

Vamos a comenzar en breve, a las 1 CST / 2 EST

La Química e Ingeniería Sostenible y Verde: Herramienta Innovadora en la Industria Farmacéutica

La química verde y sostenible es un vehículo que nos permite desarrollar procesos creativos, eficientes e innovadores que proveen el producto deseado minimizando el impacto ambiental, y en muchos casos, de manera más económica. Este tipo de proceso es una prioridad para la industria farmacéutica. La Mesa Redonda Farmacéutica del Instituto de Química Verde de la Sociedad de Química de Estados Unidos (ACS GCI PR.

por sus siglas en inglés) ha logrado el desarrollo de unas herramientas "verdes" que facilitan catalizar la implementación de la química e ingeniería verde en esta industria globalmente. En esta presentación discutiremos el impacto positivo de la química verde en la industria farmacéutica y las herramientas "verdes", que se utilizan en los procesos y en las rutas sintéticas para el desarrollo y la comercialización de nuevos productos farmacéuticos.

Ponente y Moderadora

Isamir Martínez ACS Green Chemistry Institute

Ingrid Montes
Universidad de
Puerto Rico, Recinto

El Decimoséptimo Webinar en Español auspiciado por ACS y SQM

http://bit.ly/Herramientalnnovadora

¿Tiene preguntas para el ponente?

"¿Por qué he sido "silenciado"?

No se preocupe. Todo el mundo ha sido silenciado, excepto el ponente y la moderadora. Gracias, y disfruten de la presentación.

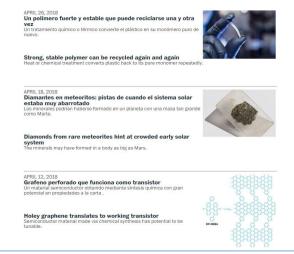
Escriba y someta sus preguntas durante la presentación

¿Está en un grupo hoy viendo el webinar en vivo?

Díganos de dónde son ustedes y cuántas personas están en su grupo!

SOCIEDAD QUÍMICA
DE MÉXICO, A.C.

La Diversidad de la Audiencia


Hoy tenemos representantes de 13 países

¡C&EN en Español!

C&EN pone a su disposición traducciones al español de sus artículos más populares.

Gracias a una colaboración con la organización española Divúlgame.org, C&EN ahora es capaz de ofrecer traducciones al español de algunos de nuestros mejores contenidos. Queremos hacer de la ciencia de vanguardia más accesible a la comunidad química de habla española, y esta es nuestra contribución. Le da a los nacidos en España, América Latina, o los EE.UU., pero cuyo primer idioma es el español la oportunidad de leer este contenido en su lengua materna. Esperamos que les guste y sea de su utilidad.

Dr. Bibiana Campos Seijo Editora en Jefe, C&EN

http://bit.ly/CENespanol

¿Has descubierto el elemento que falta?

http://bit.ly/benefitsACS

Entérate de los beneficios de ser miembro(a) de ACS!

Beneficios de la Afiliación al ACS

Chemical & Engineering News (C&EN)

The preeminent weekly news source

ACS Webinars Archive of Recordings®

ACS Member only access to over 250 edited chemistry themed webinars. www.acswebinars.org

NEW! ACS Career Navigator

Your source for leadership development, professional education, career services, and much more

http://bit.ly/benefitsACS

Sociedad Química de México

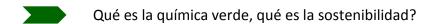
Desde sus comienzos de la Sociedad Química de México, se buscaba un emblema sencillo, no demostrar partidarismo alguno y significar al gremio, debería representar un símbolo no sólo para los químicos, sino también para ingenieros, farmacéuticos, metalurgistas, en fin que englobe e identifique por igual a los científicos en todas sus áreas de las ciencia química.

www.sqm.org.mx

Sugieran temas y expertos que les interesarían para los próximos webinars. acswebinars@acs.org

http://bit.ly/ACS-SQMwebinars

"La Química e Ingeniería Sostenible y Verde: Herramienta Innovadora en la Industria Farmacéutica"


Las imágenes de la presentación están disponibles para descargar ahora desde el panel de GoToWebinar http://bit.ly/Herramientalnnovadora

El Webinar de hoy esta auspiciado por la Sociedad Química de México y the American Chemical Society

Contenido

Herramientas verdes útiles para la implementación de la química e ingeniería verde y sostenible

ACS Green Chemistry Institute®

Instituto de Química Verde de la Sociedad de Química de los EE.UU. (ACS Green Chemistry Institute)

Te invitamos a volver a imaginar la química e ingeniería para un futuro sostenible!

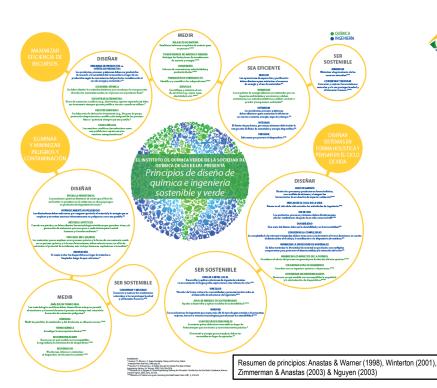
Las innovaciones en la química verde y sostenible tienen la llave para resolver la mayoría de los problemas ambientales y de la salud humana que enfrenta el mundo de hoy.

- · Avanzando la ciencia
- Promoviendo la educación
- · Acelerando la industria

Principios de Diseño para la Química e Ingeniería Sostenible y Verde

- Maximizar la eficiencia de los recursos
- Eliminar and minimizar los peligros y la contaminación
- Diseñar sistemas de manera holística y pensar en el ciclo de vida
- . Anastas, P.T. and Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998
- 2. Anastas, P. I.; Zimmerman, J. B. Design through the Twelve Principles of Green Engineering. Environ. Sci. Technol. 2003, 37(5), 94A-101A.
- Abraham, M. A.; Nguyen, N. "Green Engineering: Defining the Principles" Results from the San Destin Conference, Environmental Progress, 2003, 22(4), 233-236
 Abraham, M. T. Nguyen, N. "Green Engineering: Defining the Principles" Results from the San Destin Conference, Environmental Progress, 2003, 22(4), 233-236
 Abraham, M. T. Nguyen, N. "Green Engineering: Defining the Principles" Results from the San Destin Conference, Environmental Progress, 2003, 22(4), 233-236
 Abraham, M. T. Nguyen, N. "Green Engineering: Defining the Principles" Results from the San Destin Conference, Environmental Progress, 2003, 22(4), 233-236

Resumen de Principios: Anastas & Warner (1998), Winterton (2001), Zimmerman & Anastas (2003) & Nguyen (2003)


ACS Green Chemistry Institute®

13

ACS Green Chemistry Institute

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles.html

Por qué usar la Química Verde?

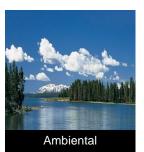
- Provee el mejor potencial de eficiencia para un proceso químico.
- ¡Oportunidad para la innovación!
- Logro de una eficiencia superior sintética que ofrece muchas ventajas.

OPRD., 2006, 10, 315.

Provee una plataforma que se alinea a las metas corporativas ambientales, sociales, and económicas.

ACS Green Chemistry Institute®

- 45



Qué es un futuro sostenible?

Balance social, ambiental y económico que responde a las necesidades globales a través de generaciones.

➤ **Meta:** que la industria farmacéutica pueda satisfacer las necesidades de los pacientes globalmente a un costo que puedan pagar pero minimizando la huella ambiental.

ACS Green Chemistry Institute®

...

Métricas y Colaboraciones Industriales del Instituto de Química Verde

Mesa redonda de la industria farmacéutica

(ACS GCI PR, por sus siglas en inglés)

ACS Green Chemistry Institute®


www.acs.org/greenchemistry

Mesas Redondas Industriales del Instituto de Química Verde

"Catalizando la integración de la química e ingeniería verde y sostenible globalmente en la industria de la química."

 Convocamos compañías de todo el mundo para que se enfoquen en la ciencia de la química e ingeniería verde y sostenible y en su implementación.

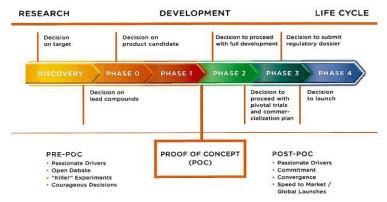
https://www.acs.org/content/acs/en/greenchemistry/industry-business.html

La Mesa Redonda de la Industria Farmacéutica

Creada en el 2005 para catalizar modelos innovadores para mejorar la eficiencia del proceso y la calidad del producto usando química e ingeniería verde y sostenible.

Provee liderazgo e influencia la industria y la cadena de suministros.

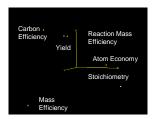
Miembros de la Mesa Redonda Farmacéutica del Instituto de Química Verde en el 2018

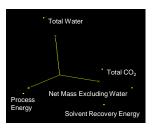


ACS Green Chemistry Institute®

Integración de la Química Verde en la Industria Farmacéutica

A través de las diferentes etapas del ciclo de vida del producto: investigación, desarrollo y comercialización. ¡Mientras mas temprano, mejor!





Por qué definir métricas?

- Para estandarizar la medida de cuán verde es el proceso químico.
 - Es un factor crítico para determinar el comportamiento del sistema.
 - Establecer correlaciones con procesos económicos.
- Para establecer evaluaciones corporativas entre las diferentes compañías.
 - Para impulsar el cambio, demostrar mejoras y aumentar la trasparencia de los procesos.

ACS Green Chemistry Institute®

2

Por qué No Sólo Mejorar el % de Rendimiento

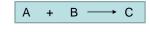
Para un proceso de manufactura (producto intermedio):

- Un paso en un "proceso típico" de manufactura farmacéutica produce un 35 -95% de rendimiento; promedio de 86%.
- %
- ➤ Un "proceso típico" de manufactura tiene 6 pasos con un % de rendimiento de 30 40%.
- ➤ El % de rendimiento total *no considera el uso de reactivos, disolvente, catalítico*. Si estos se consideran, el promedio general de los materiales totales es de 16 kg/kg para un producto intermedio.
- Asumiendo 100% rendimiento en cada paso:16 kg/kg en materiales resultará en una Productividad de Masa de 2%.

% de rendimiento ≠ química verde

ACS Green Chemistry Institute®

--



Otras Opciones

Economía atómica (Trost)

Science, 1991, 254, 1471

$$AE = \frac{MW \text{ of C}}{MW \text{ of A} + MW \text{ of B}}$$

E-Factor (Sheldon)

$$E Factor = \frac{Total waste (kg)}{kg product}$$

Industry segment	Tonnes per annum	E factor (kg waste per kg product)
Oil refining	10 ⁶ -10 ⁸	<0.1
Bulk chemicals	$10^4 - 10^6$	<1-5
Fine chemicals	$10^2 - 10^4$	5-50
Pharmaceuticals	$10-10^3$	25 -> 100

Green Chem., 2002, 4, 521 Green Chem., 2017, 19, 18

ACS Green Chemistry Institute®

Un desafío para esta industria...

- Disminuir la cantidad de material que se usa para preparar un producto farmacéutico.
- La Mesa redonda de la industria farmacéutica (ACS GCI PR) ha desarrollado una métrica llamada la intensidad de masa del proceso.

Org. Process Res. Dev., 2011, 15 (4), pp 912-917

- permite que la data de cada compañía se pueda comparar de una manera equitativa y uniforme.

¿Cuál es el E-Factor y el valor de PMI para un proceso verde y sostenible "IDEAL"?

- E-factor = PMI = 0
- E-factor = 0, PMI = 1
- E-factor = PMI = 1
- E-factor = 1, PMI = 0

27

Métrica: Intensidad de Masa del Proceso (PMI, por sus siglas en inglés)

Intensidad de masa del proceso = Cantidad de materiales de entrada (kg)
Cantidad ingrediente activo a granel de salida (kg)

<u>Proceso</u> todos los pasos de una ruta sintética desde los materiales de partida comúnmente disponibles hasta el ingrediente activo final (a granel)

<u>Materia prima</u> son todos los materiales incluyendo agua que es usado directamente en el proceso de sintetizar, aislar y purificar el producto activo en su forma final.


<u>Producto activo a granel</u> es la forma final del producto del ingrediente activo que fue producido in la síntesis, secado de acuerdo a las especificaciones.

Intensidad de Masa del Proceso

Calculadora para PMI: síntesis linear

Step Name/Number	1					
	Value	Units				
Physical Batch Size						
Assay Purity						
Assay Batch Size						
Yield						
Assay Kg product						
Product Purity						
Raw Materials	,	Physical Charge (kg)				
Substrates		1				
Reagents						
Solvents						
Aqueous						
Aqueous						
		- 				
PROCESS S	TEP M	ETRICS				
Mass Substrate (I	kg)	0				
Mass Reagents (Mass Reagents (kg)					
Mass Solvents (k	0					
Mass Aqueous (F	(g)					
Step PMI		#DIV/0!				
Step PMI Excludir	ng H2O	#DIV/0!				
Cumulative P		#DIV/0!				
Cumulative PMI Excl	uding H2	2O #DIV/0!				

PMI Excel Spreadsheet

- Hoja de cálculo con cómputos insertados
- Cómputos: .
- Sólo necesita llenar las cantidades de los reactivos, disolvente y agua.
- Calcula el PMI del paso y el completo para secuencias lineares
- Calcula el PMI global y PMI específicos para reactivos, disolvente y agua.

ACS Green Chemistry Institute®

Calculadora para PMI: síntesis convergente

Step Name/Number	2		
Step Name/Number	Value	Units	
Physical Batch Size	155	kg	
Substrate Assay Purity	99%	wt%	
Assay Batch Size	153.5	kg	
Molar Yield	91%	- Ng	
Assay Kg product	217	kg	
Product/Intermediate Purity	100%	wt%	
Product/Intermediate Purity	100%	Wt76	
Raw Materials	Physical Charge	Units	
Substrates			
Product from step 1	155	kg	
Reagents			
Diisopropylethylamine	105	kg	
4-chlorobenzoyl chloride	147	kg	
		kg	
Solvents			
2-MeTHF	700	kg	
heptane	450	kg	
Aqueous		kg	
2N HCI	420	kg	
25% NaCl	220	kg	
2576 14401	220	kg	
PROCESS S	STEP METRICS		
Mass Substrate (kg)		155	
Mass Reagents (kg)		252	
Mass Solvents (kg)		1150	
Mass Aqueous (kg)		640	
Step PMI		10.1	
Step PMI Substrate, Reagents,	Solvents	7.2	
Step PMI Substrates and Read		1.9	
Step PMI Solvents		5.3	
Step PMI Water		2.9	
Cumulative PMI		19.0	
Cumulative PMI Substrate, Rea		14.0	
		3.2	
Cumulative PMI Substrates an	a Reagents		
	d Reagents	10.8	

3	Step 1 Input Table	
7	Yalue	Units
	Assay Batch Size (input pure)	kg
9	Assay Kg product (output pure)	kg
0		
	Raw Materials Physical Charge	Units
2	Main Substrate (Enter only 1 substrate, prepopulated from assay batch size)	
3	0.00	kg
	Fragment Substrates (fill top down)	
	None	kg
	None	kg
7	None	kg
3	Reagents	
3		kg
)		kg

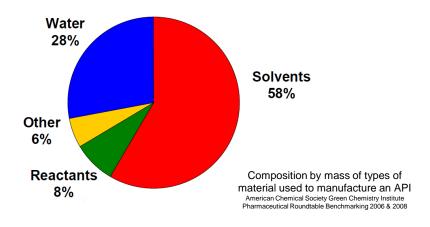
- Secuencia linear: 11 pasos (máximo)
- **Síntesis convergente:** Hasta 3 ramificaciones de 11 pasos
- Máximo de 44 pasos en una secuencia linear hasta 44 pasos en diferentes ramificaciones.

ACS Green Chemistry Institute[®] 3

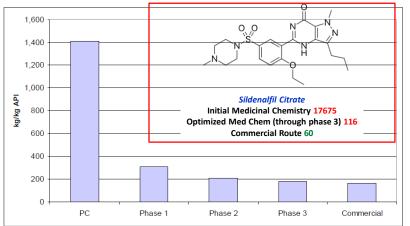
Encuesta Para La Audiencia

RESPONDER A LA PREGUNTA HACIENDO CLICK EN BREVE EN LA PANTALLA AZUL

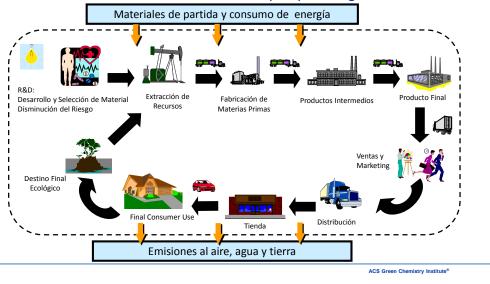
¿Qué componente de un proceso químico contribuye más al total del PMI?


- Reactivos
- Agua
- Catalítico
- Solvente

Composición de PMI en un Proceso Farmacéutico


ACS Green Chemistry Institute®

"PMI" por Fase de Desarrollo – Valores de las medianas

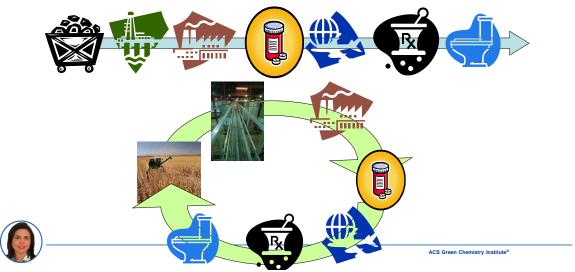

Green Chem., 2015, 17, 3390

ACS Green Chemistry Institute®

Análisis de Ciclo de Vida – una perspectiva general

- Herramienta para predecir PMI
- Herramienta para PMI-LCA

¡Pronto!


ACS Green Chemistry Institute®

-

Bio-procesos, cerrando el ciclo – una visión sostenible

Herramientas de Química Verde

- Guías de solventes
- Guías de reactivos

ACS Green Chemistry Institute®

-

Desarrollo de una Guía de Disolvente

- Durante un procesos farmacéutico la selección del disolvente es primordial para determinar la sostenibilidad de los métodos de producción comercial.
 - Estudios corporativos comparativos (benchmarking) han demostrado que los disolventes contribuyen a más del 50% de los materiales usados en la manufactura del ingrediente activo farmacéutico.
 - Algunas compañías farmacéuticas crearon su propia guía de selección de disolventes enfocándose en áreas de seguridad del empleado, seguridad del proceso y regulaciones del medio ambiente.

Org. Process Res. Dev., 2015, 19, 740

ACS Green Chemistry Institute®

20

Plataforma Educativa "CHEM 21"

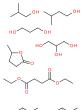
Un recurso excelente para químicos interesados en aprender como hacer las rutas sintéticas del ingrediente activo farmacéutico más verde.

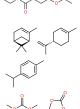
ACS Green Chemistry Institute®

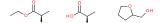
http://learning.chem21.eu/

La Guía de Disolventes de Chem21

Family	Solvent	BP (°C)	FP (°C)	Worst H3xx	H4xx	Safety score	Health score	Env. score	Ranking by default	Ranking from the survey
Water	Water	100	na	none	none	1	1	1	Recommended	Recommended
Alcohols	EtOH	78	13	H319	none	4	3	3	Recommended	Recommended
	i-PrOH	82	12	H319	none	4	3	3	Recommended	Recommended
	n-BuOH	118	29	H318	none	3	4	3	Recommended	Recommended
Esters	Ethyl acetate	77	-4	H319	none	5	3	3	Recommended	Recommended
	i-PrOAc	89	2	H319	none	4	2	3	Recommended	Recommended
	n-BuOAc	126	22	H336	none	4	2	3	Recommended	Recommended
Ethers	Diethyl ether	34	-45	H302	none	10	3	7	Hazardous	НН
	Diisopropyl ether	69	-28	H336	none		3	5	Hazardous	Hazardous
	Me-THF	80	-11	H318	none	6	5	3	Problematic	Problematic
	1,4-Dioxane	101	12	H351	none	7	6	3	Problematic	Hazardous
	Anisole	154	52	none	none	4	1	5	Problematic	Recommended
	DME	85	-6	H360	none	7	9	3	Hazardous	Hazardous
Hydrocarbons	Pentane	36	-40	H304	H411	8	3	7	Hazardous	Hazardous
	Hexane	69	-22	H361	H411		7		Hazardous	Hazardous
	Heptane	98	-4	H304	H410	6	2		Problematic	Problematic
	Me-Cyclohexane	101	-4	H304	H411	6	2		Problematic	Problematic
	Benzene	80	-11	H350	none	6	10	3	Hazardous	НН
	Toluene	111	4	H351	none	5	6	3	Problematic	Problematic
	Xylenes	140	27	H312	none	4	2	5	Problematic	Problematic




http://learning.chem21.eu/methods-of-facilitating-change/tools-and-guides/solvent-selection-guides/guide-tables


La Guía de Disolventes de Chem21: Disolventes Bio-derivados

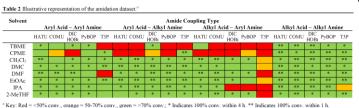
Ranking of	f bio-derived	solv	ents						
Family	Solvent	BP (°C)	FP (°C)	Worst	H4xx	Safety	Health	Env.	Ranking by
				H3xx		score#	score	score	default
Alcohols	i-Butanol	107	28	H318	none	3	4	3	Recommended
	i-Amyl alcohol	131	43	H315	none	3	2	3	Recommended
	1, 3-Propane diol	214	>100	none	none	1	1		Problematic
	Glycerol	290	177	none	none	1	1		Problematic
Esters	i-Butyl acetate	115	22	H336	none	4	2	3	Recommended
	i-Amyl acetate	142	25	none	none	3	1	5	Recommended
	Glycol diacetate	186	82	none	none	1	1	5	Recommended
	g-Valerolactone	207	100	n.a.	n.a.	1	5	7	Problematic
	Diethyl succinate	218	91	n.a.	n.a.	1	5	7	Problematic
Hydrocarbons	D-Limonene	175	49	H304	H400	4	2	7	Problematic
*	Turpentine	166	38	H302	H411	4	2		Problematic
	p-Cymene	177	27	n.a.	n.a.	4	5	5	Problematic
Aprotic polar	Dimethyl carbonate	90	16	none	none	4	1	3	Recommended
	Ethylene carbonate	248	143	H302	none	1	2		Problematic
	Propylene carbonate	242	132	H319	none	1	2		Problematic
	Cyrene	203	61	H319	n.a.	1	2	7	Problematic
Miscellaneous	Ethyl lactate	155	47	H318	none	3	4	5	Problematic
	Lactic acid	230	113	H318	none	1	4	7	Problematic
	TH-Furfuryl alcohol	178	75	H360	none	1		5	Hazardous

ACS Green Chemistry Institute®

La toxicidad de benceno es conocida. Sin embargo, ¿cuál de los siguientes es o ha sido uso de este disolvente?

- Aditivo de la gasolina (petróleo)
- Loción afeitadora
- Para descafeinar el café
- Detergente de limpieza fuerte

43


Consejos y Trucos para los Químicos Medicinales

Purificación: Green Chromatography decision tree (Green Chem. 2014, 16, 4060)

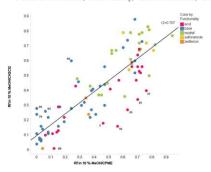
Disolventes: GSK, Pfizer, Sanofi solvent guides

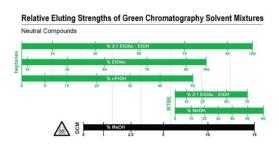
Alternatives to DMF and DCM in amide couplings

(Green Chem. 2012, 14, 596)

Reactivos, energía, recursos

https://www.acs.org/content/acs/en/greenchemistry/research-innovation/tools-for-green-chemistry/medchem-tips-and-tricks.html





Alternativas para la cromatografía

Replacement of dichloromethane within chromatographic purification: a guide to alternative solvents†‡

Donna S. MacMillan, "Jane Murray, "Helen F. Sneddon, "Craig Jamieson" and Allan J. B. Watson $*^a$

Joshua P. Taygerly,** Larry M. Miller,* Alicia Yee* and Emily A. Peterson** d

Green Chem., 2012, 14, 3016 and 3020

ACS Green Chemistry Institute®

Acceso en Línea: "reagentguides.com"

The reagent guides purpose is to encourage chemists to choose a 'greener' choice of reaction conditions. The guides aim to achieve this by providing transparency through the use of Venn diagrams in addition to improving understanding by discussion and up to date references.

Name: reagent Password: guide

ACS Green Chemistry Institute®

https://www.reagentguides.com

Desarrollo de una Guía de Reactivos

Tres Características Ideales......

- 1) Proveer una evaluación balanceada de los métodos químicos:
 - buen % rendimiento en una variedad amplia de moléculas con propiedades de fármacos ("drug-like" molecules).
 - Puedan ser utilizadas para productos en escala grande
 - Procesos verdes (seguridad del científico, economía atómica, etc.)
- 2) Proveer acceso fácil para la literatura química.

3) Para concientizar las metodologías verdes en la literatura

Dunn et al., Green Chem., 2008, 10, 31

https://www.reagentguides.com


ACS Green Chemistry Institute®

Green Chemistry

Guías de Reactivos

Reagent Guides

- **Boc deprotection**
- Amide reduction
- Bromination
- Reductive amination
- Metals removal
- **Buchwald-Hartwig**
- Iodination
- Chlorination
- **Chiral Hydrogenation**
- Suzuki-Miyaura

Pronto....

- Fluorination
- Amide bond formation

Inicialmente: Información General de la Transformación

The inclusion of an article in this document does not give any indication of safety or operability. Anyone wishing to use any reaction or reagent must consult and follow their internal chemical safety and hazard procedures and local laws regarding handling chemicals

Introducción a la transformación aspectos comunes con revisiones literarias Cr reagents used for oxidation seem to have been replaced largely by greener reagents, although publications persist on 'green' variants of Cr (VI) oxidants.

MnO₂ and hypervalent iodine oddations are still tarity common in early phase development/med chem publications and occur frequently in early routes - these reagents tend to be designed out or replaced with greener ones. Hypervalent iodine reagents do still find use with some complex substrates. Variants of catalytic hypervalent iodine reagents are now appearing. The most common oxidation pathways use TEMPO-type catalysts with a terminal oxidant, the Corey-Yikin method, and activated DMSO variants (Seven oxidation). Avery popular DMSO activating agent for larges relow only is the printing-SQ complex.

Chlorine - pyridine, Balknoù Jand, to a lesser extent, nickel percaide (probably NO(01+t)) find little use as oxidants for the synthesis of aldehydes or ketones. Over the past five years, their has been an exponential increase in the number of publications related to the use of metals and air (0) or HsD, presumably due to the good atom commony and ease of processing. Process intendification and flow chemistry are used to minimize issues with coothermic chemistry and hazards associated with frammable solvents and oxidants. Many more bloostaffick approaches to alchool oxidation are also being developed.

General Review

View circa Jan 2014

Caron, S.; Dugger, R. W.; Gut Ruggeri, S.; Ragan, J. A.; Brown Ripin, D. H. Large-Scale Oxidations in the Pharmaceutical Industry. Chem. Rev. 2006, 106 (7), 2943–2989.

Nickel Peroxide, NiO(OH)2 Manganese Dioxide, MnO₂ Hypervalent Iodine reagents - general Dess Martin Periodate NaICl₂ A simple system for the oxidation o PDC Pyridium dichromate oxidations PCC Review on Cr(VI) oxidati Oppenauer oxidation: An Integrated Approach DMSO -Oxalvi Chloride. Swern oxidation DMSO/DCC Pfitzner-Moffat (also TFAA DMSO - Pyridine-SO₂ (Parikh-Doering) DMSO activation in Pseudo-Swern reaction NaOCI bleach ovidation TCA Trichloroisocyanuric Acid: A Safe and Efficient Oxidant TPAP/NMO (tetrapropylammonium

perruthenate)

Oxidation to aldehyde and ketones

ACS Green Chemistry Institute®

Lista de Reactivos

Dos categorías en términos de la profundidad de cobertura

= 00 0000g0..... 0........ 0.0 0.0 p. 0, 0.0 0.0 0.0

Full Review

NiO₂ oxidation of alcohols

MnO₂ oxidations in organic chemistry

Hypervalent Iodine reagents – general overview IBX 2-Iodoxybenzenesulfonic Acid

Dess Martin Periodate

NaICl₂ A simple system for the oxidation of alcohols

PDC Pyridium dichromate oxidations

PCC Review on Cr(VI) oxidation

Oppenauer oxidation: An Integrated Approach

DMSO -Oxalyl Chloride, Swern oxidation

DMSO/DCC Pfitzner-Moffat (also TFAA activation)
DMSO - Pyridine-SO₃ (Parikh-Doering)

DMSO activation in Pseudo-Swern reaction

Me₂S/NCS Corey - Kim oxidation

NaOCI bleach oxidation
TCA Trichloroisocvanuric Acid: A Safe and Efficient Oxidant

Light touch overview

BaMnO₄ oxidation of primary and secondary alcohols

Potassium Ferrate A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)

Oxidation with Chlorine / Pyridine complexes

PIPO- Polymer immobilised TEMPO

Ce Cerium(IV) ammonium nitrate

Aqueous oxone

AZIDO (TEMPO variants)

RuCl₃

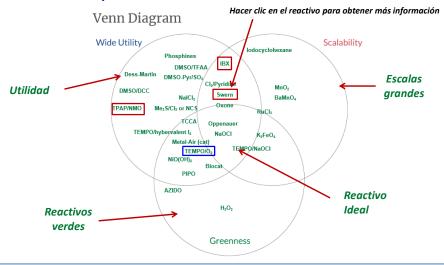
→ Venn Diagram

PIPO- Polymer immobilised TEMPO

Ce Cerium(IV) ammonium nitrate Aqueous oxone

AZIDO (TEMPO variants)

Alternativa...


ACS Green Chemistry Institute®

Descripción de la Clasificación de los Reactivos

ACS Green Chemistry Institute®

Mecanismo de la Reacción

TEMPO

TEMPO-Bleach oxidation

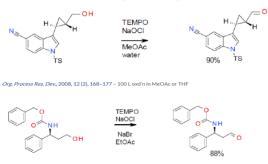
Mechanism + Description for

NaOCI is often used as a co-oxidant which generates NaCl as a by-product. NaBr or borates are often added as a General Comments A common terminal oxidant is bleach (NaOCI) which is often employed with a Bromide or borate co-catalyst. Reactions in water of bi-phasic reactions are often helped by the addition of a phase transfer catalyst

Key References

previous

Org. Process Res. Dev. 2005. 9 (5). 577–582 - Production of Aldehydes by Continuous Bleach Oxidation of Alcohols Catalyzed by 4-hydroxy-TEMPO
Org. Process Res. Dev. 2008. 12 (2). 322–338 — Discussion of optimisation to prevent racemisation (50 L scale)
Org. Process Res. Dev. 2010. 14 (1). 441–458 — DOE and robustness studies on TEMPO stage statin oxfn (2000 L scale)
Org. Process Res. Dev. 2010. 14 (1). 142–151 - Use of Nal to prevent chlorination of heteroaromatic (50 L scale)



Ejemplos a Escala

Relevant Scale up examples

Org. Process Res. Dev., 2008, 12 (6), 1104–1113–2000 L prep of Maraviroc intermediate

- > reagentguides.com: ¡Herramienta excelente, utilícenla!
- > ¡ Danos tu opinión de cómo mejorar esta herramienta! gcipr@acs.org

https://www.reagentguides.com

ACS Green Chemistry Institute®

Programa de Becas de Investigación de la Mesa Redonda de la Industria Farmacéutica: solicitud de propuestas

2018 Research Grant for Greener Chromatography Modalities: \$50,000 (1 año)

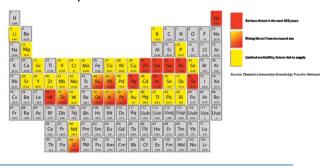
Objetivo: reducir la intensidad de masa del proceso (PMI) en operaciones de cromatografía y/o reemplazar la cromatografía en procesos de bio-farma. Reducir el consumo de agua, resinas ó químicos en la purificación de anticuerpos monoclonales.

2018 Ignition Grant Program for Green Chemistry and Engineering Research \$25,000 (1 año)

Objetivo: un llamado a la innovación. Búsqueda de ideas novedosas que pueden solucionar de una manera sostenible problemas de química e ingeniería las industria farmacéutica (desde investigación hasta la comercialización).

Fecha límite para someter propuesta: 1 de junio 1, 2018.

https://www.acs.org/content/acs/en/greenchemistry/industry-business/pharmaceutical.html



La Industria Farmacéutica Necesita Investigación e Innovación en las Siguientes Áreas:

- Catálisis con no metales o metales sostenibles
 - Biocatálisis
- Métodos catalíticos/sostenibles para formación (directa) de amidas o péptidos.
- Activación de C-H alifático y aromático via oxidantes verdes de alta selectividad.
- Reducciones de amidas sin LiAlH₄ and di- borano.
- · Sustitución directa de alcoholes.
- Inmovilización de catalíticos sin perdida significativa de la cinética.
- Hidrogenación Asimétrica de olefinas/ enamines/ imines no funcionalizadas.
- Mejores procesos para reacciones de fluorinación/ trifluorometoxylación.
- Química Wittig sin Ph₃PO.
- Nuevos procesos para oxidaciones, C-O o procesos redox para C-N.

- Nuevos Disolventes:
 - Reemplazos viables para disolventes polares apróticos.
 - Reemplazos viables para disolventes halogenados.
- Materiales de partida bio-renovables

ACS Green Chemistry Institute®

5

Áreas Esenciales para la Investigación en la Ingeniería rde

Rank	Main Key Areas	Sub-areas/aspects	otes
1	Continuous Processing	Primary, Secondary, Semi-continuous	12
2	Bioprocesses	Biotechnology, Fermentations de	11
3	Separation and Reaction Technologies	Membranes, crystallights 1705	11
4	Solvent Selection, Recycle and Optimization	Biotechnology, Fermentations B de Membranes, crystallizes trial Property motion and military aspects etc. Property motion and military aspects etc. The condense of the co	10
5	Process Intensification	te con de Quad systems, etc	9
6	Integration of Life C Assessment (LC	ag, Total Cost Assessment, carbon / ding, Social LCA, streamlined tools	4
7	Integration on Sland	ess strategy, links with education, etc.	4
8	w Ma.	Mass and energy transfer, Kinetics, and others	3
9	ensity	Baseline for pharmaceuticals, estimation, energy optimization	1
	Energy	Process integration, Process Synthesis, Combined Heat and Power, etc	0

ACS Green Chemistry Institute®

56

Jimenez-Gonzalez, Concepcion et.al. Org. Process Res.& Dev 2011, 15, 900-911.

Conclusiones

- La química e ingeniería verde y sostenible es una manera diferente de hacer química y es un llamado a la innovación para un futuro sostenible.
- El <u>Instituto de Química Verde de la Sociedad de Química de los EE.UU</u>. establece colaboraciones industriales para catalizar la implementación de la química e ingeniería verde en industrias.
- El <u>uso de diferentes métricas</u> es importante para medir cuán verde son los procesos químicos. Con éstas, se pueden hacer comparaciones entre industrias e impulsar la implementación de métodos verdes.
- Compañías farmacéuticas junto al Instituto han formado una Mesa redonda farmacéutica donde se fomenta el
 intercambio de las mejores prácticas y se desarrollan herramientas verdes que ayudan a implementar procesos
 verdes.
 - herramientas verdes existentes (como guías de disolventes, guía de reactivos, calculadoras de PMI, plataforma educativa
 Chem21, entre otras) están disponibles para uso público sin costo
 - disponibilidad de becas en áreas de química verde de alto interés para la industria farmacéutica

ACS Green Chemistry Institute®

_

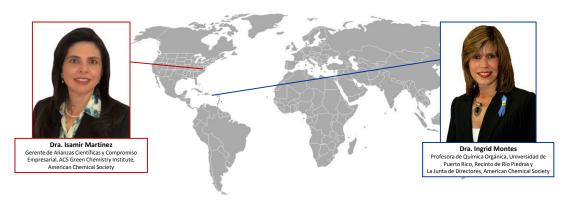
¡Gracias por su atención! ¿Preguntas?

Dra. Isamir Martínez, Ph.D., PMP

i_martinez@acs.org

What's Your Green Chemistry? ™

We want to hear your story. Contact gci@acs.org www.acs.org/greenchemistry



ACS Green Chemistry Institute®

"La Química e Ingeniería Sostenible y Verde: Herramienta Innovadora en la Industria Farmacéutica"

Las imágenes de la presentación están disponibles para descargar ahora desde el panel de GoToWebinar http://bit.ly/Herramientalnnovadora

El Webinar de hoy esta auspiciado por la Sociedad Química de México y the American Chemical Society

59

Sugieran temas y expertos que les interesarían para los próximos webinars.acswebinars@acs.org

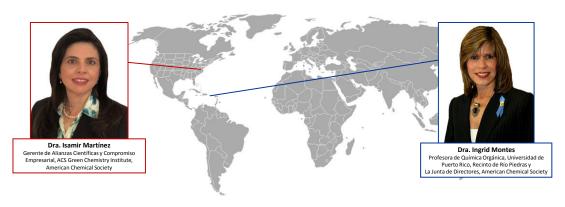
http://bit.ly/ACS-SQMwebinars

¡C&EN en Español!

C&EN pone a su disposición traducciones al español de sus artículos más populares.

Gracias a una colaboración con la organización española Dividigame.org, C&EN ahora es capaz de ofrecer traducciones al español de algunos de nuestros mejores contenidos. Queremos hacer de la ciencia de vanguardía más accesible a la comunidad química de habla española, y esta es nuestra contribución. Le da a los nacidos en España, América Latina, o los EE.UU., pero cuyo primer idioma es el español la oportunidad de leer este contenido en su lengua materna. Esperamos que les guste y sea de su utilidad.

Dr. Bibiana Campos Seijo Editora en Jefe, C&EN


http://bit.ly/CENespanol

6

"La Química e Ingeniería Sostenible y Verde: Herramienta Innovadora en la Industria Farmacéutica"

Las imágenes de la presentación están disponibles para descargar ahora desde el panel de GoToWebinar http://bit.ly/Herramientalnnovadora

El Webinar de hoy esta auspiciado por la Sociedad Química de México y the American Chemical Society

La Diversidad de la Audiencia

Hoy tenemos representantes de 13 países

Sociedad Química de México

Desde sus comienzos de la Sociedad Química de México, se buscaba un emblema sencillo, no demostrar partidarismo alguno y significar al gremio, debería representar un símbolo no sólo para los químicos, sino también para ingenieros, farmacéuticos, metalurgistas, en fin que englobe e identifique por igual a los científicos en todas sus áreas de las ciencia química.

www.sqm.org.mx

Sugieran temas y expertos que les interesarían para los próximos webinars. acswebinars@acs.org

http://bit.ly/ACS-SQMwebinars