Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

Join a global community of over 150,000 chemistry professionals

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly digital and print news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Join the Division Today!

For $25 ($10 for students), **You Will Receive:**

- A free digital copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org
Journal Scope
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling.

Special Issues

Accepting Submissions!

Editors
Kenneth M. Merz Jr., Michigan State University, Editor-in-Chief
Zoe Cournia, Academy of Athens
Matthias Rarey, University of Hamburg
Alexander Troshka, UNC Chapel Hill
Habibah A. Wahab, Universiti Sains Malaysia
Renxiao Wang, Chinese Academy of Sciences

https://pubs.acs.org/journal/jcisd8

Chemical Entity and Biomolecule Scientific Program Tracks:

YouTube video:
https://www.youtube.com/watch?v=1DOxiL8gOuw

Chemical Entity and Biomolecule Scientific Program Tracks:

• Preclinical (including Discovery)
• Bioanalytical
• Clinical Pharmacology
• Manufacturing & Bioprocessing
• Formulation & Quality

Website: www.aapspharmsci360.org
Celebrating 4 years & Over 40 Drug Discovery Webinars!

How has ACS Webinars benefited you?

“I just recently started working as a postpartum nurse. I love that this ACS Webinar on human milk oligosaccharides will help me bring a new aspect into my discussions and encouragement of breastfeeding for new mothers.”

Michelle Nadeau
Registered Nurse

Be a featured fan on an upcoming webinar! Write to us @ acswinbinars@acs.org
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars continue to be available to the general public every Thursday from 2-3pm ET!

www.acs.org/acswebinars

An individual development planning tool for you!

ChemIDP.org
Upcoming ACS Webinars
www.acs.org/acswebinars

Thursday, November 1, 2018
An Evolutionary Mystery: Mirror Asymmetry in Life and in Space
Co-produced with the ACS Subdivision of Astrochemistry

Experts
Brett McGuire
National Radio Astronomy Observatory
Ryan Fortinberry
University of Mississippi

Thursday, November 8, 2018
Social Media 102: Twitter, Facebook, LinkedIn, and Blogs
Co-produced with the ACS External Affairs & Communications

Experts
Ben Pershing
National Journal
Anthony Pitagno
American Chemical Society

Contact ACS Webinars ® at acswebinars@acs.org
How to Predict Human CNS PK/PD: Preclinical Experiments and Advanced Mathematical Modelling

Elizabeth CM de Lange
Professor in Predictive Pharmacology, LACDR,
Leiden University, The Netherlands
ecmdelange@lacdr.leidenuniv.nl
Given patients having the same diagnosis and same drug prescription:

What is the most important reason for differences in effects among the patients?

A) Not all patients take the drug according to the instructions with regard to when and how to take the drug

B) Not all patients take the drug according to the instructions with regard to the amount: they take too little or too much

C) Not all patients are the same. Rate and extent of body processes differ, so do the drug effects

D) It is still unknown what the reason is for interindividual differences of drug effects between patients
Given patients having the same diagnosis and same drug prescription:
What is the most important reason for differences in effects among the patients?

A) Not all patients take the drug according to the instructions with regard to when and how to take the drug

B) Not all patients take the drug according to the instructions with regard to the amount: they take too little or too much

C) Not all patients are the same. Rate and extent of body processes differ, so do the drug effects

D) It is still unknown what the reason is for interindividual differences of drug effects between patients

Outline

Interrelationships of body processes
Factors in CNS drug effects
Need for knowledge on unbound CNS conc-time profiles
Microdialysis as key technique
Mastermind Research Approach
Drug vs. systems properties
Prediction of the PKPD of a CNS drug in human
Prediction of human CNS PK for a single drug
Prediction of human CNS PK for multiple drugs
CNS PK prediction for any small drug without the need for in vivo data?
Interconnections and Relationships

Driver + Car = Car Performance

Interconnections and Relationships

Drug + CNS Drug Effect = CNS Drug Effect
Factors in CNS Drug Effects

- Dose
- Plasma PK
- Target tissue (site) distribution
- Target binding kinetics
- Cellular response & homeostatic feedback
- Body response & body homeostatic feedback

The Blood-Brain Barrier (BBB)
BBB transport of drugs depend on:

A) The drug’s properties

B) BBB transport just generally restricts transport of drugs into the brain

C) The BBB characteristics

D) Combination of drug properties and BBB characteristics

E) None of the above
Factors in CNS Drug Effects

Blood-Brain Barrier - Modes of Transport

Factors in CNS Drug Effects

Blood-Brain Barrier - Simple Diffusion
Factors in CNS Drug Effects

Blood-Brain Barrier - **Facilitated Diffusion**

Factors in CNS Drug Effects

Blood-Brain Barrier - **Active Transport**
Factors in CNS Drug Effects

Blood-Brain Barrier - **Vesicle Based Transport**

BLOOD (Luminal face)
- Influx transport
- Paracellular diffusion
- Efflux transport
- Facilitated diffusion

BRAIN (Abluminal face)
- Transcellular diffusion
- Receptor Mediated endo/transcytosis
- Adsorptive Mediated endo/transcytosis
- Pinocytosis

Factors in CNS Drug Effects

Blood-Brain Barrier - **Modes of Transport**

BLOOD (Luminal face)

BBB transport of a drug is the result of the combination of drug properties and BBB characteristics.

BRAIN (Abluminal face)
Factors in CNS Drug Effects

Drug concentrations at (off) targets drive the effects of the drug

Factors in CNS Drug Effects

Simulations on plasma_u and brain_u PK

BBB transport – simple cases

Model for simulations

Hammarlund-Udenaes, Paalzow, & De Lange, Pharm Res (1997)

CL_in = CL_out

Varying: 1.0 - 0.01

CL_out = 0.5

Varying CL_in: 0.5 - 0.01
Factors in CNS Drug Effects

Simulations on plasma_u and brain_u PK

BBB transport – simple cases

Model for simulations

\[CL_{in} = CL_{out} \]

Varying: 1.0 - 0.01

\[CL_{in} = CL_{out} \]

Varying: 0.5 - 0.01

We need to have information on (unbound) brain concentrations

Experimental Approach

Microdialysis: a key technique

Microdialysis probe - semipermeable membrane

Reflection of unbound Extracellular tissue concentrations
Prediction of CNS Drug Effects in Human

Differences in:
- rate of PK and PD processes
- sizes, and surfaces of physiological compartments, and flows

Drug vs. CNS Systems Properties

Pharmacokinetics
- Plasma kinetics
- Barrier transport
- Intratissue distribution

Drug Characteristics:
- Molecular weight
- LogP / logD
- pKa / charge at pH 7.4
- PSA (polar surface area)
- H-bond donor / acceptor
- P-gp / MRP (etc) substrate
- Receptor affinity
- etc

Systems Parameters:
- Blood flow
- Barrier permeabilities
- Transporter / enzyme function
- Volumes (intra- / extracellular)
- Blood / tissue pH
- Capillary surface area
- Receptor density
- Signal transduction
- Homeostatic feedback

Pharmacodynamics
- Target occupancy
- Efficacy

Drug Characteristics:
- Drug Dependent

Pharmacokinetics vs. Pharmacodynamics
Drug vs. CNS Systems Properties

Pharmacokinetics
- Plasma kinetics
- Barrier transport
- Intractissue distribution

Drug Characteristics:
- Molecular weight
- LogP / logD
- pKa / charge at pH 7.4
- PSA (polar surface area)
- H-bond donor / acceptor
- P-gp / MRP (etc) substrate
- Receptor affinity
- etc

Pharmacodynamics
- Target occupancy
- Efficacy

Systems Parameters:
- Blood flow
- Barrier permeabilities
- Transporter/enzyme function
- Volumes (intra- extracellular)
- Blood / tissue pH
- Capillary surface area
- Receptor density
- Signal transduction
- Homeostatic feedback

Drug vs. CNS Systems Properties

Pharmacokinetics
- Plasma kinetics
- Barrier transport
- Intractissue distribution

Drug Characteristics:
- Molecular weight
- LogP / logD
- pKa / charge at pH 7.4
- PSA (polar surface area)
- H-bond donor / acceptor
- P-gp / MRP (etc) substrate
- Receptor affinity
- etc

Pharmacodynamics
- Target occupancy
- Efficacy

Systems Parameters:
- Blood flow
- Barrier permeabilities
- Transporter/enzyme function
- Volumes (intra- extracellular)
- Blood / tissue pH
- Capillary surface area
- Receptor density
- Signal transduction
- Homeostatic feedback

We need to explicitly distinguish between drug and systems parameters
De Lange. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS. 2013

Mastermind Research Approach

To crack the code:
need for an integrated systems approach

- Move away from reductionism and face complexity
- Obtain connected data at multiple levels
- Reveal interactions & interdependency

Apply
- Cross-compare designed studies
- Advanced mathematical modeling
to dissect contributions of individual mechanisms in animals to provide information that can be used for extrapolation to the human situation.
1. Prediction of PKPD of a CNS Drug in Human
Prolactine as a translational biomarker of the dopaminergic system

Prediction of Human PKPD of a CNS Drug

Pituitary lactotrophs release prolactin into blood

- Dopamine high → inhibition of release of prolactin
- Dopamine low → induction of release of prolactin (~ use of DA antagonist)

Prediction of Human PKPD of a CNS Drug

Remoxipride plasma and brain PK in the rat

Remoxipride plasma

Remoxipride brainECF

Prolactin plasma

Intravenous administration

- Remoxipride = Dopamine D2 antagonist → Induces Prolactin Release

Stevens et al. Systemic and Direct Nose-to-Brain Transport PK Model for Remoxipride after IV and IN Administration. DMD 2011
Rat plasma PRL concentrations (+/-SEM) after different interval dosing regimens of 3.8 mg/kg REM IV (IV, 30 min)

Prediction of Human PKPD of a CNS Drug

Remoxipride PD in the rat

Insight into rate of synthesis of prolactin in lactotrophs in rats

Rat plasma PRL concentrations (+/-SEM) after different interval dosing regimens of 3.8 mg/kg REM IV (IV, 30 min)

Movin-Osswald and Hammarlund-Udenaes. Prolactin release after remoxipride by an integrated PKPD model with intra- and interindividual aspects. JPET, 1995

Prediction of Human PKPD of a CNS Drug

PK-PD Model Remoxipride in rat

Brain unbound concentration = target site concentration

\[E_{max} \times \frac{C(t)}{EC50 + C(t)} \]

Prolactin plasma concentrations increase synthesis rate of prolactin
Translation on species:
Prediction of PKPD relationship of REM in human
Prediction of Human PKPD of a CNS Drug

POP-PK Model of remoxipride in rat versus human

Observed (o) and predicted (-----) remoxipride plasma concentrations in human

Time (hours)

PRL human – data and translational model prediction

Observed (o) and predicted (-----) prolactine plasma concentrations in human

Time (h)

Stevens et al. MBPKPD model for the prolactin biological system response following acute dopamine inhibition challenge: quantitative extrapolation to humans. JPKPD 2012
Prediction of Human PKPD of a CNS Drug

PRL human – data and translational model prediction

Stevens et al. MBPKPD model for the prolactin biological system response following acute dopamine inhibition challenge: quantitative extrapolation to humans. JPKPD 2012

IN: Brain Distribution enhancement

IV: Same model for rat and human

Rat: unbound brain PK of REM = linked to the effect

Human: In vitro values + allometric scaling give prediction of human plasma PRL concentrations
Use of CSF to predict CNS target site PK?

Which concentration in the human brain is most representative to the brain target site concentration?

What CNS sites in human are accessible to obtain information about brain PK?

De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013

Audience Challenge Question

Answer the question on blue screen in one moment

For prediction of human CNS target site PK for a target that is facing the brainECF:

A) CSF concentrations can be used as it is in quick equilibrium with brainECF

B) We can use in vitro and animal data to build a mathematical model by which we can calculate brainECF concentrations

C) We can make direct use brainECF concentrations as measured in animals

D) CSF concentrations can be used, if taken from the ventricles in the brain, as CSF in the brain ventricles is the closest to the brainECF

E) We can make use of brainECF concentrations measured in humans

- CSF = cerebrospinal fluid
- BrainECF = brain extracellular fluid
For prediction of human CNS target site PK for a target that is facing the brainECF:

A) CSF concentrations can be used as it is in quick equilibrium with brainECF

B) We can use in vitro and animal data to build a mathematical model by which we can calculate brainECF concentrations

C) We can make direct use brainECF concentrations as measured in animals

D) CSF concentrations can be used, if taken from the ventricles in the brain, as CSF in the brain ventricles is the closest to the brainECF

E) We can make use of brainECF concentrations measured in humans
 - CSF = cerebrospinal fluid
 - BrainECF = brain extracellular fluid
Use of CSF to predict CNS target site PK?

Which concentration in the human brain is most representative to the brain target site concentration?

What CNS sites in human are accessible to obtain information about brain PK?

De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013

CNS Properties

Physiological brain compartments, flows, membranes, active transporters, metabolic enzymes, subcellular compartments, pH values, targets
Experimental Approach

Overview - How to Predict CNS PK?

Animal experiment

Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012
Overview - How to Predict CNS PK?

Animal experiment → Animal PK profiles

Animal PBPK model

Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012
Overview- How to Predict CNS PK?

Animal experiment

Animal PK profiles

Animal PBPK model

Translation to human model

Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012

Overview- How to Predict CNS PK?

Animal experiment

Animal PK profiles

Animal PBPK model

Translation to human model

Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012

Validation on human data

Overview - How to Predict CNS PK?

Animal experiment → Animal PK profiles → Animal PBPK model

Validation on human data

Observed (Bannwarth et al. Br j Clin Pharmacol. 1992) and predicted human acetaminophen concentrations in plasma (●, ...) and CSF (○, ...).

Translation to human model

Westerhout et al. PBPK Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPSJ. 2012

3. Prediction of Human CNS PK for Multiple Drugs
CNS target site concentration-time profiles (PK) depends on:

A) BBB permeability (rate of crossing the BBB)

B) BBB permeability and all aspects of intra-brain distribution

C) BBB permeability and cellular accumulation (brain binding)

D) The ratio between unbound plasma and brain PK
Generic Drug Modeling Approach

Individual drug translational models

Generic drug translational model (mult. drugs with distinctive phys-chem properties)

Overview Data Modeling

Prediction: Human CNS Morphine

Pedriatic TBI patients

Patient 1 (Focal TBI)

Patient 2 (Focal TBI)

Patient 4 (Focal TBI)

Patient 5 (Focal TBI, only 2 blood samples)

Patient 6 (Diffuse TBI)
4. CNS PK prediction for *any* small drug without the need for in vivo data?
Prediction without in vivo data?

- Animal experiment
- Animal PK profiles
- Human prediction

Animal experiment

- Animal PK profiles

Human prediction

Translation to human model

Full PBPK CNS Model

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Predicted Human Acetaminophen Concentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>1000</td>
</tr>
<tr>
<td>240</td>
<td>10000</td>
</tr>
<tr>
<td>360</td>
<td>100000</td>
</tr>
</tbody>
</table>

- Plasma observed
- CSF (SAS) observed
- Plasma predicted
- SAS (CSF) predicted
- Brain ECF predicted
- LV
- CM

Full PBPK CNS Model Diagram

- Diagram of the Full PBPK CNS Model showing various compartments and flows.

Discover the world at Leiden University
Simulations and Actual Data

Human PBPK CNS Model

Yamamoto et al, EJPS, 2018
Human PBPK CNS Model

Simulations – systems changes

Simsimulations and Actual Data

Phenyltoin
General Conclusions (1)

Can we use animal data on brainECF, and CSF and/or human CSF PK to predict human brainECF (off) target PK?

Relation between drug concentrations and their time course in brainECF, CSF in lateral ventricles, CSF in cisterna Magna, and CSF in lumbar region are

- Drug dependent
- Species dependent
- Time dependent

General Conclusions

- We need to distinguish between drug properties and system (CNS) characteristics for being able to translate between species and/or conditions
- Inter-relationships between PK and PD processes of drugs can be revealed by mathematical modelling if experiments using in individual animals include
 - Measurements with time-resolution (multiple time-points)
 - Measurements that reflect different processes within one single animal (multi-level measurements)
- Such information from animals should be stored in mathematical models, so that it provides knowledge, and reduces the need for animals in research.
Final Food for Thought

• Reductionists approaches will not bring us further
• We should face the complexity of processes in the living body, and design our experiments accordingly in order to unravel interrelationships for true understanding and translation
• Medicinal chemist need to realize that many PK processes govern CNS target site PK- it is not only “BBB permeability”
• Thus, for optimization of drug properties, all aspects need to be considered
• The CNS PBPK model provides a very useful tool for investigating the relationship between drug properties and drug distribution into and within the CNS

Acknowledgements

Dirk Jan van den Berg
Francesco Bellanti
Willem vd Brink
Sinziana Cristea
Meindert Danhof
Nathalie Doorenweerd
Tony Figaji
Janna Geuer
Piet Hein van der Graaf
Margareta Hammarmund-U
Thomas Hankemeier
Robin Hartman
Coen van Hasselt
Sandra den Hoedt
Laura Kerkezee
Naomi Ketharanathan
Maaike Labots
Victor Mangas
Ron Mathót
Nick van Oljen
Shinji Shimizu
Jasper Stevens
Stina Syvanen
Dick Tibboel
Perry Valto
Willem vd Brink
Yumi Yamamoto
Joost Westerhout
Wilbert de Witte
Eric Wong
Ursula Rohlwink
Enno Wildschut
“How to Predict Human CNS PK/PD: Preclinical Experiments and Advanced Mathematical Modelling”

Slides available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists

Celebrating 4 years & Over 40 Drug Discovery Webinars!

Proudly Co-produced with

Upcoming ACS Webinars
www.acs.org/acswebinars

Thursday, November 1, 2018
An Evolutionary Mystery: Mirror Asymmetry in Life and in Space
Co-produced with the ACS Subdivision of Astrochemistry

Experts
Brett McGurie
National Radio Astronomy Observatory
Ryan Fortenberry
University of Mississippi

Thursday, November 8, 2018
Social Media 102: Twitter, Facebook, LinkedIn, and Blogs
Co-produced with the ACS External Affairs & Communications

Experts
Ben Pershing
National Journal
Anthony Pitagno
American Chemical Society

Contact ACS Webinars ® at acswebinars@acs.org

ACS Webinars

“How to Predict Human CNS PK/PD: Preclinical Experiments and Advanced Mathematical Modelling”

Elisabeth CM de Lange
Professor in Predictive Pharmacology, UL, Leiden University

Slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry and the American Association of Pharmaceutical Scientists
Journal Scope
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling.

Special Issues

Accepting Submissions!

Editors
Kenneth M. Merz Jr., Michigan State University, Editor-in-Chief
Zoe Cournia, Academy of Athens
Matthias Rarey, University of Hamburg
Alexander Tropsha, UNC Chapel Hill
Habibah A. Wahab, Universiti Sains Malaysia
Renxiao Wang, Chinese Academy of Sciences

https://pubs.acs.org/journal/jcisd8

Chemical Entity and Biomolecule Scientific Program Tracks:

YouTube video: https://www.youtube.com/watch?v=1DOxL8gOUu

Chemical Entity and Biomolecule Scientific Program Tracks:

• Preclinical (including Discovery)
• Bioanalytical
• Clinical Pharmacology
• Manufacturing & Bioprocessing
• Formulation & Quality

Website: www.aapspharmsci360.org
Join the Division Today!

For $25 ($10 for students), You Will Receive:

- A free digital copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

How has ACS Webinars benefitted you?

“I just recently started working as a postpartum nurse. I love that this ACS Webinar on human milk oligosaccharides will help me bring a new aspect into my discussions and encouragement of breastfeeding for new mothers.”

Michelle Nadeau
Registered Nurse

Be a featured fan on an upcoming webinar! Write to us @ acswебinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN) The preeminent weekly digital and print news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars

Thursday, November 1, 2018

An Evolutionary Mystery: Mirror Asymmetry in Life and in Space

Co-produced with the ACS Subdivision of Astrochemistry

Experts

Brett McGuire
National Radio Astronomy Observatory

Ryan Fortenberry
University of Mississippi

Thursday, November 8, 2018

Social Media 102: Twitter, Facebook, LinkedIn, and Blogs

Co-produced with the ACS External Affairs & Communications

Experts

Ben Pershing
National Journal

Anthony Pietro
American Chemical Society

Contact ACS Webinars ® at acswebinars@acs.org