Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host.
Thank you and enjoy the show.

Contact ACS Webinars ® at acswininars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly digital and print news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

“I work in the pharmaceutical industry and have had some exposure to various diabetes drugs used in clinical trials. I was happy to learn some of the background information that went into the development of this class of drugs.”

Amy Holland
Sr. Client Operations Manager
Q2 Solutions, ACS member for 36 years strong!

Check out the Archive!
An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Archive is divided into 6 different sections to help you more easily find what you are searching.

- **Professional Development**
 - View the Collection
 - Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what cannot be taught in the lab.

- **Technology & Innovation**
 - View the Collection
 - From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.

- **Drug Design and Delivery**
 - View the Collection
 - The Drug Design Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insight on how to possibly overcome your own major roadblocks.

- **Culinary Chemistry**
 - View the Collection
 - Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don’t forget to come back for a second helping.

- **Popular Chemistry**
 - View the Collection
 - Feeling burdened by all that molecular weight? Listen to experts expound on the amazing side of current hot science topics. Discover the chemistry of rockers, how viruses have affected human history, or the molecular breakdown of a hangover.

- **Business & Entrepreneurship**
 - View the Collection
 - How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry whether you are looking to start a business or desire a priceless industry-wide perspective.

https://www.acs.org/content/acs/en/acs-webinars/videos.html
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public on Thursdays from 2-3pm ET!

www.acs.org/acswebinars

What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science
- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://acsoncampus.acs.org
An individual development planning tool for you!

https://chemidp.acs.org

From ACS Industry Member Programs

♦ Industry Matters Newsletter
 Exclusive interviews with industry leaders and insights to advance your career
 Preview & Subscribe: acs.org/indnews

♦ Link
 Connect, collaborate, and stay informed about the trends leading chemical innovation
 Join: bit.ly/ACSinnovationhub
Members of the American Association of Pharmaceutical Scientists (AAPS) gathered during the 2013 AAPS Annual Meeting and Exposition to discuss why they chose a career in pharmaceutical sciences and how AAPS has helped foster their journey. The I Am AAPS video series displays the diversity of AAPS membership while exhibiting one common goal: to impact global health.
Join the Division Today!

For $25 membership ($10 for students), You Will Receive:

- A free digital copy of our annual medicinal chemistry review volume (over 680 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org
Passive Permeability: An Important Mechanism for Drug Absorption

THIS ACS WEBINAR WILL BEGIN SHORTLY...

Presentation slides are available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry, American Association of Pharmaceutical Scientists, and ACS Publications.
How are drugs absorbed?

• By transporters only
• By passive diffusion only
• By both transporters and passive diffusion
• None of the above

* If your answer differs greatly from the choices above tell us in the chat!
Mechanisms of Drug Absorption

Passive permeability and transporter-mediated mechanisms coexist to impact drug absorption and disposition.

“Transporter-Only” Claim

- All transmembrane transport of drugs requires the use of transporters
- No passive diffusion through the bilayer occurs

“Transporter-only” claim ignores the basic scientific facts and is fundamentally flawed

- Experienced scientists in DMPK, Med Chem, Pharm Sci: minimal impact
- Can be misleading for students and less experienced scientists

Successful examples of applying the principles of passive permeability and transporter-mediated mechanisms in real-world drug discovery
Passive Permeability & Transporter-Mediated Mechanisms

Passive Diffusion
- Not dependent on substrate concentration, non-saturable, linear
- Not subject to inhibition / induction / drug-drug interactions
- Less structure specific: Log D, PSA, H-bonds, MW, rotatable bonds
- Less specific to tissue, cell-type, species

Transporter
- Dependent on substrate concentration, saturable, nonlinear
- Subject to inhibition / induction / drug-drug interactions
- More structure specific interactions between substrates and transporters
- Specific to tissue, cell-type, species

Saturable vs. Non-Saturable Mechanisms

- Transporter-mediated mechanisms are saturable at high concentrations and nonlinear with increasing concentrations
- Passive permeability is not saturable and linear with increasing concentrations
- Total (net) transport = passive + transporter

ADME Transporters in the Major Organs

- Transporters are tissue / membrane /directional specific
- P-gp/BCRP: apical membrane for most tissues
- OATP1B1/1B3: liver specific
- Expressions and activities of transporters can be species dependent
- An "universal transporter" doesn't exist

If “transporter-only”, an oral CNS drug would need specific transporters for each of the membranes in the gut, the liver and the brain. Expect high incidences of DDIs.

The Role of Passive Permeability in ADME

- Absorption
 - Oral absorption
- Distribution
 - Tissue exposure
 - Brain penetration
 - Target exposure
- Metabolism
 - Entry to hepatocytes
- Excretion
 - Hepatobiliary clearance
 - Renal clearance / reabsorption

ADME = Absorption, Distribution, Metabolism, Excretion
In Vitro Methods to Predict Human Intestine Passive Permeability

Passive permeability plays a major role in oral absorption

PAMPA = parallel artificial membrane permeability assay

Impact of Passive Permeability in Oral Absorption

High passive permeability leads high human intestinal absorption (F_a) when no solubility/dissolution restriction

Correlation between PAMPA and Rat Intestine Permeability

Passive permeability is insensitive to species. Enable direct translation of *in vitro* or animal data to humans with different physiology.

Cell Membrane Lipid Bilayer: Self-assembling Phospholipids

Hydrophilic polar head group

Fatty acid chains

Drug molecule

Water Molecules (polar)

Structured

Lipophilic

Structured Lipophilic phospholipid

Hydrophilic polar head group

Fatty acid chains

Drug molecule

Water Molecules (polar)
Molecular Properties Govern Absorption by Passive Permeability

Oral Absorption
- Lipinski’s Rule of 5 (Ro5)
 - Poor absorption
 - HBD > 5 (OH and NH)
 - MW > 500
 - cLog P > 5
 - HBA > 10 (O and N)
- Veber’s Rules:
 - Good Bioavailability
 - Rotatable bonds < 10
 - PSA < 140 Å² or HB < 12

Brain Penetration
- CNS MPO > 4
 - cLogP
 - MW
 - TPSA
 - pKa
- CNS Rules
 - N+O < 5
 - ClogP-(N+O) > 0
 - PSA < 60-70
 - MW < 450
 - Log D 1-3
- Pardridge’s Rules
 - HB < 8-10
 - MW < 400-500
 - Non-acids

Effect of PSA on Oral Absorption

![Graph showing effect of PSA on oral absorption](image)

High fraction absorbed with low PSA (Polar Surface Area)

Size Penalty on Passive Permeability in bRO5 Space

- Macrocyclic per-N-methylated peptides (no IMHB). AlogP 0-8, MW 800-1200
- Steep drop off of passive permeability with increasing size

C. R. Pye, et al., JMC, 2017, 60, 1665-1672

Impact of Molecular Properties on Oral Absorption

Compounds with high MW, rotatable bonds and PSA are rare as oral drugs

Cyclic Peptides to Increase Passive Permeability

- **Peptides:** poor membrane permeability, instability, injectables
 - H-bonds, charges, polar, low Log D
- **Cyclic peptide:** improved membrane permeability & stability, oral (CsA)
 - no charged termini, intramolecular H-bonds
 - Cyclosporin A: 4 intramolecular H-bonds, lipophilic side chains shield polarity, MW 1202, F 28%

![Cyclic Peptide Diagram]

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

What are some effective strategies to INCREASE Passive Permeability? (select all that apply)

- Introduce intra-molecular hydrogen bonds
- Reduce polarity
- Reduce molecular weight
- Add carboxylic acid for brain penetration
- Reduce rotatable bonds

* If your answer differs greatly from the choices above tell us in the chat!
Strategies to Increase Passive Permeability

- Optimize lipophilicity
- Reduce hydrogen bonds
 - Introduce intra-molecular hydrogen bonds
- Reduce polarity
- Reduce molecular weight
- Reduce rotatable bonds
- Remove carboxylic acid for brain penetration
- Prodrug approach

HCV: Orally Bioavailable Cyclophilin Inhibitor Derived from the Sanglifehrin Macrocycle

R. M. Mackman, et al., JMC, 2018, 61, 9473-9399
Introduce Intramolecular Hydrogen Bonds to Increase Passive Permeability

Caco-2 $P_{\text{app}} = 2.2 \times 10^{-6}$ cm/s

Caco-2 $P_{\text{app}} = 17 \times 10^{-6}$ cm/s

R. M. Mackman, et al., JMC, 2018, 61, 9473-9399

Saturation of Transporters in the Intestine: Nonlinear PK

- Bosutinib: orally available TKI for leukemia, CYP3A & P-gp substrate
- Low doses (50-200 mg): super-proportional oral exposure - saturation of intestinal P-gp efflux
- High doses (200-600 mg): dose-proportional linear PK - passive absorption
- PBPK (SIMCYP-ADAM) modeling incorporates passive permeability, CYP3A metabolism and P-gp intestine efflux nicely captures PK and DDI
- If "transporter-only", expect to have much high frequencies of nonlinear PK – not reality

Passive Permeability in Brain Penetration

- Blood-brain barrier at the microvascular endothelial cells is a dynamic barrier made up of tight junctions, efflux transporters and drug metabolizing enzymes
- Most small molecule drugs cross the BBB by passive diffusion

Passive Permeability Through Blood Brain Barrier

- In silico
- In vitro (e.g., PAMPA-BBB)
- Combo (in silico + in vitro)

PBPK Model: Passive Permeability and Efflux

Passive Permeability Limited

\[K_{puu} \approx 1 \]
Slow in
Slow out

Efflux Limited Brain Exposure

\[K_{puu} < 1 \]
Fast in
Fast Out
~Steady-State

For two transporters, P-gp and BCRP

Models have been widely applied in drug discovery programs to identify successful CNS drug candidates

Passive Permeability in Hepatobiliary Clearance

Extended Clearance

\[CL = (CL_{\text{met}} + CL_{\text{bile}}) \times \frac{(CL_{\text{pass}} + CL_{\text{uptake}})}{(CL_{\text{pass}} + CL_{\text{met}} + CL_{\text{bile}})} \]

Impact of Passive Permeability, Ionization and MW on Major Clearance Pathways - ECCS

Passive permeability plays an important role in defining major clearance mechanisms

M. Varma, et al, Pharm Res, 2015, 32, 3785-3802
Effects of Passive Permeability on Clearance and PK

Log $D_{7.4} = 1.8$
Hepatic clearance
Capacity-limited nonlinear PK

Log $D_{7.4} = 0.5$
Renal clearance of unchanged drug
Linear PK

Effects of Passive Permeability on Clearance Mechanisms

Renal Clearance
Metabolic Clearance

Smith et al., (1985) Drug Metabolism Reviews, 16, p365

chromone-2-carboxylic acid
PBPK Modeling of Enzyme- and Transporter-Mediated Clearance and Drug-Drug Interactions for Bosentan

Successfully model bosentan nonlinear PK, liver concentration and DDI

Renal Clearance

\[\text{CL}_r = \text{GFR} \times f_{\text{ub}} + \text{CL}_{\text{sec}} - \text{CL}_{\text{reabs}} \]

Reabsorption: \(\text{CL}_r < \text{GFR} \times f_{\text{ub}} \)
Passive Permeability in Renal Clearance / Reabsorption

\[\beta\text{-Blocker: Van de Waterbeemd et al., (2001)} \text{ J. Med. Chem, 44, p1313} \]

Passive Permeability in Renal Clearance

\[\text{Prediction of renal clearance} \]
\[\text{Prediction of crystal nephropathy} \]

Zhenhong Li, et al., Seminars in Nephrology, 2019, 39(2), 176-189
Zhenhong Li, et al., JMC, 2020, online

DDI between Cerivastatin and Gemfibrozil

- Cerivastatin (Baycol): approved 1997, withdrawn 2001, muscle weakness, 51 death, ~40% co-administrated with gemfibrozil (another cholesterol lowering drug)
- Cerivastatin: CYP2C8 and OATP1B substrate
- Gemfibrozil and glucuronide metabolite: potent CYP2C8 and OATP1B inhibitors

Inhibition / induction of enzymes and transporters can lead to DDI

Enzyme-transporter interplay can lead to increased magnitude of DDI

DDI Due to Enzyme and Transporter Inhibition

Extended Clearance

\[CL = \frac{(CL_{\text{met}} + CL_{\text{bile}}) 	imes (CL_{\text{pass}} + CL_{\text{uptake}})}{(CL_{\text{pass}} + CL_{\text{met}} + CL_{\text{bile}})} \]

With Inhibitor

\[CL_{\text{inh}} = \left(\frac{CL_{\text{met}}}{R_1} + \frac{CL_{\text{bile}}}{R_2} \right) \times \frac{(CL_{\text{pass}} + \frac{CL_{\text{uptake}}}{R_3})}{(CL_{\text{pass}} + \frac{CL_{\text{met}}}{R_1} + \frac{CL_{\text{bile}}}{R_2})} \]

Reversible inhibition in liver only

\[R = 1 + \frac{[I]}{K_i} \]

[I] inhibitor concentration

\[K_i \] inhibition constant
2018 was a record year for new drugs approved by the FDA with 59 total, how many of these were New Chemical Entries?

- About a quarter
- About half
- About three quarters
- All of them
- None of them

* If your answer differs greatly from the choices above tell us in the chat!

DDI of 2018 FDA Approved Drugs

- 42 New Chemical Entries (small molecules) approved in 2018 (59 total; 71%)
- 22 (52%) have label recommendations based on DDI evaluations
- CYP3A involved in the majority (72%) of all interactions
- Only three drug interactions with label recommendations were mediated mainly by transporters
- If “transporter-only” and no passive permeability, one would expect much higher incidences of transporter-mediated DDIs

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Precipitant</th>
<th>AUCR</th>
<th>Transporter</th>
<th>Label Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>elegolix</td>
<td>rifampin</td>
<td>5.58</td>
<td>OATP1B1</td>
<td>Contraindicated with strong OATP1B1 inhibitors.</td>
</tr>
<tr>
<td>baricitinib</td>
<td>probenecid</td>
<td>2.03</td>
<td>OAT3</td>
<td>Not recommended with strong OAT3 inhibitors.</td>
</tr>
<tr>
<td>talazoparib</td>
<td>P-gp inhibitors(^1)</td>
<td>1.45 (popPK)</td>
<td>P-gp</td>
<td>Reduce the dose of talazoparib with any of these P-gp inhibitors.</td>
</tr>
</tbody>
</table>

J. Yu, et al., 2019 ISSX poster
Conclusions

- Passive permeability: an important mechanism for drug absorption and disposition
 - Oral absorption
 - Brain penetration
 - Renal reabsorption
 - Defining major clearance pathways
 - Enzyme / transporter interplay – extended clearance, DDI

- “Transporter-only” claim is fundamentally flawed and misleading

- Passive permeability and transporters coexist to impact drug absorption and disposition

- Many successful drugs have been developed by using the design principles of passive permeability and transporters

Acknowledgements

External Collaborators

- Per Artursson (Uppsala Univ.)
- Alex Avdeef (in-ADME)
- Stefan Balaz (Albany College)
- Leslie Benet (UCSF)
- Gerhard Ecker (Vienna Univ.)
- Bernard Faller (Novartis)
- Brian Houston (Manchester Univ.)
- Manfred Kansy (Roche, retired)
- Edward Kerns (NIH, retired)
- Stephanie Krämer (ETH)
- Hans Lennernäs (Uppsala Univ.)
- Kiyohiko Sugano (Ritsumeikan Univ.)

Pfizer Colleagues

- Chester Costales
- Theunis Goosen
- Amit Kalgutkar
- Chris Keefer
- Cindy Li
- Rui Li
- Jian Lin
- Jenny Liras
- Tristan Maurer
- Scott Obach
- David Rodrigues
- Dennis Scott
- Dennis Smith (retired)
- David Tess
- Matt Troutman
- Susanna Tse
- Manthena Varma
- Shinji Yamazaki
Over 60 Drug Discovery Webinars!

Upcoming ACS Webinars!

www.acs.org/acswebinars

https://www.acs.org/content/acs/en/acs-webinars/popular-chemistry/usp.html
Passive Permeability: An Important Mechanism for Drug Absorption

Presentation slides are available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Medicinal Chemistry, American Association of Pharmaceutical Scientists, and ACS Publications.

Members of the American Association of Pharmaceutical Scientists (AAPS) gathered during the 2013 AAPS Annual Meeting and Exposition to discuss why they chose a career in pharmaceutical sciences and how AAPS has helped foster their journey. The I Am AAPS video series displays the diversity of AAPS membership while exhibiting one common goal: to impact global health.

https://www.aaps.org
Join the Division Today!

For $25 membership ([$10 for students]), You Will Receive:

• A free digital copy of our annual medicinal chemistry review volume (over 680 pages, $160 retail price)

• Abstracts of MEDI programming at national meetings

• Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

How has ACS Webinars benefited you?

“I work in the pharmaceutical industry and have had some exposure to various diabetes drugs used in clinical trials. I was happy to learn some of the background information that went into the development of this class of drugs.”

Amy Holland
Sr. Client Operations Manager
Q2 Solutions, ACS member for 36 years strong!

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org

Check out the Archive!

An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Archive is divided into 6 different sections to help you more easily find what you are searching.

- **Professional Development**
 - View the Collection
 - Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what can not be taught in the lab.

- **Technology & Innovation**
 - View the Collection
 - From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.

- **Drug Design and Delivery**
 - View the Collection
 - The Drug Design and Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insight on how to possibly overcome your own medchem roadblocks.

- **Culinary Chemistry**
 - View the Collection
 - Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don't forget to come back for a second helping.

- **Popular Chemistry**
 - View the Collection
 - Feeling burdened by all that molecular weight? Listen to experts expound on the amazing side of current hot science topics. Discover the chemistry of rockers, how viruses have affected human history, or the molecular breakdown of a hangover.

- **Business & Entrepreneurship**
 - View the Collection
 - How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry whether you are looking to start a business or desire a priceless industry-wide perspective.

https://www.acs.org/content/acs/en/acs-webinars/videos.html