We will start momentarily at 2pm ET

Slides available now! Presentation available ONE WEEK after the webinar:
http://acswebinars.org/art-detective

Have Questions?

Use the Questions Box!

Or tweet using #acswebinars

Slides available now! Presentation available ONE WEEK after the webinar:
http://acswebinars.org/art-detective

Contact ACS Webinars® at acswebinars@acs.org
If you enjoy ACS Webinars ® every Thursday…
please support the program!

Find the many benefits of ACS membership!

Join us for the ACS Fall National Meeting!

www.acs.org/indy2013
Fan of the Week
How has ACS Webinars® benefited you?

“Other than providing knowledge and insight into a multitude of topics, the webinars have given me material to use in the classroom to engage my students. I look forward to using the Webinets this fall.”

Carol D. Shreiner, Ph.D.
Professor of Chemistry
Hiram College

Be a featured fan on an upcoming webinar! Write to us @acswebinars@acs.org

ACS Webinars®
Enjoy our most popular ACS Webinars®!

www.acswebinars.org/most-popular

Contact ACS Webinars® at acswebinars@acs.org
Q: “Hungry for a brain snack?”

A: ACS Webinets™ on YouTube

“Feeling short on time? ACS Webinets™ are 2 minute segments that bring you valuable snippets from some of our most popular full length ACS Webinars®”

See all of our ACS Webinets™ on YouTube at http://bit.ly/acswebinets

Upcoming ACS Webinars®

www.acswebinars.org

Thursday, August 8, 2013

Writing Winning Proposals - Heilmeier Catechism

Celia Elliott, University of Illinois at Urbana-Champaign
Dr. Dave Harwell, Assistant Director, ACS Careers

Thursday, August 15, 2013

Intellectual Property Today and the America Invents Act

Marc Morley, Patent Attorney at Knobbe Martens Olson & Bear LLP
Stephen Flaim, Ph.D., F.A.C.C., Deputy Director, von Liebig Center Jacobs School of Engineering, UCSD

Contact ACS Webinars © at acswebinars@acs.org
Alternative Careers: Chemistry and the Art Detective

Suzanne Quillen Lomax
Organic Chemist
National Gallery of Art

Slides available now! Presentation available ONE WEEK after the webinar:
http://acswebinars.org/art-detective

Contact ACS Webinars® at acswebinars@acs.org
Art Conservation at the National Gallery of Art

Conservation scientists work with curators and conservators to answer questions about works of art.

- Painting Conservation
- Paper Conservation
- Photograph Conservation
- Objects Conservation
- Loans and Exhibitions Conservation
- Textile Conservation
- Scientific Research Department

Museums and Institutions in the US with Conservation Science Departments

- National Gallery of Art, Washington DC
- Smithsonian Institution, Washington DC
- National Archives and Records Administration, College Park, MD
- Library of Congress, Washington DC
- Walters Art Museum, Baltimore MD
- Philadelphia Museum of Art
- Art Institute of Chicago (also NU-ACCESS)
- Metropolitan Museum of Art, New York
- Museum of Modern Art, New York
- Getty Conservation Institute, Los Angeles
- Los Angeles County Museum of Art
- Indianapolis Museum of Art
- Museum of Fine Arts, Houston
- Art Conservation Research Center, Yale University
- The Strauss Center, Harvard University
Careers in Conservation Science

- No training program exists in the US for conservation scientists. There are three training programs in the US for conservators.
 - Buffalo State College
 - New York University (Conservation Center of the Institute of Fine Arts)
 - Winterthur/University of Delaware

- General educational characteristics of conservation scientists:
 - A graduate degree in chemistry, physics or materials science
 - Often courses in studio art and art history
 - Work in a museum or with a private conservator

Scientific Research Department
Instrumentation

- Infrared microspectroscopy
- Gas and liquid chromatography/mass spectrometry
- Pyrolysis gas chromatography/mass spectrometry
- X-ray fluorescence spectrometry
- X-ray powder diffraction
- Optical Microscopy/Fluorescence Microscopy
- Scanning Electron Microscopy/Energy Dispersive Spectrometry
- FORS (fiber optic reflectance spectroscopy)
- Weatherometer (accelerated aging)
- Color Measuring equipment
- UV/Vis spectroscopy
- Size exclusion chromatography

Cross Section of a Painting
Poll Question 1

Which of the following is **not** a paint binder commonly found in Western Art?

1. Linseed oil
2. Olive oil
3. Egg yolk
4. Gum Arabic
Analysis Problems in Art Conservation

- Often requires destructive analysis
- Small samples
- Inhomogeneous samples
- Contamination of samples from previous restoration treatments
- Few original components left in samples (organic analysis, in the case of oils and natural resins)

Analysis of Drying Oils

- Linseed, walnut and poppy oil are common
- Composed of triglycerides of:
 - Palmitic acid
 - Stearic acid
 - Linoleic acid
 - Linolenic acid
 - Oleic acid
- P/S ratio tells which oil
- Azelaic acid appears over time
- FAME analysis
Pereira, *Transfluent Lines, 1946*

Question:

What is the medium of this piece and why do certain colors exhibit flaking?

I Rice Pereira

Transfluent Lines

1973.71.2

Gift of Mr. and Mrs. Burton Tremaine

Pereira, *Transfluent Lines, chromatograms*
Pereira, *Transfluent Lines*, chromatogram/mass spectra

Analysis of Proteinaceous Binders

- Used to distinguish egg, glue or milk protein
- These historically have been commonly used binders
 - Via amino acid analysis
 - Hydrolyze with 6N HCl, 24 hours under vacuum
 - Silylate (derivatization with MTBSTFA/TBDMCS)
 - Analysis by GC/MS to match the profile with standards of the binders
 - Fatty acids from oil containing sources are silylated along with the amino acids
Ferrarese, 15th C, *Madonna and Child with Angels*

Question:

What is the medium of this painting?
Zinc white found in highlights, is it a modern painting or 15thC?

1939.1.115
Madonna and Child with Angels
Samuel H. Kress Collection

Madonna and Child, infrared spectrum white paint

N-H stretch

Amide I and II
Poll Question 2

• Which of these works of art appeals to you more?
Rothko, works on paper

Question:
What is the medium of these paintings on paper? The curator wants a vocabulary for the catalog raisonné of works by Rothko.

Mark Rothko
Untitled
1966.43.295
Gift of The Mark Rothko Foundation, Inc

Rothko, works on paper
Rothko, *Untitled*, pyrograms of blue and white paint

Magna, a solution paint consisting of poly(n-butyl methacrylate)

Mineral Pigment Analysis

- X-ray fluorescence
- Fiber optic reflectance spectroscopy (FORS)
- Polarized light microscopy
- X-ray diffraction
- Scanning electron microscopy/energy dispersive spectroscopy

Magnified image of green paint from painting by Georgia O’Keeffe
Poll Question 3

• Which of the following pigments does not discolor or fade under normal conditions?

1. Vermilion (HgS)
2. Hematite (Fe$_2$O$_3$)
3. Smalt (Co containing potash glass)
4. Eosin (C$_{20}$H$_6$Br$_4$Na$_2$O$_5$– xanthene dye)

Characterization of Artist’s Materials using XRF

[Spectrum image]

Spectrum of the brown dress

Question: is the original color of the dress brown?

Bianca Maria Storza, Ambrogio di Predis, c.1493
Question: Why are the jewels grey or black?

- The tin is attributable to tin foil.
- The spectrum of the black jewel contains copper. This pigment is possibly a copper green or blue which has turned black over time.
- The grey jewels may have been colored with a fugitive organic pigment, which has gone colorless.

XRF Combined with Other Analysis Methods

- Conclusion: Polarized light microscopy image of a cross section shows two layers of tin. The green paint layer near the top is the likely source of the copper, probably due to a discolored copper resinate
Degas, *Dancer in the Role of Harlequin*

1999.80.25
Collection of Mr. and Mrs. Paul Mellon

Degas Questions

Questions:
What are the sculptures made of?
Can we distinguish repair from original?
Can we come up with a chronology based on materials?
Why do some of the sculptures have shiny patches on the surface?

The Tub
1985.64.48
Collection of Mr. and Mrs. Paul Mellon
Analysis of Degas samples

- Looked at over 300 samples from 64 sculptures.
 - Wax examined by gas chromatography, polarized light microscopy and SEM/EDS
 - Sculptures examined by XRF
 - Additional samples of shiny exudates analyzed

1999.80.11
Horse Galloping on the right foot
Collection of Mr. and Mrs. Paul Mellon

Fourth Position Front, on the Left Leg

1985.64.49
Collection of Mr. and Mrs. Paul Mellon

Question:
What is this sculpture made of?
We don’t see any wax.
Conclusions:

Most of the sculptures are wax (beeswax)

Some are all clay

Some are clay core with wax cladding

Repairs are usually done in paraffin wax

The modeling clay contains fat which migrates to the surface of the sculpture.

Since sculptures are not dated, we cannot attribute materials to certain periods in Degas’ career.
With thanks to:

Barbara Berrie
Matthew Clarke
John Delaney
Lisha Glinsman
Melanie Gifford
Christopher Maines
Kathryn Morales
Michael Palmer
Rebecca Ploeger

Kristin DeGetaldi

Additional Resources

Artists' Pigments, Volumes 1-4, (Volume 1, Robert Feller editor; Volume 2, Ashok Roy editor; Volume 3, Elisabeth West-Fitzhugh editor; Volume 4, Barbara Berrie, editor) reissued from Archetype, 2012

National Gallery of Art’s conservation webpage: http://www.nga.gov/content/ngaweb/conservation.html

The National Gallery, London also has issues of their Technical Bulletin online: http://www.nationalgallery.org.uk/technical-bulletin/
Alternative Careers: Chemistry and the Art Detective

Slides available now! Presentation available ONE WEEK after the webinar: http://acswebinars.org/art-detective

Contact ACS Webinars® at acswebinars@acs.org

Fan of the Week

How has ACS Webinars® benefited you?

“Other than providing knowledge and insight into a multitude of topics, the webinars have given me material to use in the classroom to engage my students. I look forward to using the Webinets this fall.”

Carol D. Shreiner, Ph.D.
Professor of Chemistry
Hiram College

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Upcoming ACS Webinars®
www.acswebinars.org

Thursday, August 8, 2013

Writing Winning Proposals - Heilmeier Catechism

Celia Elliott, University of Illinois at Urbana-Champaign
Dr. Dave Harwell, Assistant Director, ACS Careers

Thursday, August 15, 2013

Intellectual Property Today and the America Invents Act

Marc Morley, Patent Attorney at Knobbe Martens Olson & Bear LLP
Stephen Flaim, Ph.D., F.A.C.C., Deputy Director, von Liebig Center Jacobs School of Engineering, UCSD

Contact ACS Webinars ® at acswebinars@acs.org

Stay Connected…

Facebook
www.facebook.com/acswebinars

Twitter
www.twitter.com/acswebinars

LinkedIn (search group for acswebinars)

Email ACS Webinars ® at acswebinars@acs.org
Alternative Careers: Chemistry and the Art Detective

Slides available now! Presentation available ONE WEEK after the webinar:
http://acswebinars.org/art-detective

Contact ACS Webinars® at acswebinars@acs.org

If you enjoyed this ACS Webinar today… please support the program!

www.join.acs.org

Find the many benefits of ACS membership!
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org

Upcoming ACS Webinars®
www.acswebinars.org

Thursday, August 8, 2013

Writing Winning Proposals - Heilmeier Catechism

Celia Elliott, University of Illinois at Urbana-Champaign
Dr. Dave Harwell, Assistant Director, ACS Careers

Thursday, August 15, 2013

Intellectual Property Today and the America Invents Act

Marc Morley, Patent Attorney at Knobbe Martens Olson & Bear LLP
Stephen Flaim, Ph.D., F.A.C.C., Deputy Director, von Liebig Center Jacobs School of Engineering, UCSD

Contact ACS Webinars® at acswebinars@acs.org