FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: December 19, 2018

Rabbit gene helps houseplant detoxify indoor air

“Greatly Enhanced Removal of Volatile Organic Carcinogens by a Genetically Modified Houseplant, Pothos Ivy (Epipremnum aureum) Expressing the Mammalian Cytochrome P450 2e1 Gene”
Environmental Science & Technology

Our homes are supposed to be safe havens from the outside world. However, studies have shown that household air is more polluted than either office or school air, exposing children and home workers to higher levels of carcinogens than the general population. Now, researchers have made a genetically modified houseplant that can efficiently remove at least two toxins from the air. They report their results in ACS’ journal Environmental Science & Technology.

Indoor air often contains volatile organic compounds such as formaldehyde, benzene and chloroform. These toxins come from many sources, including cooking, showering, furniture and smoking. House plants can remove some toxins from the air, but they aren’t very efficient: A homeowner would need more than 20 plants to remove formaldehyde from a typical room, researchers estimate. Stuart Strand and colleagues wondered if introducing a mammalian gene called CYP2E1 to a common houseplant, pothos ivy (Epipremnum aureum), would boost the plant’s detoxifying potential. This gene encodes cytochrome P450 2E1, an enzyme that breaks down a wide range of volatile organic compounds found in the home.

The team introduced rabbit CYP2E1 to the ivy’s genome and injected benzene or chloroform gas into closed vials that contained growing plants. After 3 days, the concentrations of these compounds in the vials had dropped dramatically, and by 8 days, chloroform was barely detectable. In contrast, the compounds’ concentrations in vials containing unmodified ivy or no plants did not change. The researchers estimate that a hypothetical biofilter made of the genetically modified plants would deliver clean air at rates comparable to commercial home particulate filters.

The authors acknowledge funding from the National Science Foundation, Amazon Catalyst at the University of Washington and the National Institute of Environmental Health Sciences.

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

 

A genetically modified houseplant can efficiently remove toxins from the air.
kram9/Shutterstock.com