

Comenzamos en breve, a las 1 CDT / 2 EDT

La electroquímica está presente en áreas de importancia para el medioambiente, la economía y la medicina. De hecho, hoy en día, habrá dispositivos electroquímicos que pueden ser miniaturizados para ser portátiles y de bajo coste, en beneficio de la sociedad.

ite el webinar gratuito, el Dr. Carlos R. Cabrera Martinez de la University of Texas at El Paso (UTEP) se darán e de proyectos reales en estas áreas que han sido estudiadas por su laboratorio. En área de energía renovable se tocará las esta área ha sido transformada a una compañía naciente (startup) en San Juan, Puerto Rico.

Lo Que El Público Aprenderá

- Cómo la electroquímica, acoplada a la nanotecnología, es usada en energía renovable para mejorar su efici bajar sus costos
- · Cómo la microbiología, acoplada a células de combustible, pueden ser usados para la purificación de aguas usad
- Como a microalanga acopasa a censa se consusceme porter ser susados para a protectir gara potable usando un dispositivo portátil
 Cómo dispositivos comúnmente usados para detectar el nivel de azúcar en la sangre pu detectar cáncer uterino y colorrectal

Ponente y Moderadora

Dr. Carlos R. Cabrera Martínez Director y Profesor de Química y Bioquímica, University of Texas at El Paso (UTEP)

Dra. Ingrid Montes Profesora, Universidad de Puerto Rico, Recinto de Río Piedras

El cuadragésimo noveno webinar en Español auspiciado por ACS y SQM

https://www.acs.org/content/acs/en/acs-webinars/library/electroquimica-2.html

¿Está en un grupo hoy viendo el webinar en vivo?

Díganos de dónde son ustedes y cuántas personas están en su grupo!

C&EN pone a su disposición traducciones al español de sus artículos más populares.

C&EN EN ESPAÑOL

Spanish translations of C&EN's best weekly chemistry news.

nedio de una edio de una conocida formación de fase en tigadores han encontr as que aceleran las re-izadas en medio ácido ntrado es

lad científica se solis Laic ra la invasión mientras los co: la ciencia rusa aumentan

MARCH 21, 2022

responden a la invasión de Ucrania Periodicas: Estimulantes comunes provenientes de las plantas ímica y blog st Andy Bru

MARCH 7, 2022

EI ; nning

FEBRUARY 28, 2022

Bonnie Bassler, Carolyn Bertozzi y Benjamin Cravatt reciben el Premio Wolf de Química 2022

o reconoce la innovación ción entre la química y la

FEBRUARY 22, 2022

Queremos hacer de la ciencia de vanguardia más accesible a la comunidad química de habla española, y esta es nuestra contribución. Le da a los nacidos en España, América Latina, o los EE.UU., pero cuyo primer idioma es el español la oportunidad de leer este contenido en su lengua materna. Esperamos que les guste y sea de su utilidad.

Dr. Bibiana Campos Seijo Editora en Jefe, C&EN

http://bit.ly/CENespanol

Sociedad Química de México

Desde sus comienzos de la Sociedad Química de México, se buscaba un emblema sencillo, no demostrar partidarismo alguno y significar al gremio, debería representar un símbolo no sólo para los químicos, sino también para ingenieros, farmacéuticos, metalurgistas, en fin que englobe e identifique por igual a los científicos en todas sus áreas de las ciencia química.

www.sqm.org.mx

Recursos del ACS en Español: Educación

sobre Seguridad en el Laboratorio

- Seguridad en los laboratorios Académicos de Química para estudiantes Universitarios de Primer y Segundo año.
- Videos sobre RAMP para estudiantes de escuela secundaria (pero también pueden utilizarse para estudiantes universitarios) con subtítulos en español:
 - Mentalidad de Seguridad
 - > Hoja de datos de seguridad (SDS)
 - ¿Cómo vestirse apropiadamente en un laboratorio? Y equipo de protección personal (EPP)
 - > Preparándonos para emergencias
 - > RAMP (Para Estudiantes)
 - RAMP (Para Educadores)

https://www.acs.org/content/acs/en/chemical-safety/resources/spanish-language-safety-resources.html

La Sociedad Química de México, A.C. los invita al Diplomado de "Historia de la Química Mexicana"

Parte I Del 23 de abril al 27 de agosto de 2022. MÓDULO I La Química en el México Colonial MÓDULO II Qúímica y Farmacia en el Siglo XIX MÓDULO III La Tradición Herbolaria: Los Productos Naturales

Parte II Del 10 de septiembre al 10 de diciembre de 2022.

MÓDULO IV La Profesión Química en México MÓDULO V La Industria Química en México MÓDULO VI

La Institucionalización de la Investigación Química en México

Costos (I.V.A. incluido):

\$6,000.00 M.N.[™] Público en general. \$50.00 M.N. por hora de conferencia impartida. Costo por sesión de dos horas (conferencia): \$500.00 M.N. Costo por día: \$1,000.00 M.N.

50% de descuento en todas las opciones para miembros de la Asociados o miembros vigentes de la Sociedad Química de México, del Colegio Nacional de Químicos Farmacéuticos Biólogos México, Asociación Farmacéutica Mexicana, Academia Nacional de Ciencias Farmacéuticas, Instituto Mexicano de Ingenieros Químicos y Colegio Nacional de Ingenieros Químicos y de Químicos. *Disposición de becas previa justificación.*

Más información en:

https://sqm.org.mx/diplomado-historia-de-la-quimica-mexicana/

AOVDO

Dirigido a: Egresados de licenciaturas de áreas científicas y humanísticas, estudiantes de esas licenciaturas, docentes de educación media y superior.

Duración: 120 horas

Sesiones sabatinas de 9:00 a 13:00 hrs. (GMT -6) de forma telemática.

*Avalado por el Instituto de Química de la Universidad Nacional Autónoma de México. ⁹ Puedes pagar el costo del diplomado completo en 3 cómodas mensualidades.

www.sqm.org.mx | contenidosacademicos@sqm.org.mx

La Electroquímica: Desde la Energía Renovable Hasta Dispositivos Biomédicos

Las imágenes de la presentación están disponibles para el evento de hoy. https://www.acs.org/content/acs/en/acs-webinars/library/electroquimica-2.html

El Webinar de hoy está auspiciado por la Sociedad Química de México y American Chemical Society

La Electroquímica: Desde La Energía Renovable Hasta Dispositivos Biomédicos

Carlos R. Cabrera Martínez Departamento de Química y Bioquímica Universidad de Texas en El Paso crcabrerama@utep.edu 26 de octubre de 2022 ACS en Español

😰 THE UNIVERSITY OF TEXAS AT EL PASO

Bosquejo

- Energía Renovable: Células de Combustible (*Fuel Cells*)
 - Reducción de Oxígeno (Oxygen Reduction Reaction, ORR)
- Remediación Ambiental
 - Purificación de orina-P. vulgaris
 - Biosensor de urea
- Dispositivos Biomédicos-Biosensors
 - Biomarcadores: Telomerasa (Cancer Uterino) y
 - Colorectal Cancer Secreted Protein (CCSP-2) (Cancer del Colón)
- Agradecimientos

THE UNIVERSITY OF TEXAS AT EL PASO

1839 Físico Inglés William Grove Electrólisis de Agua

ElectrólisisH₂O \rightarrow H₂ + 1/2O₂ Reacción H₂ + 1/2O₂ \rightarrow H₂O E_{cell} = 1.23V

NASA: 1963 Misión Apollo: Células Alcalinas de Combustible (Hidrógeno)

2022 Célula de Combustible de Hidrógeno Toyota Mirai: Precio \$45K

Reacción en el cátodo:

 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Reducción de Oxígeno *Oxygen Reduction Reaction (ORR)*

Célula alcalina de hidrógeno- Media Célula

Reacción en el cátodo: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Electrodo rotado de disco (RDE)

邡 THE UNIVERSITY OF TEXAS AT EL PASO

Qué es un electrodo rotado de disco de grafíto (Rotating Disk Electrode (RDE))

Curva de polarización para la reducción de O_2 después de 10,000 cycles $\Delta E_{12} = 5 \text{ mV}$

PtNiNWs O_2 polarization curves after 10,000 cycles in the potential window (0.6-1.0) V vs. RHE in KOH 0.1M at 100 mV/s with (25.00 ± 0.01) °C.

Nanohilos de Platinum-Nickel por vía de Desplazamiento Galvánico para ORR

Dr. Joesene Soto-Pérez

Postdoctoral Fellow @ Cornell University

Soto-Pérez, J.; *et al. "In Situ* X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media", *ACS Omega*, **2021**, *6*(27), 17203–17216.

Electrodeposición de metal en nanocarbono!?

29

Rotating Disk Slurry Electrodeposition (RoDSE) Technique

Dr. Amal Suleiman @ Amgen

Rotating Disk Electrode

Dr. Diana Santiago @ NASA Glenn Research Center

THE UNIVERSITY OF TEXAS AT EL PASO

Vélez, C; et al., Manufacture of Pd/Carbon Vulcan XC-72R Nanoflakes Catalysts for Ethanol Oxidation Reaction in Alkaline Media by RoDSE Method. J. Electrochem. Soc. 2017, 164, D1015-D1021. Suleiman, A.; et al. RoDSE of Platinum onto Y-Zeolite/Carbon Vulcan XC-72R for Methanol Oxidation in Alkaline Media RSC Adv. 2015, 5 (10), 7637-7646. Santiago, D.; et al. "Platinum Electrodeposition at High Surface Area Carbon Vulcan-XC-72R Material Using a RoDSE Technique", J. Electrochem. Soc., 2010, 157, F189-F195.

30

29

RoDSE – Desplazamiento Galvánico

31

Reducción de oxígeno a 1,600 rpm (revoluciones por minuto) en un electrodo rotado de carbón modificado con pastas de PtNi/C, PtCo/V, PtCu/ V y Pt/V a velocidad de rastreo de potencial de 10 mV/s en 0.1 M KOH. Oxygen Reduction Reaction (ORR)

0 250 -1 j/mA cm⁻²_{iR-free} PtNi/V PtCo/V -5 PtCu/V Pt/V 20% - · GC -6 0.4 0.2 0.6 0.8 1.0 THE UNIVERSITY OF TEXAS AT EL PASO E / V vs. RHE 32

Reducción de Oxígeno (ORR) normalizado por area superficial (Specific Activity) y por masa (Mass Activity)

Soto-Pérez, J. et al. "Combined RoDSE and SGD for Pt-M (M=Co, Ni and Cu) Catalysts Synthesis for ORR in Alkaline Media", ACS Applied Energy Materials 2022, under review.

Transmission Electron Microscopy (TEM)

Transmission electron microscopy images of electrocatalysts and their particle size distribution, PtNi/V (a), (b), (c), PtCo/V (d), (e), (f), PtCu/V (g), (h) and (i).

Urea Bioelectrochemical System

Myreisa Morales-Cruz *et al. Bioelectrochemistry* **2018**, 122, 206–212 Colaborador: Gary A. Toranzos-Soria, Departamento de Biología, UPR-Río Piedras

Proteus vulgaris:

- ✓ Urease production
- ✓ Facultative anaerobic

Optimized parameters:

- ✓ Urea concentration
- ✓ Changes in pH
- ✓ Bacteria concentration
- ✓ Reaction time
- ✓ Growth media
- ✓ Detection method

Dr. Myreisa Morales-Cruz Naval Air Systems Command (NAVAIR), Maryland

- (a) Scanning electron microscopy image of *P. vulgaris* at $\times 20,000$ magnification and
- (b) picture of the electrochemical three-electrode setup used for the experiments, containing the bacteria in synthetic urine
 WE Relevant line Products do CE Regime REF. RUE
- WE: Polycrystalline Pt electrode, CE: Pt wire, RE: RHE

37

OP THE UNIVERSITY OF TEXAS AT EL PASO

Proof of concept Proteus Vulgaris – Gram-negative optimum growth at 37 °C

Requirements	Proteus Vulgaris
Anaerobic or facultative anaerobic	\checkmark
Don't produce endospores	\checkmark
Stable at high pH	\checkmark
Produces urease as an exoenzyme	\checkmark
Non pathogen	X Opportunist Pathogen
	AUT

Environmental Systems (ICES) 2022, 245, 12 pages. http://hdl.handle.net/2346/89769

Oxidación de amoniaco usando orina humana

Se uso un electrodo selective a amoniacopH > 10

42

Synthetic Urine", Current Research in Biotechnology, 2019, 1, 22-27.

Preparación de Dispositivos Biomédicos para el "Punto de Atención" (*Point-of-Care*)

Dra Diana C. Diaz Cartagena (FDA) Dra. Nadja E. Solis (EPA) Cell Arrangement

Telomerase and Cancer

Dr. Lisandro Cunci Universidad Ana G Méndez, Recinto de Gurabo

Since 1994, telomerase activity has been associated with cancer tumor cells from breast, ovarian, prostate, colorectal, and blood, among others

Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P. L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W., Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. *Science* **1994**, *266* (5193), 2011-2015.

THE UNIVERSITY OF TEXAS AT EL PASO

TIEP

47

Table 1. Telomerase activity in normal and immortal cells (29).

-		
Tissue of origin	Cell type	Telomerase activity (no. positive/ no. tested)
Skin	Tumor	8/8
Skin	Normal	0/5
Connective	lumor	1/1
Joint	Normal	0/1
Adipose	Tumor	1/1
Breast Breast	Tumor Normal	22/22 0/8
Lung	Tumor	18/18
Lung	Transformed	2/3
Lùng	Normal	0/3
Stomach	Tumor	1/1
Pancreas	Tumor	3/3
Ovary	Tumor	5/5
Cervix	Tumor	<mark>3/3</mark>
Cervix	Normal	0/1
Uterus	Normal	0/1
Kidney	Tumor	8/8
Kidney	Transformed	1/1
Bladder	Tumor	3/3
Bladder	Normal	0/1
Colon	Tumor	7/7
Prostate	Tumor	2/2
Prostate	Iransformed	0/1
Prostate	Turnal	0/2
UNS	Tumor	3/3
Retina	Transformed	1/1
Blood	Lumor	<mark>9/9</mark>

Telomerasa: Biomarcador de Cancer

Electrodos Interdigitales y Arreglo de la Miniaturización de la Célula Electroquímica

The Roche Diagnostics Accu-Chek Aviva design. It uses an amperometric electrochemical reaction to read the glucose level in the blood. http://www.eetimes.com/document.asp?doc_id=1172970.

Patented Roche Diagnostics Electrochemical Cell Design. THE UNIVERSITY OF TEXAS AT EL PASO and working electrodes are assigned numbers 40 and 42 and 44, respectively. 52

UEP

Schematic representation for the tethering of the TS-30 probes on the GID electrode and the elongation mechanism responsible for the change in the impedance during incubation at 37 °C.

	1 /		-		0
Sample	Pathologic Diagnosis	Reported by literature	Reference	TRAP(2)	Resultados de BIDEA
		Telomerase activity (TA)		results	((ΔRct/Rcti)/Δt)
S001	Endometrial hyperplasia with atypia	Exhibited TA	1	TA activity	Positive
					m = 1.4 x 10 ⁻²
S002	No endometrial tissue seen/Abundant	No expected TA		TA activity	Positive
	mucoid material				m = 2.0 x 10 ⁻²
S003	Negative for malignancy.	No expected TA		No TA	Negative
	Acute and chronic inflammation with			activity	m = -5.8 x 10 ⁻³
	bacteria colonies		1		
S004	Autophic endometrium (AE).	AE may exhibit low IA.	1		Negative (or below
	Leioniyomas, intranturai.			-	LoD)
					m = 6.8 x 10 ⁻⁴
S005	Low-grade squamous intraepithelial	May exhibit TA.	1		Positive
	lesion, tocal.			-	m = 1.4 x 10 ⁻²
	Proliferative endometrium (PE).				
\$006	Fragments of Atrophic endometrium.	No expected TA		ΝοΤΑ	Negative (or below
3000	Immunohistochemical:			activity	
	P-16- negative. KI-67 negative			activity	LUD)
	P-53 negative				$m = 5.1 \times 10^{-3}$
S007	Congenital Adrenal Hyperplasia (CAH)	unknown		TA activity	Positive
					m = 1.7 x 10 ⁻²

Resultados de la Biopsia de Tejidos Tumorales del Endometrio hecho por un Patologo versus BBS

IL Zhonghua Yi, Xue Za Zhi. 2004 Oct17:84(20):172, 1-5.

2. Mender, I. and J. W. Shay (2015). "Telomerase Repeated Amplification Protocol (TRAP)." Bio-protocol 5(22): e1657.

Advanced Science, Volume: 6, Issue: 11, First published: 16 April 2019, DOI: (10.1002/advs.201802115)

THE UNIVERSITY OF TEXAS AT EL PASO

Colon cancer secreted protein-2 (CCSP-2)

Oncogene (2005) 24, 724-731 © 2005 Nature Publishing Group All rights reserved 0950-9232/05 \$30.00

Colon cancer secreted protein-2 (CCSP-2), a novel candidate serological marker of colon neoplasia

Baozhong Xin^{1,2}, Petra Platzer^{1,2,5}, Stephen P Fink^{1,2,3}, Lisa Reese^{1,2}, Arman Nosrati^{1,2}, James KV Willson^{1,2}, Keith Wilson^{3,5} and Sanford Markowitz^{*,1,2,4,5}

Department of Medicine and Ireland Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; University Hospitals of Cleveland, Cleveland, OH 44106, USA; 'Protein Design Labs, Premont, CA 94535, USA; 'Howard Hughes Medical Institute, Cleveland, OH 44100, USA

FULL PAPER
Cancer Diagnostics

56

55

A Novel Blood-Based Colorectal Cancer Diagnostic Technology Using Electrical Detection of Colon Cancer Secreted Protein-2

Minhong Jeun, Hyo Jeong Lee, Sungwook Park, Eun-ju Do, Jaewon Choi, You-Na Sung, Seung-Mo Hong, Sang-Yeob Kim, Dong-Hee Kim, Ja Young Kang, Hye-Nam Son, Jinmyoung Joo, Eun Mi Song, Sung Wook Hwang, Sang Hyoung Park, Dong-Hoon Yang, Byong Duk Ye, Jeong-Sik Byeon, Jaewon Choe, Suk-Kyun Yang, Helen Moinova, Sanford D. Markowitz, Kwan Hyi Lee,* and Seung-Jae Myung*

Hoy tenemos representantes de 29 países

MARCH 7, 2022

vanguardia más accesible a la comunidad química de habla española, y esta es nuestra contribución. Le da a los nacidos en España, América Latina, o los EE.UU., pero cuyo primer idioma es el español la oportunidad de leer este contenido en su lengua materna. Esperamos que les guste y sea de su utilidad.

Dr. Bibiana Campos Seijo Editora en Jefe, C&EN

62

http://bit.ly/CENespanol

FEBRUARY 22, 2022

FEBRUARY 28, 2022

MARCH 21, 2022

¡Hasta pronto! WWW.CQS.Org

acsihispanoamerica@acs-i.org

Sociedad Química de México

Desde sus comienzos de la Sociedad Química de México, se buscaba un emblema sencillo, no demostrar partidarismo alguno y significar al gremio, debería representar un símbolo no sólo para los químicos, sino también para ingenieros, farmacéuticos, metalurgistas, en fin que englobe e identifique por igual a los científicos en todas sus áreas de las ciencia química.

www.sqm.org.mx

Hoy tenemos representantes de 29 países