immunodeficiency	Autologous CD34+ cells modified through lentiviral vector transduction	Ex vivo	Approved 2016 (EMA)	Ochard Therapeutics/ GlaxoSmithKline
Axicabtagene cilo-leucel [Yescarta]	Diffuse large B-cell lymphoma	Intravenous infusion with CAR T cells	Ex vivo	Approved 2017 (FDA), 2018 (EMA)	Gilead
Tisagenlecleucel [Kymriah]	B-cell acute lymphoblastic leukemia	Intravenous infusion with CAR T cells	Ex vivo	Approved 2017 (FDA), 2018 (EMA)	Novartis

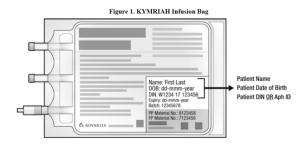

Adapted from Bak (and Ho) et al., J Pharm Sci 2019,

Table 3. A representative sample of selected gene therapies in clinical trials as well as current FDA/EMA approvals (as of February 2019)

SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

Regulatory, Manufacturing, Quality and Logistics and more [Commercial Scale]

- Intended use, product specification, quality assurance, sterility, functional verification, stability (production to infusion site)*
- Who, where and how to ensure the right patient receive within the target schedule time-line.
- Logistics of planning from collecting autologous cells to infusion of recombinant CAR T cell to the same patient.

* FDA regulatory guidance on cell therapeutics preclinical and clinical evaluation including chemistry manufacturing and controls, product specification, quality assurance to ensure the final product meet the defined product specifications based on validated and appropriate assays.

SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

Who are appropriate candidates and how to gain access?

Institute for Health Metrics and Evaluation

IV. Health Outcomes and System Impact

Not for primary B-cell lymphoma or AML (only refractory or in second or later relapse — there

Which patient would benefit?

are significant side-effects)

Cost of CART T personalized cell medicine

- \$475k Kymarih and \$373K Yescarta (for a single dose)

Cost-effectiveness (ELIANA cost-effectiveness data; 600-750k)

Impact on the overall health system (overall budget in billions?)

٠

٠

٠

٠

-

Payers perspective SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

IV. Health Outcomes and System Impact

One Large (the Center for Medicare and Medicaid CMS) Payer's perspective*

Price and Cost	Kymarih (Tisagenlecleucel)	Yescarta (Axicabtagene Ciloleucel)
Product Price	US \$ 475k	US \$ 373K
CMS reimburse (hospital)	\$ 500k	\$ 400k
Patient (20%)	\$ ~100k	\$ 79k
But US SS Maximum out of p	\$1,340	

*Weighing the Cost and Value of CAR T-Cell Therapy - The ASCO Post based on panel discussion-accessed 3/26/2019

Summary

- Recombinant Cell is a Complex Live, Functionally Active Product
- Autologous Recombinant and Live Cells provide therapeutic effects not achievable by other drug platforms
- Transformation of Autologous T cell from the same Patient as a Therapeutic Product have made break-through impact on cancers
- Health Outcomes and System Impact data also point to overall benefit
- This new therapeutic modality may redefine the role of pharmacist and pharmaceutical scientists

SCHOOL OF PHARMACY UNIVERSITY of WASHINGTON

Thank You!

धन्यवाद (Hindi) ਤੁਹਾਡਾ ਧੰਨਵਾਦ (Pujabi) અાભાર (Gujarati) ਖन्यवाদ (Bangli) ਨਗ੍ਰ:ૣe:ගරිග්ගඟ (Burmese) றிறி (Chinese) Merci (French) نیکی (Arabic) vouရa (Thai) Mahadsanid (Somali) Gracias

Celebrating 6 years & Over 55 Drug Discovery Webinars!

http://bit.ly/acsDrugDiscoveryArchive

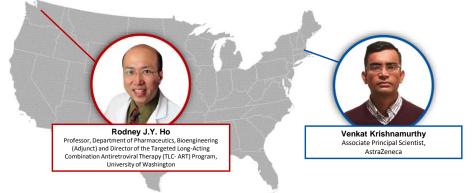
Upcoming ACS Webinars *www.acs.org/acswebinars*

What You Will Learn

- The most common questions that have been asked by graduate students about legal aspects of their safety responsibilities in the lab
- Guidelines and resources for identifying and understanding researchers' regulatory responsibilities
- Lessons learned about practical aspects of managing regulations in the research lab setting

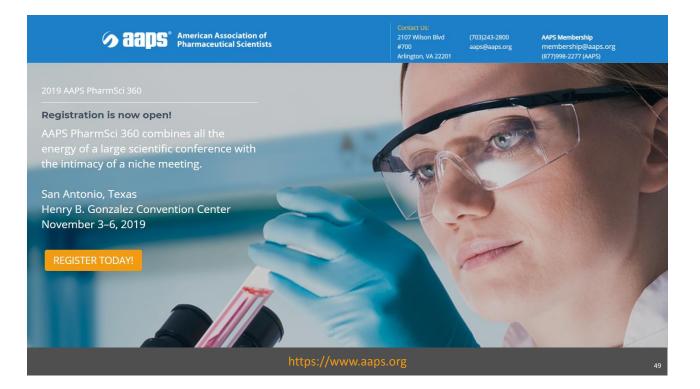
https://www.acs.org/content/acs/en/acs-webinars/professionaldevelopment/researcher-safety.html

What You Will Learn


- An overview of the evolving role of CROs in drug discovery in the past 20 years
- A profile of different outsourcing models that can be considered
- What to look for as you select a CRO to partner with

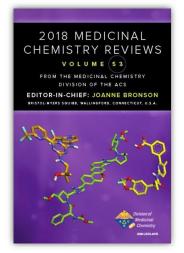
https://www.acs.org/content/acs/en/acs-webinars/drugdiscovery/outsourcing.html

Transformation of Recombinant Cells to FDA Approved Products: Clinical Development to Marketplace


The slides will not be shared for this broadcast. Recordings are an exclusive ACS member benefit. www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

47


<section-header><complex-block>

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Join the Division Today!

For \$25 (\$10 for students), You Will Receive:

- A free digital copy of our annual medicinal chemistry review volume (over 680 pages, \$160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

51

Chemistry for Life®

@AmericanChemicalSociety

@AmerChemSociety

https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars [®] at acswebinars@acs.org

http://bit.ly/ACSnewmember

52

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars

www.acs.org/acswebinars

What You Will Learn

- The most common questions that have been asked by graduate students about legal aspects of their safety responsibilities in the lab
- Guidelines and resources for identifying and understanding researchers' regulatory responsibilities
- Lessons learned about practical aspects of managing regulations in the research lab setting

https://www.acs.org/content/acs/en/acs-webinars/professionaldevelopment/researcher-safety.html

53

What You Will Learn

- An overview of the evolving role of CROs in drug discovery in the past 20 years
- A profile of different outsourcing models that can be considered
- What to look for as you select a CRO to partner with

https://www.acs.org/content/acs/en/acs-webinars/drugdiscovery/outsourcing.html