American Chemical Society

USNCO Coaching Session National Exam Preparation Tutorial Notes: Thermodynamics

Susan Park 28 Jan 2022

DISCLAIMER

 ACS is providing a remake of these tutorials and images as a courtesy to and for the convenience of the reader. It makes no representations or warranties, express or implied, relative to the accuracy, veracity, ownership, or authority contained within the information provided therein. In accessing these slides, the reader knowingly, willingly, and voluntarily accepts the information's remake "as is".

Thermodynamics

Tracks heat flow between a system and its surroundings

Important Terms & Equations

The terms energy, enthalpy, and heat are often used interchangeably, but they mean different things.

- Energy (E) the ability to do work or produce heat, potential or kinetic
- **Heat (q)** the amount of energy that is transferred from one system to its surroundings because of a temperature difference.
- Enthalpy (H) internal energy of a system and usually measured as a change.

 $\Delta E = q + W$ q = ΔH , at constant pressure (no volume change) W = -P ΔV

Heat and Enthalpy

Usually we will equate heat with enthalpy.

• Heat (q) is measured by how much energy is lost/gained by the system (when it flows to or away from the system), q is extensive (Joules)

 $q = \Delta H x amount$

• Enthalpy (H) describes the change in the internal energy of the system based on a certain amount, H is intensive (Joules/mole)

Calorimetry Enthalpy of formation Hess's Law Bond enthalpies

Specific Heat

Energy required to raise the temperature of 1 g of a substance by 1 °C (or 1 K).

Example: you can handle aluminum foil seconds after removing it from a hot oven. In contrast, a cast iron skillet will stay hot for many minutes.

Specific Heat Capacity, C_p

Table of specific heat capacities at 25 °C					
Substance	Phase	Specific heat -cp- J/gK			
Air	gas	1.0035			
Aluminium	solid	0.897			
Beryllium	solid	1.82			
Cadmium	solid	0.231			
Carbon Dioxide	gas	0.839			
Helium	gas	5.1932			
Hydrogen	gas	14.3			
Iron	solid	0.412			
Lead	solid	0.129			
Nitrogen	gas	1.04			
Oxygen	gas	0.918			
Polyethylen	solid	2.3027			
Sodium	solid	1.23			
Steel	solid	0.466			
Uranium	solid	0.116			
Water (25°C)	liquid	4.1813			
Water (100°C - steam)	gas	2.08			

A physicist would define a Joule as the kinetic energy possessed by a 2 kg mass moving at a speed of 1 meter per second.

$$KE = \frac{1}{2}mv^{2} = \frac{1}{2}(2kg)\left(\frac{1m}{1s}\right)^{2} = \frac{1\ kg\ m^{2}}{s^{2}} = 1\ Joule$$

In chemistry, we will mostly consider thermal energy (q) and electrical energy. So a Joule is the amount of heat required to change the temperature of ~0.25 g of water by 1°C. (q = mC Δ T)

#1 Calorimetry

Since we cannot measure the exact enthalpy of the reactants or products, we measure q through calorimetry, the measurement of heat flow.

Heat lost = Heat gained $-q_{lost} = q_{gained}$ $-mc \Delta T = mc \Delta T$ $\Delta T = T_{final} - T_{initial}$

#1 Calorimetry

EX: 2.0 g of NaCl is dissolved in 100.0 g of water and the temperature goes from 22.4 °C to 21.8 °C, determine the ΔHsoln for NaCl.

#1 Calorimetry

EX: 2.0 g of NaCl is dissolved in 100.0 g

of water and the temperature goes

from 22.4 °C to 21.8 °C, determine

the Δ Hsoln for NaCl.

 $\Delta H_{soln} = Q_{sln}/mol_{solute} = mC\Delta T/mol$ = 102*4.18*(-0.6)/0.0342 = -255.8/0.0342 = -7480 J/mol

Enthalpy - 4 ways to find it

Calorimetry
Enthalpy of formation
Hess's Law
Bond enthalpies

Enthalpy change when **one mole** of a compound is made from its elements **@ 1 atm , 25 °C**.

C (graphite,s) + O_2 (g) \rightarrow C O_2 (g)

#2 ΔHf° Enthalpy of formation

A-8 Appendixes

Appendix G Thermodynamic Quantities for Substances and lons at 25°C

Substance. or ion	∆ <i>H</i> % (kl/ mol)	ΔC°; (kl/mol)	S° Ø/mol∙K)	Substance. or ion	ムガ? (kl/ mol)	ΔG°; (kl/mol)	s° (//mol+K)	_				HCUs 1441	-692.0	- 286.8	91.Z
e ⁻ (g)	0	0	20.87	CaO(s)	-635.1	-603.5	38.21	Boron B(S)	0	0	5.834	Hydrocarbons CH (a)	-74.97	-50.90	196.1
Aluminum Al(s)	0	0	28.28	Ca(OH) ₂ (5) Ca ₃ (PO ₄) ₂ (5)	-986.1 -4120.8	- 898.4 - 3884.8	83.39 236.0	$BCl_{\beta}(l)$ $BF_{\gamma}(g)$	-427.2 -1135.6	-387.4 -1119.0	206 254.2	$C_2H_2(g)$	226.7	209.2	200.9
$Al^{3+}(aq)$ $AlCl_{3}(s)$	- 531 - 705.6	-485 -630.0	-321.7 109.3	CaSO ₄ (3) Carbon	-1434.1	-1321.9	106.7	B ₂ O ₃ (<i>s</i>)	-1271.9	-1192.8	53.95	$C_2H_4(g)$ $C_2H_6(g)$	52.47 	68.39 32.89	219.2 229.5
Al ₂ O ₃ (5) Barium	-1675.7	-1582.3	50.95	C(g) C(s, diamond)	716.7 1.897	671.3 2.900	158.0 2.377	Br(g)	111.9	82.40	174.9	C₂H₂(g) C₄H10(g)	- 104.7 - 125.6	-23.6 -17.2	270.2 310.1
Ba(g) Ba(s)	179.1 0	147.0 0	170.1 62.48	C(s, graphite) CCl ₄ (g)	0 95.98	0 53.65	5.740 309.7	Br ⁻ (<i>aq</i>) Br ⁻ (<i>g</i>)	-121.5 -219.0	-104.0 -238.8	82.4 163.4	C6H6(g)	82.6	129.7	269.2
$Ba^{2+}(aq)$ $BaCO_{2}(s)$	-537.6 -1216.3	-560.7 -11.37.6	9.6 112.1	$CCl_4(l)$ $CF_4(g)$	-135.4 -933.2	-65.27 -888.5	216.4 261.3	Bf ₂ (g) Bf ₂ (<i>l</i>)	30.91 0	3.159 0	245.3 152.2	Alcohols CH-OH(0)	- 200.7	- 162.0	239.7
$BaCl_2(s)$ $Ba(NO_2)_2(aq)$	- 858.6	-810.3 -783.4	123.7	$CN^{-}(aq)$	151	166	118 197.5	HBr(g)	-36.44	-53.50	198.6	CH3OH(I)	- 238.7	-166.4	126.8
$Ba(OH)_2(S)$ $Ba(OH)_2(S)$	-946.3	-859.3	107.1	$CO_2(g)$ CO_3 (49)	-393.5 -677.1	- 394.4 - 527.9	213.7 	Ca(g)	177.8	144.1	154.8	$C_2H_5OH(g)$ $C_2H_5OH(l)$	- 235.1	-174.9	282.6 160.7
8H ₂ O(5) BaSO ₄ (5)	-3342.2 -1473.2	- 2793 - 1362.3	427 132.2	CS2(2) CS2(2)	116.9 89.70	66.85 65.27	237.9 151.3	$Ca^{+}(g)$ $Ca^{2+}(gg)$	773.8 542.8	732.1	160.5	Aldehydes HCHO(g)	-117	-113	219.0
Beryllium Ba(s)	0	0	9.440	$COCl_2(g)$ HCN(aq)	- 220.1 150.6	- 205.9 172.4	283.9 94.1	$Ca^{2+}(g)$	1925.9	_1128.8	-	CH ₃ CHO(g)	- 191.8	-133.4	246.4 160.4
BeO(s) Be(OH) ₂ (s)	-608.4 -905.8	-579.1 -817.9	13.77 50.21	HCN(g) HCN(l) HCO3 ⁻ (aq)	135.1 108.9 <i>6</i> 92.0	124.7 124.9 586.8	201.7 112.8 91.2	$CaCl_2(s)$ $CaCl_2(s)$	-795.8 -1225.9	-748.1 -1173.5	104.6 68.57	HCOOH(aq) HCOOH(l)	- 425.6 - 424.7	- 351.0 - 361.4	92 129

ACS Chemistry for Life®

Endothermic or exothermic?

Enthalpy - 4 ways to find it

Calorimetry
Enthalpy of formation
Hess's Law
Bond enthalpies

If two or more chemical equations are added, the DH of the individual equations may also be ADDED to find DH the of the final equation.

$\Delta H_{\text{reaction}} = \Sigma (\Delta H_{\text{f}} \text{ products}) - \Sigma (\Delta H_{\text{f}} \text{ reactants})$

Question #20 of the 2018 National Exam

- **20.** What is the standard heat of formation (ΔH°_{f}) of gaseous ethylene, $C_2H_4(g)$?
 - $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$ $\Lambda H^{\circ} = -242 \text{ kJ mol}^{-1}$ 2 C(s, graphite) + 3 H₂(g) + $\frac{1}{2}$ O₂ (g) \rightarrow C₂H₅OH(l) $\Lambda H^{\circ} = -278 \text{ kJ mol}^{-1}$

 $C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(l) \quad \Delta H^0 = -88 \text{ kJ mol}^{-1}$

(A) 16 kJ mol⁻¹ 52 kJ mol⁻¹ **(B)** (C) 83 kJ mol⁻¹ **(D)** 285 kJ mol^{-1}

#4 Bond enthalpies

Average Bond Enthalpies (kJ/mol)								
Single	Bonds							
С-н	413	N-H	391	O-H	463	F-F	155	
C-C	348	N—N	163	0-0	146			
C-N	293	N-O	201	O-F	190	Cl—F	253	
с—о	358	N—F	272	0-Cl	203	CI-CI	242	
C-F	485	N—Cl	200	0—I	234			
C-Cl	328	N—Br	243			Br-F	237	
C-Br	276			S-H	339	Br-Cl	218	
C-I	240	H-H	436	S—F	327	Br—Br	193	
C-S	259	H—F	567	S-Cl	253			
		H-Cl	431	S—Br	218	I-Cl	208	
Si-H	323	H—Br	366	s—s	266	I—Br	175	
Si—Si	226	H—I	299			I—I	151	
Si-C	301							
Si—O	368							
Multip	le Bonds							
C=C	614	N-N	418	O2	495			
$C \equiv C$	839	N=N	941	-				
C=N	615			S=O	523			
C=N	891			s=s	418			
C=O	799							
C = O	1072							

https://www.loom.com/share /89709bca9d554bef91313a 421d042cc5

American Chemical Society

•

Total =

* * C∞CC + H + Cl ← C → H → C − C → H * * H Cl H Cl							
Bonds Broken (requires er	nergy):	Bonds Form	ned (releases energy):				
C=C +614		C-C	-348				
H-Cl +431		4x C-H	-413x4				
3x C-H +413x3		2 x C-Cl	-328x2				
C-Cl +328							

...

+2612 (broken) – 2,656 (formed)

CI

#4 Bond enthalpies

н

н

= -44 kJ/mol

How does the universe like to operate?

- In terms of heat, processes/reactions tend to go in the direction of greater energy to less energy.
 - Example: when you leave your coffee or tea sitting out on the table, it spontaneously becomes <u>?</u>.
- So, we can say that the universe favors what type of reaction – <u>exothermic</u> or <u>endothermic</u>?

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

Systems Gas molecules, ice

Surroundings Cylinder, piston, your hands

Gibbs Free Energy Equation $\Delta G = \Delta H - T\Delta S$

- Where...
 - ∆G =
 - $\Delta H =$ • T = $\Delta S_{universe} \equiv \Delta S_{sys} + \Delta S_{surr}$
 - <u>∆</u>S =

$\Delta S_{\text{universe}}$ tends towards a maximum

S is larger when

- There are more gas particles
- Temperature is higher
- Volume is larger
- Lattice structures break down
- Molecules are larger

Remember that if ΔG is -, the rxn is spontaneous, so since $\Delta G = \Delta H - T\Delta S$

ΔΗ	ΔS	т	ΔG
negative	negative	low	negative
negative	positive	n/a	always negative
positive	negative	n/a	never negative
positive	positive	high	negative

Free Energy & Spontaneity

Concept	Description	Unit	Favorable for Spontaneous Process
Enthalpy (H)	internal energy of a system and usually measured as a change	kJ/mol	ΔH < 0
Entropy (S)	measure of dispersal/disorder of energy in a system	J/mol*K	∆S > 0
Gibbs Free Energy (G)	Free energy to do work	kJ/mol	ΔG < 0

	$\Delta G = \Delta G = K$			
ΔG° = +	K < 1	∆G = +	Q >K	
$\Delta G^\circ = 0$	K = 1 ish	∆G = 0	Q = K	
∆G° = -	K > 1	ΔG = -	Q <k< td=""><td></td></k<>	

• ΔG° is where the equilibrium lies for a reaction,

 $\Delta G^{\circ} = - RT \ln K$

- ΔG is where you are relative to equilibrium for a specific set of chemicals
- Q is the reaction quotient
- K is the equilibrium constant

ACS

Chemistry for Life®

In K vs. 1/T slope = $-\Delta H^{\circ}/R$

ln k vs. 1/T slope = $-E_a/R$

 $E = E^{\circ} - 0.0592/n * \log Q$ (@298 K)