We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week.

www.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org

Have Questions?

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Type them into questions box!

Contact ACS Webinars ® at acswebinars@acs.org
Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
Let's get Social...post, tweet, and link to ACS Webinars during today's broadcast!

facebook.com/acswebinars

@acswebinars

Search for "acswebinars" and connect!

How has ACS Webinars® benefited you?

“Many many thanks! Very clear description of clearance and volume of distribution. I learned a lot about PPB but will have to study this on my own.”

In reference to DDDS10 “Pharmacokinetic Considerations in Drug Design and Development”

Fan of the Week

Paul R. Carlier
Professor, Department of Chemistry & Center for Drug Discovery, Virginia Tech

Be a featured fan on an upcoming webinar! Write to us @ acswinars@acs.org
Learn from the best and brightest minds in chemistry! Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members one week after the Live broadcast date.

Broadcasts of ACS Webinars® continue to be available to the general public LIVE every Thursday at 2pm ET!

www.acs.org/acswebinars
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, December 3, 2015
“Chemistry & the Economy: Global Outlook 2016”

Paul Hodges, Chairman, International eChem (IeC)
David Harwell, Asst. Director of Industry Member Programs, ACS

Thursday, December 10, 2015
“Outsmarting the Shortage: The Emergence of Base Metal Catalysis in Pharma”

J. Chris McWilliams, Director of Process Chemistry, Pfizer
David Constable, Director of the Green Chemistry Institute, ACS
Joseph Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswinbinars@acs.org

NEW eCourse Available NOW!
www.aaps.org/ST101
Join the ACS Division of Medicinal Chemistry Today!

For $25 ($10 for students), You Will Receive:

- A free copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org
Join us January 28, 2016 for our continued Drug Discovery Series!

“The Importance of Drug Target Kinetics in Drug Design”
Robert Copeland, President of Research & Chief Scientific Officer, Epizyme, Inc.

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html

“2015 Drug Design and Delivery Symposium:
Prodrugs in Drug Discovery”

John Higgins, Senior Principal Scientist, Merck
Nicholas Meanwell, Executive Director, Bristol-Myers-Squibb

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

The 2015 Drug Design and Delivery Symposium is co-produced by the ACS Medicinal Chemistry Division and the AAPS
Contents

1. **Prodrugs**: Definition and impact in Pharma

2. **Prodrug challenges to be met**:
 - Formulation, *in vivo* stability & bioconversion
 - The regulatory pathway

3. **Example prodrug handles and subsequent functional prodrugs**

4. **A prodrug program Research Operating Plan (ROP)**
 - Prioritizing activities on identifying and characterizing prodrug leads

5. **Case Study: Permeability Enhancement Via a Prodrug Strategy**
 - An ambitious example of a prodrug strategy to increase colonic absorption to enable a CR formulation for QD dosing
What is a prodrug?

A bioreversible derivative of an active drug compound:
- Undergoes \textit{in vivo} enzymatic or chemical transformation to release active parent drug compound

Today: Context of absorption, \textit{not} targeting

Audience Survey Question

Which can NOT be influenced by a Prodrug?
- Cell permeability
- Administration route
- Half life
- Intellectual property
- None of the above
What Benefits Can a Prodrug Provide?

• Improved properties related to ADME
 – ↑ aqueous solubility
 – ↑ permeability
 – ↑ chemical stability
 – ↓ pre-systemic metabolism

• New/ improved delivery options
 – Oral ⇒ Topical

• Life cycle management

• Targeted delivery (another day’s topic)

• Additional intellectual property (IP)

When to Engage a Prodrug Strategy?

The Discovery Debate on a candidate with sub-optimal physchem properties:

• Fix it now via a prodrug? ⇒ More complex synthesis, tox, regulatory pathway
• Fix it later via an enabled formulation? ⇒ Longer/more costly & complex dosage form development

Real life observation:

• Insoluble, highly crystalline candidate was advanced as a low drug-load amo dispersion ⇒ led to nightmarish, dose limited, high-cost formulation
• Later on, a soluble prodrug was identified…probably too late!

The prodrug conversation must be had EARLY by the Lead Ops team!
Prodrugs:
Recently Overheard in Discovery Hallways

Comment: Let's fix our bioavailability problems with a prodrug!

Responses:

• “No; I love my parent compound and you formulators can fix it through drug delivery.”
• “No, prodrugs are the last resort for poor medicinal chemistry efforts.”
• “Prodrugs are for losers.”

Audience Survey Question

What percentage of the Top 100 Blockbuster Drugs are actually Prodrugs?

• Less than Two percent
• About Five percent
• About Fifteen percent
• About Twenty percent
Prodrugs: More Common Than You Think!

The Pharma Industry:

- 15% of the 100 blockbuster drugs are prodrugs!

Some Blockbuster Prodrugs:

- Omeprazole, Prilosec®, proton pump inhibitor: permeation
- Acyclovir, Zovirax®, anti-viral: liver targeting
- Enalapril maleate, Vasotec®, ACE inhibitor: permeation
- Simvastatin, Zocor®, HMG-CoA reductase inhibitors: liver targeting

Clas et al., 2013; Landis, 2013.

Aprepitant (Emend®) Example

A poorly soluble compound: Two Enabling methods for two administrations routes

Oral Dosage Form: Nanoparticles

IV Solution: Phosphate Prodrug
Prodrugs Do Have Potential Challenges

Poor formulation stability
- Converts to parent

Poor stability in stomach
- Converts to parent

Prodrug too stable in vivo
- No bioconversion to parent

All this must be interrogated

Potential Assays to Probe Bioconversion

1. **In vitro stability & solubility**
 - Biological Media: Simulated GI fluids (SGF, FaSSIF) with and without digestive enzymes
 - Buffers (formulation & serum conversion prediction)
2. **In vitro permeability assays** (Caco-2, LLC-PK1…)
3. **In vitro** stability in hepatocytes and plasma
4. **In vivo** PK and bioconversion
 - Look for circulating prodrug and parent in plasma
 - Rat and/or dog most common preclinical species
 - Beware of species differences (i.e. high metabolism in rat; Esterase activity is species dependent)
What are the toxicology and regulatory considerations for Prodrugs?

- Circulating prodrug levels
- Bioconversion
- Regulatory input
- All of the above
- None of the above

Prodrugs’ Toxicology & Regulatory Considerations

Prodrugs still require thorough safety evaluation

Circulating prodrug levels

Bioconversion

- Species differences
- By-product characterization (i.e. formaldehyde)

Regulatory input

Prodrug Development to FIH is typically same as any new chemical entity even when parent molecule is already approved

TOX STUDIES MUST BE REPEATED: CASE FOR CONSIDERING EARLY IN THE DISCOVERY PHASE!
Common “Prodruggable” Handles and Subsequent Functional Prodrugs

<table>
<thead>
<tr>
<th>Parent Handle</th>
<th>Prodrug Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Esters (incl. amino acids (AAs)); Phosphates/Phosphonates*</td>
</tr>
<tr>
<td>Amines</td>
<td>Amides, Phosphates/Phosphonates Sulfenamides*</td>
</tr>
<tr>
<td>Carboxylic Acids</td>
<td>Esters (incl. AAs)</td>
</tr>
<tr>
<td>Phenols</td>
<td>Esters (incl. AAs); Phosphates/Phosphonates</td>
</tr>
<tr>
<td>Thiols</td>
<td>Thioethers/esters</td>
</tr>
</tbody>
</table>

- **Solubility**: ionization/polarity, lipophilicity (log D)
- **Permeability**: The opposite of above

* Phosphate

![Chemical structures](image)

*Sulfenamide

*Oxymethylphosphate

Stella, *Prodrugs: Challenges & Rewards, 2007*

Example ROP: A Prodrug Strategy for Enhancing Permeability

- **Promoieties** selected to increase lipophilicity
- **in vitro** screening for prodrug viability:
 - Solubility, log P
 - Chem Stability (GI, formulation)
 - Cell permeability
- **In vivo** PK and bioconversion studies in preclinical species

In silico permeability modeling

- Solubility/Stability/log P
- **Cell Permeability**
- **In vivo PK evaluation**
- **Data assimilation**
Case Study:
Prodrug to Enable a CR Formulation

- **Compound A**: Short half-life (1.5h) required BID dosing ⇒ QD preferred
 - Low permeability although good intestinal absorption observed
- **Controlled release formulation for once daily (QD) dosing?**
 - NO: Poor permeability led to poor colonic absorption, which makes controlled release (CR) formulations impossible
- **Compound A contained an ionizable phenol** that contributed to poor permeability (pKa 6.7)
 - Also a prodrug handle...

Prodrug Strategy to Enable Colonic Absorption and a CR Formulation

Can a prodrug that masks phenol ionization increase permeability and colonic absorption to enable a CR QD formulation?

A modified release dosage form to bypass the intestine (good absorption there) also would be required…(colonic delivery…another day’s topic)

Ref. Sophie-Dorothee Clas, Becky Nofsinger, Abbas Walji
Case Study: Colonic Prodrug ROP

- Modelled >80 prodrug structures for calculated Papp (cLog P)\(^1\)
- Selected 20 for synthesis

Candidate Selection Criteria
1. \(P_{app} \geq 10\times \text{Parent?}\)
2. Bioconversion \(\geq 90\% \text{ in 1h?}\)
3. Formulation stability \(\geq 3\text{h?}\)
4. >30% colonic absorption?

\(^{1}\text{Accelrys Cerius2 Software}\)
\(^{2}\text{Simulated gastric and fasted intestinal fluids}\)
\(^{3}\text{Cell line: LLC-PK1}\)

Dog Colonic Absorption Study:
Retrograde Catheter Dosing in Beagle dogs

- Experiment is based on % relative absorption: Colonic AUC/Oral AUC
- Predictive of human colonic absorption

Administer catheter here

Case Study: Lead Carbonate-ester Prodrug Structures

Ph-OH = Phenol

Ph-OH →

[Chemical structures A to F]

Walji, ChemMedChem 2015, 10, 245 – 252

Carbonate Ester Physchem Properties

<table>
<thead>
<tr>
<th>Compound</th>
<th>cLogP¹</th>
<th>Solubility in SGF² (mg/mL) 1hr</th>
<th>Solubility FaSSIF² (mg/mL) 1hr</th>
<th>Stability in SGF² (1hr) %Claim</th>
<th>Stability in FaSSIF (5hr) %Claim</th>
<th>Hepatocyte parent conversion <1hr?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>-0.7</td>
<td>0.01</td>
<td>0.50</td>
<td>98.36%</td>
<td>99.40%</td>
<td>n/a</td>
</tr>
<tr>
<td>Prodrug A</td>
<td>0.9</td>
<td>0.37</td>
<td>0.33</td>
<td>93.80%</td>
<td>90.97%</td>
<td>Yes</td>
</tr>
<tr>
<td>Prodrug B</td>
<td>1.3</td>
<td>0.02</td>
<td>0.03</td>
<td>100.02%</td>
<td>99.92%</td>
<td>Yes</td>
</tr>
<tr>
<td>Prodrug C</td>
<td>1.5</td>
<td>0.04</td>
<td>0.25</td>
<td>99.32%</td>
<td>98.27%</td>
<td>Yes</td>
</tr>
<tr>
<td>Prodrug D</td>
<td>1.3</td>
<td>0.06</td>
<td>0.06</td>
<td>100.14%</td>
<td>101.61%</td>
<td>Yes</td>
</tr>
<tr>
<td>Prodrug E</td>
<td>0.4</td>
<td>6.6</td>
<td>0.60</td>
<td>95.50%</td>
<td>96.27%</td>
<td>Yes</td>
</tr>
<tr>
<td>Prodrug F</td>
<td>2.2</td>
<td>0.02</td>
<td>0.04</td>
<td>91.32%</td>
<td>98.45%</td>
<td>Yes</td>
</tr>
</tbody>
</table>

¹ Apparent octanol/water partition coefficient (cLogP) calculated using Accelrys Cerius2 Software
Carboante Ester cLogP and Permeability

<table>
<thead>
<tr>
<th>Compound</th>
<th>cLogP</th>
<th>LLC-PK1 Papp (*10^-6 cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>-0.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Prodrug A</td>
<td>0.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Prodrug B</td>
<td>1.3</td>
<td>8.9</td>
</tr>
<tr>
<td>Prodrug C</td>
<td>1.5</td>
<td>11.9</td>
</tr>
<tr>
<td>Prodrug D</td>
<td>1.3</td>
<td>11.9</td>
</tr>
<tr>
<td>Prodrug E</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Prodrug F</td>
<td>2.2</td>
<td>15.4</td>
</tr>
</tbody>
</table>

cLog P does NOT correlate well with cell permeability…?

Colonic Dog Study Results

<table>
<thead>
<tr>
<th>Compound Dosed (solution vehicle)</th>
<th>Dose (mpk)</th>
<th>Dosing Route</th>
<th>nAUC0-24hr (µM*h/ mpk)</th>
<th>Dog Colonic Absorption (vs. oral, n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent (3% Tween)</td>
<td>4</td>
<td>Oral</td>
<td>2.92 ± 0.48</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.30 ± 0.26</td>
<td>9%</td>
</tr>
<tr>
<td>Prodrug A (3% Tween)</td>
<td>4</td>
<td>Oral</td>
<td>1.91 ± 0.12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.76 ± 0.21</td>
<td>40%</td>
</tr>
<tr>
<td>Prodrug B (10% Tween)</td>
<td>1</td>
<td>Oral</td>
<td>0.94 ± 0.05</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.40 ± 0.13</td>
<td>43%</td>
</tr>
<tr>
<td>Prodrug C (10% Tween)</td>
<td>1</td>
<td>Oral</td>
<td>0.77 ± 0.13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.24 ± 0.04</td>
<td>31%</td>
</tr>
<tr>
<td>Prodrug D (30% Captisol®)</td>
<td>4</td>
<td>Oral</td>
<td>2.4 ± 0.14</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.72 ± 0.07</td>
<td>30%</td>
</tr>
<tr>
<td>Prodrug E (10% Tween)</td>
<td>0.7</td>
<td>Oral</td>
<td>4.35 ± 1.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.24 ± 0.15</td>
<td>5%</td>
</tr>
<tr>
<td>Prodrug F (10% Tween)</td>
<td>1</td>
<td>Oral</td>
<td>0.75 ± 0.02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonic</td>
<td>0.07 ± 0.13</td>
<td>10%</td>
</tr>
</tbody>
</table>
Conclusions

• Prodrugs are prevalent in the industry and an effective means of improving physchem properties
• Need to consider early in Discovery phase before it's too late
• Need to be aware of specific tox and regulatory challenges
• Case study: Demonstrated that a lipophilic prodrug can increase colonic absorption
 • Of note: The cLog P and LLC-PK1 permeability did not correlate well with subsequent colonic absorption
 • Interplay between several physchem attributes and oral bioavailability
 • Next comes a formulation challenge to deliver prodrug to the colon….another day’s topic

References

• Sundeej Dhareshwar and Val Stella, J. Pharm. Sci., 2008, 97, 4184-4192
• Pham-The, H.; Garrigues, T.; Bermejo, M.; Gonzalez-Alvarez, I.; Monteagudo, M.C.; Cabrera-Perez, M.A. 2013 “Provisional Classification and in Silico Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number” Mol. Pharmaceutics. 10, 2445-2461.

General Prodrug References

Additional References

Intestinal pH
- Davies, B; Morris, T. 1993 "Physiological Parameters in Laboratory Animals and Humans" Pharm. Res. 10, 1093-1095.

Colonic Delivery

Dog colonic model

Acknowledgements

Sophie-Dorothee Clas
Becky Nofsinger
Abbas Walji
Paul Coleman
Rosa Sanchez
Kimberly Manser
Becky Nissley
Jaume Balsells
Amrith Bennet
Qun Dang

Jay Grobler
Gene Chessen
Chris John
Chris Culberson
John Sanders
Henry Wu
Ron Smith
Junying Wang
D. Jonathan Bennett
Michael Hafey
The 2015 Drug Design and Delivery Symposium is co-produced by the ACS Medicinal Chemistry Division and the AAPS.

Join us January 28, 2016 for our continued Drug Discovery Series!

“The Importance of Drug Target Kinetics in Drug Design”
Robert Copeland, President of Research & Chief Scientific Officer, Epizyme, Inc.

Slides available now! Recordings will be available to ACS members after one week

www.acs.org/acswebinars

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, December 3, 2015
“Chemistry & the Economy: Global Outlook 2016”
Paul Hodges, Chairman, International eChem (leC)
David Harwell, Asst. Director of Industry Member Programs, ACS

Thursday, December 10, 2015
“Outsmarting the Shortage: The Emergence of Base Metal Catalysis in Pharma”
J. Chris McWilliams, Director of Process Chemistry, Pfizer
David Constable, Director of the Green Chemistry Institute, ACS
Joseph Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org

“2015 Drug Design and Delivery Symposium:
Prodrugs in Drug Discovery”

John Higgins, Senior Principal Scientist, Merck
Nicholas Meanwell, Executive Director, Bristol-Myers-Squibb

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

The 2015 Drug Design and Delivery Symposium is co-produced by the ACS Medicinal Chemistry Division and the AAPS
Join the ACS Division of Medicinal Chemistry Today!

For $25 ($10 for students), You Will Receive:

- A free copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

AAPS eLEARNING

AAPS Stability Testing 101

- Identify and discuss the current regulations globally required for a stability program to support expiration dating and use periods of drug products/API
- Describe requirements for stability indicating methods
- Monitor impurities in API and drug products
- Identify/set stability specifications and change controls
- Review, evaluate and discuss stability data
- Create a stability report and CMC documents

NEW eCourse Available NOW!

www.aaps.org/ST101
How has ACS Webinars® benefited you?

“Many many thanks! Very clear description of clearance and volume of distribution. I learned a lot about PPB but will have to study this on my own.”

In Reference to DDDS10 “Pharmacokinetic Considerations in Drug Design and Development”

Fan of the Week
Paul R. Carlier
Professor, Department of Chemistry &
Center for Drug Discovery, Virginia Tech

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

facebook.com/acswebinars
@acswebinars
youtube.com/acswebinars

ACS Webinars®
www.acs.org/acswebinars
Search for “acswebinars” and connect!

Stay connected...
Email us!
acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org
Join us January 28, 2016 for our continued Drug Discovery Series!

“The Importance of Drug Target Kinetics in Drug Design”
Robert Copeland, President of Research & Chief Scientific Officer, Epizyme, Inc.

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html