Green Chemistry Principle #10

Design for Degradation

Chemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment.

Contributed by Rich Williams, Founder and President at Environmental Science & Green Chemistry Consulting, LLC

Green chemistry practitioners aspire to optimize the commercial function of a chemical while minimizing its hazard and risk. Hazard, the capability to cause harm, is an inherent characteristic arising, like function, from a chemical’s stereochemistry (the content and arrangement of atoms). Green chemistry principles 3, 4, 5, and 12 guide designers to reduce the hazards of chemicals. Principle 10, however, guides the design of products that degrade after their commercial function in order to reduce risk or the probability of harm occurring. Risk is a function of both a molecule’s inherent hazard AND exposure – contact between a chemical and a species. Degradation can eliminate significant exposure, thereby minimizing risk regardless of the hazard of the chemical involved.

Exposure to persistent chemicals can be significant as a result of global dispersion enabled by properties such as volatility or sorption to particles and partitioning into organisms based on properties such as fat solubility. Regulators have established criteria (half-lives in water, soil, air) that define persistence within frameworks used to identify chemicals as PBT (Persistent, Bioaccumulative, Toxic).

A green chemistry objective is to design out molecular features responsible for hazardous characteristics and risk. Trade-offs, or alternative approaches, must be evaluated when the molecular features to be designed in for commercial function overlap with those to be designed out to reduce hazard and risk.

Biodegradation, hydrolysis, and photolysis can be designed into chemical products. In the same way that mechanistic toxicology knowledge is essential to identify and design out molecular features that are the basis for hazards, an understanding of the mechanisms of degradation and persistence are required to design in chemical features that promote degradation and eliminate features that promote persistence. Many persistent compounds are extensively chlorinated. Halogens such as chlorine are electron withdrawing, thereby inhibiting the enzyme systems of microbes because aerobic microbial degradation favors electron rich structures.

Prediction methods that can guide the design of molecular architecture expected to degrade include rules of thumb linking structural features to degradability or persistence, databases of existing knowledge, models that evaluate biodegradability or PBT attributes, and experimental testing. All of these tools can be adapted to individual chemical sectors and specific objectives.

Understanding the anticipated release and transport pathways for a chemical informs the selection of an effective design strategy. Degradation must occur within the relevant environmental compartment(s) and at a meaningful rate. Domestic wastewater typically passes through a vigorous bioreactor within wastewater treatment plants (WWTP). The consumer product industry has designed molecules for removal within these bioreactors. In the early 1960’s, industry transitioned from non-biodegradable branched surfactants, which caused extensive foaming and other health problems in surface waters receiving WWTP effluent, to biodegradable linear alkyl benzene sulfonate based detergents – an approach to innovative design that continues today.

Tools currently exist to enable the implementation of principle 10, but advances in mechanistic understandings linking molecular features to hazards and degradability will enable more comprehensive application of green chemistry to control hazard and risk. Effective communication across disciplines is also essential to provide designers with knowledge they can factor into the complexities of product design. Because of regulatory and business constraints, many product design decisions must be made relatively early. Predictive decision-making tools must provide confidence about hazard and risk in a way that is aligned with the timing and magnitude of development decisions, and most importantly, while there is still flexibility to alter a molecular design or product formulation.

Back to Green Chemistry Principle #9

Next to Green Chemistry Principle #11

Back to 12 Principles of Green Chemistry