

Production Team

Patrice Pages, *Lead Editor*
Cornithia Harris, *Art Director*
Therese Geraghty, *Copy Editor*
Natasha Bruce, *Senior Web Editor*
Fred Colon, *Web Associate*

Administrative Team

Marta Gmurek, *Administrative Editor*

Technical Review

Seth Brown, *University of Notre Dame*
David Voss, *Medina High School, Barker, NY*

Teacher's Guide

William Bleam, *Editor*
Donald McKinney, *Editor*
Ronald Tempest, *Editor*
Barbara Sitzman, *Editor*
Regis Goode, *Editor*
Susan Cooper, *Content Reading Consultant*
David Olney, *Puzzle Contributor*

Education Division

Mary Kirchhoff, *Director*
Terri Taylor, *Assistant Director, K-12 Science*

Policy Board

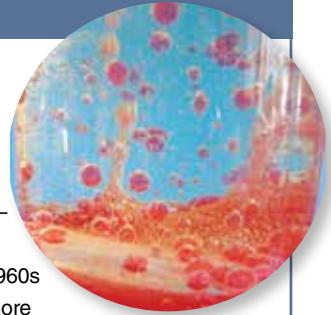
Shelly Belieu, *Chair, Thornton, CO*
Scott Goode, *Columbia, SC*
Ethan Sullivan, *Granada Hills, CA*
Kristine Lynn Rademacher-Gorovitz,
Chandler, AZ
Kathleen M. Cooper, *Varnville, SC*
Steve Long, *Rogers, AR*

ChemMatters (ISSN 0736-4687) is published four times per year (Oct/Nov, Dec/Jan, Feb/March, and April/May) by the American Chemical Society at 1155 16th St., NW, Washington, DC 20036-4800. Periodicals postage paid at Washington, DC, and additional mailing offices. POSTMASTER: Send address changes to *ChemMatters* Magazine, ACS Office of Society Services, 1155 16th St., NW, Washington, DC 20036.

Subscriber Information

Prices in the United States, Canada, and Mexico: \$16 per subscription. For more information, please contact ACS Member Services, P.O. Box 182426, Columbus, OH 43218-2426; tel.: 1-800-333-9511; fax: 1-614-447-3671. Information is also available online at: www.acs.org/chemmatters.

Professional writers wishing to write for *ChemMatters* can request the writers' guidelines by sending an e-mail to: chemmatters@acs.org. The American Chemical Society assumes no responsibility for the statements and opinions advanced by contributors. Views expressed are those of the authors and do not necessarily represent the official position of the American Chemical Society. The activities in *ChemMatters* are intended for high school students under the direct supervision of teachers. The American Chemical Society cannot be responsible for any accidents or injuries that may result from conducting the activities without proper supervision, from not specifically following directions, from ignoring the cautions contained in the text, or from not following standard safe laboratory practices.


All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, now known or later developed, including, but not limited to: electronic, mechanical, photocopying, recording, or otherwise, without prior permission from the copyright owner. Requests for permission should be directed in writing to: chemmatters@acs.org.

10TH ANNIVERSARY

ACTIVITY

By Erica K. Jacobsen

Homemade Lava Lamp

Styles come and go. Today's hot item often quietly disappears from stores, to be replaced by a new fad. Sometimes the fad runs full circle—you see an item that faded from popularity in the past regain its "gotta have" status. Lava lamps went through this cycle; they were wildly popular in the 1960s and 1970s, waned in popularity, and then came back again. You can learn more about this chemistry-driven novelty in the *ChemMatters* article "Lava Lite®: A Chemical Juggling Act" (April 1997, pp. 4–7). You can also use materials from the grocery store for a lava lamp-like experiment using the directions below.

Materials

- Two Alka-Seltzer® tablets
- Two small cups
- Vegetable oil
- Water
- Clear, colorless plastic bottle (1-L size with non-ridged sides works well)
- Funnel
- Food coloring

Wear safety goggles when performing this activity and do not taste any of the materials used in this experiment.

The reaction is driven by baking soda (NaHCO_3) and citric acid ($\text{C}_6\text{H}_8\text{O}_7$) in the Alka-Seltzer® tablet. One product is the bubbles—what are they? Were the ingredients able to dissolve and mix to react in the cup of oil, water, or both? What is a possible explanation for the bubble action you saw in the bottle?
(Hint: think density.)

1. Remove the bottle's cap and labels. Rinse out the bottle.
2. Break two Alka-Seltzer® tablets into quarters.
3. Fill a small cup half full of vegetable oil. Fill a second cup half full of water.
4. Place one piece of Alka-Seltzer® into each cup. What do you observe?
5. Using the funnel, pour water into the bottle so that it is about one-third full.
6. Add 5–7 drops of food coloring to the water. Swirl to mix.
7. Add vegetable oil to fill most of the remaining space in the bottle, so there is approximately 5–10 cm of air space at the top of the bottle.
8. Drop the remaining pieces of Alka-Seltzer® into the bottle, either one at a time, or several at once. **(Caution: Do not place the cap on the bottle.)**
9. Afterward, decant as much of the oil as possible into a separate container to dispose of in the trash. Add dish detergent to the remaining liquid and dispose of it down the drain with running water.

Want more things to try? Visit the **ACS CHEMCLUB** Activities pages online! Topics include Valentine's Day Chemistry, Baking & Chemistry, Forensics, and more. Then, explore each topic's links to demos, experiments, and videos. Head to: www.acs.org/chemclub and click on "Activities."

© Copyright 2016
American Chemical Society
Canadian GST Reg. No. 127571347
Printed in the USA