Questions or Comments?
Type them into the questions box!

"Why am I muted?"
Don't worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat
Announcements and hyperlinks from our team
Let’s Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

Contact ACS Webinars® at acswebinars@acs.org

Where is the Webinar Recording?

All Registrants
Watch the unedited recording linked in the Thank You Email for 24 hours.

ACS Members w/ Premium Package
Visit the ACS Webinars® Library to watch the edited and captioned recording.
A science podcast by the American Chemical Society about things small in size but BIG in impact.

TO SUBSCRIBE
visit http://www.acs.org/tinymatters or scan this QR code

From ACS Industry Member Programs

- **Industry Matters Newsletter**
 ACS Member-only weekly newsletter with exclusive interviews with industry leaders and insights to advance your career.
 Preview & Subscribe: acs.org/indnews

- **ACS Innovation Hub**
 Connect, collaborate, and stay informed about the trends leading chemical innovation
A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

- ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
- Consultants provide personalized career advice to ACS Members.
- Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
“The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed! Thank you so much!”

Get in touch with the Office of Diversity, Equity, Inclusion & Respect

The Office of Diversity, Equity, Inclusion & Respect (DEIR) is the central hub at the American Chemical Society that coordinates, supports, and guides all efforts by staff, members, and governance toward Strategic Goal 5, “Embrace and Advance Inclusion in Chemistry.” The Office of DEIR at ACS is committed to empowering everyone, irrespective of lived experience and intersectionality of identities, to fully participate in the chemistry enterprise. The Office of DEIR welcomes comments, suggestions, and questions around issues of diversity, equity, inclusion, and respect from members at any time. Please do not hesitate to reach out to the Office through this form.

Please do not hesitate to reach out to the Office of DEIR at diversity@acs.org

Atlantic Basin Conference on Chemistry
Linking the World Through Chemistry
13-16 December 2022 | Marrakech, Morocco
Visit ABCChem.org for more information

ACS Career Resources

Professional Development & Education

ACSTransfer Education
ACSLeadership Development
ACS Brochures
Virtual Laboratories
ACS Books
ACSLibrary
Career Seminars
ACS Webinars

Managing Your Career

ACSPersonal Development
Career Consultations
OpenCHEM

Register for a 2022 Virtual Office Hour

How to Write a Resume
April 7, 2022

Entrepreneurship
June 2, 2022

Is Grad School Right for Me?
August 4, 2022

Careers in Government
May 5, 2022

Networking
July 1, 2022

Leadership and Soft Skills Development - What You Need to Advance in Your Career
September 1, 2022

https://www.acs.org/content/acs/en/careers/personal-career-consulting.html

https://www.acs.org/content/acs/en/careers/developing-growing-in-your-career.html
Role of Polymer Science in Water Purification Membranes
Thurs., May 5, 2022 | 2:00pm–3:30pm ET
Co-produced with the ACS Division of Polymer Chemistry

Adapting to Climate Change: Insights from Indigenous Peoples
Wed., May 11, 2022 | 2:00pm–3:00pm ET
Co-produced with ACS Policy and the American Association for the Advancement of Science

Careers in Chemical Safety for Chemists
Thurs., May 12, 2022 | 2:00pm–3:00pm ET
Co-produced with the ACS Division of Chemical Health and Safety and the ACS Committee on Chemical Safety

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswebinars
THE RESEARCH LANDSCAPE FOR GREEN ENERGY

FROM HYDROGEN FUEL TO SOLAR CELLS AND BEYOND
CAS connects the world's science

At CAS, our passion is advancing scientific progress.
We are proud to partner with innovators across industries, enabling them to maximize the power of connected scientific information to advance discovery and get solutions to market faster.

BETWEEN PROBLEMS AND PROGRESS ARE CONNECTIONS THAT MATTER

Expert Panelists & Moderator

Leilani Lotti Diaz
Information Scientist, CAS

Yiying Wu
Leet Professor, The Ohio State University

Dharik Mallapragada
Research Scientist, MIT Energy Initiative

Gilles Georges
Chief Scientific Officer, CAS
Green energy technologies
Why we need them and renewable energy trends

- Dependence on fossil fuels
 - Climate change
 - CO₂ emissions
 - Pollution/ecological consequences
 - SO₂, NOₓ, soot
 - Finite resource
 - Energy dependence on foreign resources
Energy Carriers
Solution for fluctuation and portability of renewables

- Are a fuel or system
- Store energy for future use
- Examples:
 - Fossil fuels
 - Batteries
 - Hydrogen

LIB recycling is a challenge
With high growth in hydrometallurgy and pyrometallurgy

Metals recovered from Li-ion batteries
Recycling of LIBs high commercial value

China and patent publications are leading the way driven by the future potential

Green hydrogen has different challenges

Driven by lack of infrastructure

- **Production**
 - Cost of Catalysts (Pt, Pd)
 - Hydrogen Evolution Reaction

- **Storage**
 - Safety
 - Costs
 - Transportation
 - Materials Based

- **Fuel Cell Utilization**
 - Cost of Catalysts
 - Oxygen Reduction Reaction
China leads green hydrogen publications
Japan in 2nd place and the US comes in 3rd

Publications by Country

Publication Trends by Country

Audience Survey Question

Among the three research topics listed below, which one do you think need more research attention than what it has currently?

• Hydrogen production
• Hydrogen storage
• Hydrogen fuel cells
• Not sure
• Other (Let us know more in the chat!)

* If your answer differs greatly from the choices above tell us in the chat!
Solar Cell and Rechargeable Battery Technologies

Yiying Wu, Ph.D

Department of Chemistry & Biochemistry
The Ohio State University
Columbus, Ohio
Organic-Inorganic Hybrid Perovskite Solar Cells (PSCs)

A: Organic cation, such as \(\text{CH}_3\text{NH}_3^+ \)
M: Metal ion, such as \(\text{Pb}^{2+} \)
X: Halogen ion, such as \(\Gamma \)

Hole transport material (HTM)
Electron transport material (ETM)

In collaboration with Prof. Jing Cao, *J. Am. Chem. Soc.*, 2019, 141, 6345

Large area processing & hole transporting

Morphology control and reduction of defects formation

In collaboration with Prof. Jing Cao, *J. Am. Chem. Soc.*, 2019, 141, 6345

“They created a rechargeable world”
--- nobelprize.org

Critical Elements Scalability

Cite this: RSC Advances, 2012, 2, 7933–7947

www.rsc.org/advances

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy†
Peter C. K. Vesborg* and Thomas F. Jaramillo

An estimate based on 1 TW x 24 hr:
For Pb-acid batteries, need 100 yrs worth of current lead production;
For Li-ion batteries, need 160 yrs worth of current lithium production;
What % of the world electricity generation comes from renewable energy in the year of 2020?

• 2%
• 10%
• 29%
• 40%

* If your answer differs greatly from the choices above tell us in the chat!
Role for hydrogen in future low-carbon energy systems: insights from systems modeling

Dharik S. Mallapragada

ACS-CAS presentation

May 4, 2022
There have been previous waves of interest in the hydrogen economy, so what might be different this time?

Fuel cell cars sold and leased in US as of December 1, 2021: 12,187

Recent renewed interest in H\textsubscript{2} or H\textsubscript{2}-derived carriers appears to focus on enabling decarbonization of across multiple end-uses where direct electricity use may be challenged

Department of Energy vision for H\textsubscript{2} use in low-carbon system1

Recent U.S. government initiatives:
- Hydrogen Earthshot $1/kg "clean hydrogen" by 2030
- Defining "clean" hydrogen \(\leq 2\text{kgCO2eq/kg H2}\)
- US DOE hydrogen hubs - $8 Billion
- US Nuclear fleet credit program

Regional initiatives:
- California Low-carbon fuel standard

1 https://www.energy.gov/eere/fuelcells/h2scale
H₂ value proposition influenced by its interactions with other energy related infrastructure (electricity, gas, CO₂) as well as its potential uses across multiple sectors

Sectoral interactions with multiple energy vectors

- How does sector coupling influence least-cost infrastructure outcomes?
- What are the implications for the design of emerging low-carbon technologies?
- With increased inter-dependency, what are the trade-offs between cost-saving and system resilience and reliability

Questions of interest

Impact of sector coupling - flexible electrolysis + H₂ storage reduces role of dispatchable low-carbon generation (gas) and battery storage in power sector under carbon constraints

Coupled approach

- Min CAPEX + OPEX + Emission Cost
- Power System
- H₂ to Power
- Hydrogen infrastructure
- Transportation energy demand

Decoupled approach

- Min CAPEX + OPEX + Emission Cost
- Power System
- Baseline electricity demand
- Transportation energy demand

Power system generation change due to sector coupling

- More generation in coupled approach

Northeast case study, $300/kW electrolyser capital cost

Systems analysis can support innovation in emerging H₂ technologies for production, storage and transport: liquid H₂ vs. liquid organic hydrogen carriers

Liquid organic hydrogen carriers (LOHC)

- **H₂-rich molecule (methylcyclohexane)**
- **Heat**
- **Hydrogenation**
- **Dehydrogenation**
- **H₂-lean molecule (toluene)**

Liquid H₂ (LH₂)

- **Electricity Input**
- **Liquefaction**
- **Liquid Storage**
- **Evaporation**
- **Boil-off losses**

Some important areas for hydrogen deployment at scale needing further research

- **Scalability and durability of electrolysis systems under dynamic operation**
 - Catalyst loadings for currently PEM electrolyzers: 700 kg Ir/GW \rightarrow 9 X global production to meet projected electrolyzer deployment in 2030 a net-zero scenario
 - Degradation under dynamic operation

- **Thermo-electrochemical methane reforming for compressed H₂ (and capture ready CO₂) production**

- **Methane pyrolysis**

- **Advances in low-carbon natural gas based H₂ production**
 - Reducing methane emissions from gas supply chain
 - Improving capture rate, co-product generation, process flexibility

Hydrogen storage in geological formations (e.g. salt deposits, depleted oil and gas reservoirs) to provide large-scale energy storage

- 5 facilities existing today use salt deposits

3. https://arts-e.energy.gov/sites/default/files/1%20Marc%20Von%20Keitz..pdf

1. Salt deposits and used/unused known salt domes in the US
Thank you

dharik@mit.edu
@dhariksm

Relevant publications
Can Industrial-Scale Solar Hydrogen Supplied from Commodity Technologies Be Cost Competitive by 2030
Decarbonization synergies from joint planning of electricity and hydrogen production: A Texas case study
Sector coupling via hydrogen to lower the cost of energy system decarbonization
Hydrogen Supply Chain Planning with Flexible Transmission and Storage Scheduling

Q&A
Please submit your questions in the "Questions" Panel.
Continue exploring
To learn more about green hydrogen’s emerging trends

CAS.ORG/GREENHYDROGEN

Blogs Whitepapers Articles Case Studies

© 2022 American Chemical Society. All rights reserved.

ACS.ORG/GREENHYDROGEN

ACS Webinars

TOMORROW!
Thurs., May 5, 2022 | 2:00pm–3:30pm ET
Role of Polymer Science in Water Purification Membranes
Co-produced with the ACS Division of Polymer Chemistry

NEXT WEEK!
Wed., May 11, 2022 | 2:00pm–3:00pm ET
Adapting to Climate Change: Insights from Indigenous Peoples
Co-produced with ACS Policy and the American Association for the Advancement of Science

NEXT WEEK!
Thurs., May 12, 2022 | 2:00pm–3:00pm ET
Careers in Chemical Safety for Chemists
Co-produced with the ACS Division of Chemical Health and Safety and the ACS Committee on Chemical Safety

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswebinars
Learn from the best and brightest minds in chemistry!

Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

*Requires FREE ACS ID

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org