Have Questions?

Type them into questions box!

"Why am I muted?"
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars® at acswебinars@acs.org
Check out the Archive!

An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Archive is divided into 6 different sections to help you more easily find what you are searching.

<table>
<thead>
<tr>
<th>Professional Development</th>
<th>Technology & Innovation</th>
<th>Drug Design and Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what can not be taught in the lab.</td>
<td>From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.</td>
<td>The Drug Design Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insight on how to possibly overcome your own med chem roadblocks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Culinary Chemistry</th>
<th>Popular Chemistry</th>
<th>Business & Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don’t forget to come back for a second helping.</td>
<td>Feeling burdened by all that molecular weight? Listen to experts expound on the amazing side of current hot science topics. Discover the chemistry of rockets, how viruses have affected human history, or the molecular breakdown of a hangover.</td>
<td>How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry whether you are looking to start a business or desire a priceless industry-wide perspective.</td>
</tr>
</tbody>
</table>

https://www.acs.org/content/acs/en/acs-webinars/videos.html
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public on Tuesdays, Wednesdays, and Thursdays from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Archive will be broadcast on Mondays and Fridays from 2-3pm ET!

www.acs.org/acswebinars
What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science
- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://www.acsoncampus.acs.org
https://www.acsoncampus.acs.org/resources
2020 GC&E Virtual Conference

On June 15-19, from 11am-5:30pm EDT attendees will view and engage with:

• Daily keynote speakers
• 40+ technical sessions
• 80+ posters
• Networking breaks and #gcande happy hour
• Green Expo
• GC&E Fridays: Live technical sessions on Fridays leading up to the conference week

REGISTER FOR FREE!

https://www.gcande.org/register
From ACS Industry Member Programs

- **Industry Matters Newsletter**
 Exclusive interviews with industry leaders and insights to advance your career

Preview & Subscribe: acs.org/indnews

- **LinkedIn**
 Connect, collaborate, and stay informed about the trends leading chemical innovation

VIRTUAL

ACS Career Day
Younger Chemists Committee (YCC)

Early Career Development Workshops
Q&A
ACS Career Consultants
Networking

SATURDAY, JUNE 27 / 10 AM ET

Visit www.acs.org/virtualcareerdays
ACS Efforts and Resources on COVID-19

- **YOU MAY RECEIVE A ONE-YEAR WAIVER ON YOUR NATIONAL DUES** If your membership is up for renewal, but you’re experiencing a special hardship, such as unemployment, furlough, reduced wages or illness.

- **RECEIVE ACCESS TO LINKEDIN LEARNING THROUGH THE END OF THIS YEAR** This powerful resource includes over 15,000 on-demand courses to support your continued learning and career advancement for active ACS members.

- **INOVA EAP/WORK-LIFE ASSISTANCE PROGRAM** 24/7 assistance on a wide range of issues, such as emotional, relationship, major life, health, wellness, educational and more for ACS members based in the United States. Confidential services are provided via telephone or comprehensive online resources.

Browse **ACS Resources and Initiatives**!
Free ACS Webinars Every Weekday!

Upcoming Broadcasts

FACE MASKS

MATERIALS, DISINFECTION & REUSE DURING COVID-19

Friday Rebroadcast

Friday, June 19, 2020 at 2-3pm ET
Speakers: Supratik Guha, University of Chicago, and Argonne National Laboratory; and Yi Cui, Stanford University
Moderator: Laura Cassiday, American Chemical Society

What You Will Learn
- What types of fabrics and household cloth are effective in particle filtration and why
- The basics of particle filtration and data on filtration efficiencies as a function of size for common fabrics that are used in cloth masks
- How to disinfect N95 masks and how many times you can do it without reducing filtration efficiency

Co-produced with ACS External Affairs & Communications and ACS Publications

VIRTUAL INTERVIEWING

IN A FAST-CHANGING ECONOMY

Monday Rebroadcast

Monday, June 22, 2020 at 2-3pm ET
Speakers: Bob Conerly and Allen Hadden of Staffing Advisors
Moderator: Brooke Lockhart, Staffing Advisors

What You Will Learn
- How virtual interviewing differs from in-person interviewing and how you can use the format to your advantage
- How to make an effective case for yourself (without bragging)
- How to apply timeless principles that are successful in any interview setting and at every career level

Co-produced with ACS Industry Member Programs

Learning to LOVE BREVITY & CLARITY

Tuesday, June 23, 2020 at 2-3pm ET
Speakers: Mark Jones, Dow Chemical
Moderator: Bryan Tweedy, American Chemical Society

What You Will Learn
- Accessible communication does not mean simplistic communication
- Brevity is both appreciated and improves clarity
- Self-editing is the surest way to improve clarity and attain brevity

Co-produced with ACS Professional Education

www.acs.org/acswebinars
Want to attend a workshop live in 2021 and beyond? Visit the POLY Workshop website for further information:

https://www.polyacs.net/workshops
Free POLY Membership

If it has been more than 3 years or if you have never been a member, now is time to sign up for a COMPLIMENTARY 1-Year ACS Division of Polymer Chemistry Membership.

Visit: http://bit.ly/JOINPOLY to become a member today or, fill out an application at the Polymer Division Booth during an ACS Meeting.
Being a member of POLY has helped me identify a network of colleagues and establish myself in the polymer chemistry community. For the small cost of a POLY membership, you can join a strong and passionate group of scientists that can assist you throughout your career, through discussions, networking, and guidance.”

Diana Gerbi, 2018 POLY Chair
3M(retired)

“….the next generation of polymer scientists is where we put a lot of our focus and we’ve really established a tremendous network of scientists at all points in their career. …our more seasoned members are active in helping support and foster the growth of the next generation through mentoring and a very active awards program.”

Marc Hillmyer, 2017 POLY Chair
University of Minnesota

“…. as the university relations manager, I knew I would need to connect with a wide variety of professors and students. The Division of Polymer Chemistry provided the perfect environment to build these connections.”

Karl Haider, 2016 POLY Chair
Covestro

Become a part of the ACS Division of Polymer Chemistry whose members are among legends in the field.

Benefits
- Networking Events
- Discounts on workshops
- POLY webinars and videos
- POLY LinkedIn and Facebook pages
- Access to job postings
- Polymer Preprints and Graphical Abstracts
- Newsletters and Books
- Many Award Opportunities

SELF HEALING POLYMERS AND VITRIMERS
Self Healing Polymers and Vitrimers

Brent Sumerlin
George B. Butler Professor, Department of Chemistry, University of Florida

Marek Urban
J.E. Sirrine Foundation Endowed Chair and Professor, Department of Materials Science and Engineering, Clemson University

Christopher Bowman
Distinguished Professor, Clinical Professor of Restorative Dentistry, Co-Director of the NSF I/UCRC for Fundamentals and Applications and Photopolymerizations, University of Colorado, Boulder

Download the presentation PDF now! Edited recordings are an ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Polymer Chemistry
SELF-HEALING POLYMERS

Marek W. Urban
Department of Materials Science and Engineering
Center for Optical Materials Science and Engineering (COMSET)
Clemson University, USA
SELF-HEALING APPROACHES IN POLYMERS

a Physical approaches

Interfacial regions
Inter-diffusion
Phase-separated morphologies

Damage
Shape-memory recovery
Melting inter-diffusion

γ-Fe₂O₃

b Chemical approaches

Reactive chain ends
Covalent rebonding
Free-radical rebonding

Supra-molecular chemistry
H-bonding
π–π stacking
Guest-host chemistry
Metal–ligand coordination
Ionic interactions

C Physico chemical approaches
Van der Waals interactions
Encapsulation
Cardiovascular network

www.nature.com/articles/s41578-020-0202-4
WHAT IS AN ESTIMATED LIFE-TIME OF
4- or 5-MEMBER HETERO CYCLIC RADICALS?

- 10 msec
- 25 sec
- 2 days
- ~1 month
- 10 psec

Prog. Polym. Sci., 2020, 102, 101208
REFORMATION OF COVALENT BONDS

Exposure to UV Light

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>15</th>
<th>30 MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science, 2009, 323, 1458.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Mater. Chem., 2011, 21, 14473</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterocyclic Compounds

Angew. Chemie, 2014, **53**, 12142–12147
REVERSIBLE REACTIONS ENABLING REFORMATION OF COVALENT BONDS

DYNAMIC REFORMATION OF COVALENT BONDS

a Schiffs base bond regeneration

\[
\begin{align*}
\text{C} & + \text{H}_2\text{N} & \xrightarrow{\text{---}} & \text{C} \\
& & & \text{N}\\
\end{align*}
\]

b Acylhydrazone rebonding

\[
\begin{align*}
\text{\text{--CH}} & + \text{H}_2\text{N} & \xrightarrow{\text{---}} & \text{\text{--CH}} \\
& & & \text{N}\\
\end{align*}
\]

c Oxime rebonding

\[
\begin{align*}
\text{R}_1\text{C} & + \text{H}_2\text{N} & \text{O} & \xrightarrow{\text{---}} & \text{R}_1\text{N} & \text{O} \\
& & & & & \text{R}_2
\end{align*}
\]

d Boronic ester reformation

\[
\begin{align*}
\text{\text{---B}} & + \text{H}_2\text{O} & \xrightarrow{\text{---}} & \text{\text{---B}} \\
& & & \text{OH} \\
\end{align*}
\]

e Boronic ester reformation in rotaxane-based polymers

Chem 1, 766–775 (2016).
SUPRAMOLECULAR DYNAMIC CHEMISTRY

a Triple H-bonding

b Combining strong and weak H-bonds

SUPRAMOLECULAR DYNAMIC CHEMISTRY

Excessive H-bonding

\[
\text{Amidoethyl imidazolidone}
\]

\[
\text{Di(amideethyl) urea}
\]

\[
\text{Diamido tetraethyltrisutra}
\]

\[
\text{Oligomeric mixture}
\]

SELF-HEALING USING METAL–LIGAND COORDINATION CHEMISTRY

a Photoresponsive system

![Chemical structure](image)

b Self-healing dielectric elastomer

![Chemical structure](image)

SELF-HEALING USING METAL–LIGAND COORDINATION CHEMISTRY

IONIC INTERACTIONS APPLIED IN SELF-HEALING

a. Self-healing ionomer
 - pEMMA

b. Polyelectrolyte complexes with phosphate anions
 - PAH/tripolyphosphate

f. Self-healing in a commodity polymer
 - Heat

SELF-HEALING “Key-and-Lock” ACRYLIC COPOLYMERS

Poly(methyl methacrylate/n-butyl acrylate) (pMMA/nBA)

Self-healing occurs within a narrow compositional range

Science, 2018, 362, 220.

van der Waals (vdW) INTERACTIONS IN SELF-HEALING

Science, 2018, 362, 220.

Poly(methyl methacrylate/n-butyl acrylate)

Crystalline nanodomain of E–E segments

Self-Healing of Plants – Delosperma Cooperi

Delosperma cooperi plants (Pink Carpet or Iceplant) in the Freiburg Botanical Garden. © Plant Biomechanics Group Freiburg and 2018 Speck et al.; licensee Beilstein-Institut

How does the elastic component contribute to damage closure of polymer?

SELF-HEALING vs. PHASE MORPHOLOGY

IR IMAGES
- PCL-PUR (P)
 - Polymerization induced phase separation
- PCL-PUR (M)
 - Thermally induced phase separation

OPTICAL IMAGES
- Tensile properties
 - Micro-phases separated PCL-PUR (P)
 - Nano-phase separated PCL-PUR (M)

TENSILE PROPERTIES
- PCL-PUR (P)
 - 87% RECOVERY
 - 2 hrs Healing 65°C
- PCL-PUR (M)
 - 51% RECOVERY
 - 2 hrs Healing 65°C

Tm = 51 and 168°C (DSC)

Tm = 51 and 162°C (DSC)

Self-Healing Polymers Inspired by Leaves

Fibers are drawn during polymerization

PCL - PUR (P) FIBER

CHEM, 2018, 4, 1928
This slide – show some biological self-healing events

Nano- to Macro-Scale Self-Healing

Shape Memory Effect vs Rebonding

Polyurethane Fibers

WHAT IS ANTICIPATED GROWTH OF SELF-HEALING POLYMER TECHNOLOGIES IN USA BY 2025?

- 0%
- 11.1%
- 25.1%
- 46.1%
- 63.6%
Molecular chemical events are responsible for macroscopic responses without intervention.

Morphology control may facilitate energy storage and recovery during damage-repair cycles.

Narrow monomer molar ratios in simple alternating/random copolymers offers repeatable self-healing properties of thermoplastic polymers.

A key characteristic feature are enhanced van der Waals (vdW) interactions rather than the reformation of hydrogen or covalent bonds.

Self-healing driven by entropic energy recovery stored during damage.

Self-healing driven by interfacial flow and diffusion.
ACKNOWLEDGEMENTS

URBAN RESEARCH GROUP
www.clemson.edu/cecas/urbanresearch

Dmitriy Davydovich
Siyang Wang
Rong Wang
Lauren Swift
Tyler Reedy
Samruddhi Gaikwad
Mingxuan Li
Dr. Lei Li
Dr. Chris Hornat (Ph.D. 2019)
Dr. Ying Yang (Ph.D. 2017)
Dr. Zhanhua Wang (Res. Assoc.)
Dr. Chungling Lu (Ph.D. 2017)
Dr. Biswajit Ghosh (Ph.D. 2011)
Dr. Shintaro Kawano (NSF Japan)

FUNDING AGENCIES

- National Science Foundation:
 DMR-1744306; DMR-2003005;
 OIA-1655740
- Department of Energy: DE-EE0008827
- US Army Research Center
- J.E. Sirrine Foundation Endowment at
 Clemson University
- Industrial Sponsors
Vitrimers

<table>
<thead>
<tr>
<th>Concept</th>
<th>Transesterification exchange reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Transamidation exchange reactions**
 - ![Diagram](image3)

- **Transcarbamoylation exchange reactions**
 - ![Diagram](image4)

- **Transamination of vinylogue amides or urethanes**
 - ![Diagram](image5)

- **Transcarbonation exchange reactions**
 - ![Diagram](image6)

- **Dioxaborolanes metathesis**
 - ![Diagram](image7)

References:

Covalent Adaptable Networks as Stimuli Responsive Materials

Or...

How Can We Make a Square Peg Fit Into a Round Hole?

Christopher N. Bowman
Department of Chemical and Biological Engineering
Materials Science and Engineering
Department of Restorative Dentistry
University of Colorado

Conflict of Interest Disclosure
CNB has a financial interest in patents and royalties from those patents that have been licensed related to addition fragmentation in dental and other materials
Covalently Crosslinked Networks (i.e., Thermosets)

Covalently crosslinked polymeric materials are ubiquitous but suffer from significant shortcomings.

Hydrogels for Tissue Engineering

Orthopedic Devices and Shape Memory Polymers

The Trabant – made largely of Duroplast

Epoxy encapsulated hybrid circuit

Composite Structural Materials

Methacrylate-based dental restorative

Flat Panel Display Coatings

Cell Phone and Other Optics

Contact Lenses

Image source: wikipedia
What opportunities and alterations in material properties would be possible if the bond structure wasn’t “permanent”?
Question…

What opportunities and alterations in material properties would be possible if the bond structure wasn’t “permanent”?

- Recycling and reprocessing
- Stress relaxation
- Actuation
- Adhesion
- Self-healing
- Etc.
Dynamic Covalent Chemistry

Broadly there are two categories of reversible reactions that we can consider:

Reversible Addition Reactions

\[\text{Reversible Exchange Reactions} \]

So, why would we care about these reactions and what would they enable in crosslinked networks?
Non-Equilibrium State \rightarrow Relaxed State

Stress, Molecular Alignment, Birefringence, Interfaces, Phase Separation, Healing, Shape, Etc.

Covalent Adaptable Network Paradigm

Thermosets

Thermoplastics

stimulus

DCC

Non-Equilibrium State

Relaxed State

Stress, Molecular Alignment, Birefringence, Interfaces, Phase Separation, Healing, Shape, Etc.

Covalent Adaptable Network Paradigm: Inducing a Solid-to-Fluid Transition

During Light Exposure the Dynamic Covalent Chemistry is Activated, Leading to the Formation of a Fluidic Material

Once the Light is Extinguished, the Material Returns to its Solid State
Covalent Adaptable Networks: Permanent Network Rearrangement

Permanent Shape Change Achieved When Bond Exchange Is Activated During Strain

Altering Shape: The Most Important Property
Nature of the Dynamic Covalent Crosslinks Constitutes the Type of Covalent Adaptable Network

Reversible Addition Reactions

- Diels-Alder Reactions

Reversible Exchange Reactions

- Addition—Fragmentation Chain Transfer

- Transesterification — i.e., vitrimers

Covalent Adaptable Networks: An old concept with new applications

Tobolsky 1956: “In actual fact, we discovered that all rubbers show $E_r(t)$ curves that decay to zero stress at sufficiently high temperatures, and we attributed this stress decay to chemical reactions such as chain scission by oxidative cleavage or reorganization of the network structure by ionic interchanges” – This includes polyesters, polyurethanes, vulcanized rubbers

Chemorheology: Stress relaxation due to chemical reactions

Proposed DCC in vulcanized rubbers

Fig. 1. Chemical stress relaxation for various vulcanized rubbers at 130° (reference 25).

Question…

What stimuli would be desirable to use as activators for turning the dynamic covalent chemistry on/off?

(a) Temperature Change
(b) Irradiation
(c) Molecular Detection
(d) Solvent Condition Change
(e) None of the above
What stimuli would be desirable to use as activators for turning the dynamic covalent chemistry on/off?

(a) Temperature Change – easily activated and controlled
(b) Irradiation – spatiotemporal control
(c) Molecular Detection – useful as a sensor
(d) Solvent Condition Change – biological applications
(e) None of the above
Photoplasticity: Covalent Adaptable Networks (CANs)

Addition-fragmentation in the network alleviates stress as bonds are broken and reformed.

Addition-Fragmentation of Allyl Sulfides

Science, 308, 1615 (2005); Advanced Materials, 18, 2128 (2006)
Stress Relaxation via Photoinduced Plasticity

Light on (405 nm, 20 mW/cm²)

50% Strain

Stress (MPa)

Time (min)

Commercialized by 3M for Reduction of Polymerization Stress

Networks formed by Thiol Click Michael Addition are Capable of Complete Relaxation of Stress

C.J. Kloxin et al., Advanced Materials, 2011
Phase Transitions in LCNs:
Reversible Phase and Shape Changes

Liquid Crystal Phase
“Order”

Isotropic Phase
“Disorder”
Programming Monodomain to and from Polydomain

Polydomain

Stretch

Highly sheared regions in domain walls

Bond Exchange

Stress relaxed in domain wall

Monodomain

Stress relaxation occurs through allyl sulfide exchange in the polymer and stress-rich regions at the wall
Fully Reversible Surface and Bulk Shape Control

Cube
- Strained area
- Note: Only strained regions will program

Flower

Miura Ori

Nanoimprint
- Actual time
- 25°C
- 100°C

- Strain sample by folding
- Irradiate with light
- Heat to 120°C
- Allow to cool to 25°C

McBride et al., *Science Advances*, 2018
Does a Square Peg Fit into A Round Hole?

McBride et al., Science Advances, 2018
Covalent Adaptable Networks (CANs): Dynamic Thiol-Thioester Exchange
Inducing a Solid-to-Fluid Transition: Switching from One State to Another

During Light Exposure the Dynamic Covalent Chemistry is Either Activated or Deactivated By Generating or Eliminating a Catalyst

Once the Light is Extinguished, the Material *Remains* in its New State – It is Thus Bistable
Thioester Based Networks are Reconfigurable Under Ambient Conditions

- No birefringence
- Stretch at RT
- Birefringent
- Hold at RT for 30 min
- No birefringence

No birefringence

- Stretch at RT
- Birefringent
- Hold at RT for 30 min
- Birefringent
Polymerizing ~10 grams of material into an optically clear puck, it was cut, healed at room temperature by loading into a syringe and applying mild pressure.
The “ON” Switch:
Demonstration of Spatial Control via Photobase Generation

[Diagram showing the process of stretching, holding, releasing, and the corresponding sideview of the film with specified steps: 400 nm Light, Release Photobase, Stretch and Thinning]
The “ON” Switch: Demonstration of Spatial Control via Photobase Generation
Question:
In Conventional Composite Systems Where the Filler Is Much Higher Modulus, Where Do the Stresses Generally Concentrate?

a) The resin phase
b) The filler phase
c) The interface between the filler and the composite
d) All of the above
Question:

In Conventional Composite Systems Where the Filler Is Much Higher Modulus, Where Do the Stresses Generally Concentrate?

a) The resin phase
b) The filler phase
c) The interface between the filler and the composite
d) All of the above

While all regions in a composite bear stresses, the *interface* between the filler and the polymeric matrix is often a region of concentrated stresses that have a significant influence on the mechanical performance and lifetime of composite materials.
While all regions in a composite bear stresses, the interface between the filler and the polymeric matrix is often a region of concentrated stresses that have a significant influence on the mechanical performance and lifetime of composite materials.

Hypothesis: Triggered DCC activated in the resin during formation combined with perpetual DCC at the interface is optimal.
Implementation of TTE at the Resin-Filler Interface

Activated TTE Interface composite failure

Thioester filler with DABCO catalyst

TTE sample fails at the small notch, requiring more than twice the total energy to fail the material– unlike any other conventional material.

(1.1:1) Thiol:ene, 10 wt% SNPs, 6 mol% DABCO, 1 wt% I 819. Crosshead speed = 1 mm/min

Sowan, Polymer Chemistry, In Press
Implementation of TTE at the Resin-Filler Interface: Cyclic Loading and Fatigue

Dynamic composites and improvement in cyclic behavior

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>TTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress (MPa)</td>
<td>12 ± 3</td>
<td>28 ± 6</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>20 ± 8</td>
<td>30 ± 10</td>
</tr>
<tr>
<td>Toughness (MJ/m³)</td>
<td>1.9 ± 0.5</td>
<td>6.1 ± 0.9</td>
</tr>
</tbody>
</table>

The **thioester-modified composite** was found to survive more than **20 cycles** while the **control** composites were only able to survive **3-4 such cycles**.

(1.1:1) Thiol:ene, 10 wt% SNPs, 1 wt% DABCO, 1 wt% I 819. Curing conditions: (400-500) nm, with 50 mW/cm² intensity.

Sowan, Polymer Chemistry, In Press
Summary

• Implementation of Dynamic Covalent Chemistry in Crosslinked Networks Represents a Powerful Approach to Identify and Control Polymer Properties

• Breadth of Chemistries and Triggers Possible

• Control is possible of
 – Type of reaction
 – On/Off trigger
 – Timescale of reaction
 – Implementation relative to the lifecycle of the material
Acknowledgments

Laboratory Associates

Brady Worrell
Matt McBride
Alina Martinez
Gayla Lyon
Chen Wang
Nancy Sowan
Sudhi Mavilla
Lewis Cox
Maciek Podgórski

Collaborators

Jen Cha, Robert McLeod, Yifu Ding, Charles Musgrave, Jeffrey Stansbury

Funding Sources

NSF
NSF MRSEC Program
NIH
“Being a member of POLY has helped me identify a network of colleagues and establish myself in the polymer chemistry community. For the small cost of a POLY membership, you can join a strong and passionate group of scientists that can assist you throughout your career, through discussions, networking, and guidance.”

Diana Gerbi, 2018 POLY Chair
3M(retired)

“….the next generation of polymer scientists is where we put a lot of our focus and we’ve really established a tremendous network of scientists at all points in their career. …our more seasoned members are active in helping support and foster the growth of the next generation through mentoring and a very active awards program.”

Marc Hillmyer, 2017 POLY Chair
University of Minnesota

“…. as the university relations manager, I knew I would need to connect with a wide variety of professors and students. The Division of Polymer Chemistry provided the perfect environment to build these connections.”

Karl Haider, 2016 POLY Chair
Covestro

JOIN TODAY!
First-Year Free

Become a part of the ACS Division of Polymer Chemistry whose members are among legends in the field.

Benefits
• Networking Events
• Discounts on workshops
• POLY webinars and videos
• POLY LinkedIn and Facebook pages
• Access to job postings
• Polymer Preprints and Graphical Abstracts
• Newsletters and Books
• Many Award Opportunities

Visit:
Self Healing Polymers and Vitrimers

Brent Sumerlin
George B. Butler Professor, Department of Chemistry, University of Florida

Marek Urban
J.E. Sirrine Foundation Endowed Chair and Professor, Department of Materials Science and Engineering, Clemson University

Christopher Bowman
Distinguished Professor, Clinical Professor of Restorative Dentistry, Co-Director of the NSF I/UCRC for Fundamentals and Applications and Photopolymerizations, University of Colorado, Boulder

Download the presentation PDF now! Edited recordings are an ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Division of Polymer Chemistry
Free ACS Webinars Every Weekday!

Upcoming Broadcasts

FACE MASKS
MATERIALS, DISINFECTION & REUSE DURING COVID-19

Friday Rebroadcast

Friday, June 19, 2020 at 2-3pm ET
Speakers: Supratik Guha, University of Chicago, and Argonne National Laboratory and Yi Cui, Stanford University
Moderator: Laura Cassiday, American Chemical Society

What You Will Learn:
- What types of fabrics and household cloth are effective in particle filtration and why.
- The basics of particle filtration and data on filtration efficiencies as a function of face for common fabrics that are used in cloth masks.
- How to disinfect N95 masks and how many times you can do it without reducing filtration efficiency.

Co-produced with ACS External Affairs & Communications and ACS Publications.

VIRTUAL INTERVIEWING
IN A FAST-CHANGING ECONOMY

Monday Rebroadcast

Monday, June 22, 2020 at 2-3pm ET
Speakers: Bob Conell and Aileen Hedin of Staffing Advisors
Moderator: Brooke Lockhart, Staffing Advisors

What You Will Learn:
- How virtual interviewing differs from in-person interviewing and how you can use the format to your advantage.
- How to make an effective case for yourself (without bragging).
- How to apply timeless principles that are successful in any interview setting and at every career level.

Co-produced with ACS Industry Member Programs.

Learning to LOVE BREVITY & CLARITY

Tuesday, June 23, 2020 at 2-3pm ET
Speakers: Mark Jones, Dow Chemical
Moderator: Bryan Tweedy, American Chemical Society

What You Will Learn:
- Accessible communication does not mean simplistic communication.
- Brevity is both appreciated and improves clarity.
- Self-editing is the surest way to improve clarity and attain brevity.

Co-produced with ACS Professional Education.

www.acs.org/acswebinars
ACS Efforts and Resources on COVID-19

- **YOU MAY RECEIVE A ONE-YEAR WAIVER ON YOUR NATIONAL DUES** If your membership is up for renewal, but you’re experiencing a special hardship, such as unemployment, furlough, reduced wages or illness.

- **RECEIVE ACCESS TO LINKEDIN LEARNING THROUGH THE END OF THIS YEAR** This powerful resource includes over 15,000 on-demand courses to support your continued learning and career advancement for active ACS members.

- **INOVA EAP/WORK-LIFE ASSISTANCE PROGRAM** 24/7 assistance on a wide range of issues, such as emotional, relationship, major life, health, wellness, educational and more for ACS members based in the United States. Confidential services are provided via telephone or comprehensive online resources.

Browse ACS Resources and Initiatives!

www.acs.org/covid-19
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public on Tuesdays, Wednesdays, and Thursdays from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Archive will be broadcast on Mondays and Fridays from 2-3pm ET!

www.acs.org/acswebinars
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswbinars@acs.org
Free ACS Webinars Every Weekday!

Upcoming Broadcasts

FACE MASKS
MATERIALS, DISINFECTION & REUSE DURING COVID-19

Friday Rebroadcast

Friday, June 19, 2020 at 2-3pm ET
Speakers: Supratik Guha, University of Chicago, and Argonne National Laboratory and Yi Cui, Stanford University
Moderator: Laura Cassiday, American Chemical Society

What You Will Learn
- What types of fabrics and household cloth are effective in particle filtration and why
- The basics of particle filtration and data on filtration efficiencies as a function of size for common fabrics that are used in cloth masks
- How to disinfect N95 masks and how many times you can do it without reducing filtration efficiency

Co-produced with ACS External Affairs & Communications and ACS Publications

VIRTUAL INTERVIEWING
IN A FAST-CHANGING ECONOMY

Monday Rebroadcast

Monday, June 22, 2020 at 2-3pm ET
Speakers: Bob Conelli and Alleen Heddin of Staffing Advisors
Moderator: Brooke Lockett, Staffing Advisors

What You Will Learn
- How virtual interviewing differs from in-person interviewing and how you can use the format to your advantage
- How to make an effective case for yourself (without bragging)
- How to apply timeless principles that are successful in any interview setting and at any career level

Co-produced with ACS Industry Member Programs

Brevity & Clarity

Tuesday, June 23, 2020 at 2-3pm ET
Speakers: Mark Jones, Dow Chemical
Moderator: Bryan Tweedy, American Chemical Society

What You Will Learn
- Accessible communication does not mean simplistic communication
- Brevity is both appreciated and improves clarity
- Self-editing is the surest way to improve clarity and attain brevity

Co-produced with: ACS Professional Education

www.acs.org/acswebinars