Questions or Comments?

Type them into the questions box!

"Why am I muted?"
Don’t worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat

Announcements and hyperlinks from our team
Let’s Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

Contact ACS Webinars® at acswebinars@acs.org

Where is the Webinar Recording?

All Registrants
Watch the unedited recording linked in the Thank You Email for 24 hours.

ACS Members w/ Premium Package
Visit the ACS Webinars® Library to watch the edited and captioned recording.
ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

• ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.

• Consultants provide personalized career advice to ACS Members.

• Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

• A FREE common application that will highlight your achievements to participating Bridge Departments
• Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge

Email us at bridge@acs.org
ACS Scholar Adunoluwa Obisesan
BS, Massachusetts Institute of Technology, June 2021
(Chemical-biological Engineering, Computer Science & Molecular Biology)

“The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!”

GIVE TO THE
ACS SCHOLARS PROGRAM

Donate today at www.donate.acs.org/scholars

https://www.youtube.com/c/ACSReactions/videos
Looking for a new science podcast to listen to?

TO SUBSCRIBE
visit http://www.acs.org/tinymatters or scan this QR code

Check out Tiny Matters, from the American Chemical Society.

Voices and Stories from the World of Chemistry

cen.acs.org/sections/stereo-chemistry-podcast.html
APPLY Today!
www.acs.org/industryworkshop

A PhD Workshop for Industrial Careers
WEDNESDAY, JUNE 21 2023 | 1:00 – 5:30 PM ET

Apply today for a chance to win $500 and an interview with DuPont!

13

ACS Industry Member Programs

• ACS Industry Matters
ACS member only content with exclusive insights from industry leaders to help you succeed in your career. #ACSIndustryMatters
Preview Content: acs.org/indnl

• ACS Innovation Hub LinkedIn Group
Connect, collaborate and stay informed about the trends leading chemical innovation.
Join: bit.ly/ACSinnovationhub

14
ACS on Campus is the American Chemical Society’s initiative dedicated to helping students advance their education and careers.

Register for an ACS Institute course to gain new skills and excel in your career!

ACS Institute courses not only give you the tools you need to stay on top of new technology and growing trends in the science industry but also the professional development skills to advance in your career.

Each course is developed and reviewed by subject matter experts to bring you the high-quality instruction you’ve come to expect from ACS.

ACS member and early bird discounts are available.

Explore online live, in-person and on-demand courses at institute.acs.org
Advancing ACS' Core Value of Diversity, Equity, Inclusion and Respect

Resources

Inclusivity Style Guide
Enables to help staff and members use language and images that respect diversity in all th
ACS Webinars on Diversity
Covering diversity and inclusion in the workplace
ACS Publications DEIR Hub
See what ACS publications are doing to foster inclusivity in scholarly publishing
ACS Volunteer and ACS Meetings Code of Conduct
Fostering a positive and welcoming environment for attendees, volunteers, and staf
C&EN Trailblazers
Each highlights individuals from different backgrounds who are making an impact in chemistry.
NEW! Download DEIR Educational Resources
Download this educational guide for additional recommendations on videos, articles, books, podcasts, and more on diversity, inclusion, and related topics.
Quick Guide: Inclusion Moments
Learn more about what inclusion moments are and ideas to host during your meeting.
Quick Guide: How to Host Inclusive In-Person Events
Recommendations and best practices to ensure that your events can accommodate everyone.

Diversity, Equity, Inclusion, and Respect

Equity**
Seeks to ensure for treatment, equality of opportunity, and fairness in access to information and resources for all. We believe it is only possible in an environment built on respect and dignity. Equity requires the identification and elimination of barriers that have prevented the full participation of some groups.

Diversity**
The representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, tribe, class, socio-economic status, thinking and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

Inclusion**
Builds a culture of belonging by actively inviting the contribution and participation of all people. Everyone’s voice adds value, and ACS strives to create balance in the face of power differences. In addition, no one person can or should be called upon to represent an entire community.

Respect
Ensures that each person is treated with professionalism, integrity, and ethics underpinning all interpersonal interactions.

https://www.acs.org/diversity

TWENTY-SEVENTH ANNUAL GREEN CHEMISTRY & ENGINEERING CONFERENCE
June 13–15, 2023 | Long Beach, CA & Hybrid

Closing the Loop: Chemistry for a Sustainable Future

Register Today
Save up to $200 on Early Registration Pricing!

Register Now!

www.gcande.org
Register for Free

Browse the Upcoming Schedule at www.acs.org/acswebinars
THIS ACS WEBINAR® WILL BEGIN SHORTLY...

🖐 Say hello in the questions window!

www.acs.org/acswebinars

Characterizing and Tailoring Polymers using Nuclear Magnetic Resonance

ERIN STACHE, PhD
Assistant Professor, Department of Chemistry and Chemical Biology, Cornell University

TARA MEYER, PhD
Professor, Chemistry Department and the McGowan Center for Regenerative Medicine, University of Pittsburgh

RACHEL LETTERI, PhD, MS
Assistant Professor, Department of Chemical Engineering, University of Virginia

DOMINIK KONKOLEWICZ, PhD
Professor, Graduate Director & Assistant Chair, Department of Chemistry and Biochemistry, Miami University

This ACS Webinar® is co-produced with the Polymeric Materials: Science & Engineering (PMSE) Division of the American Chemical Society.
Characterizing and Tailoring Polymers using Nuclear Magnetic Resonance

ACS PMSE Webinar
Thursday, April 6, 2023

Spider Silk: Sequence Yields Desirable Materials Properties

Spider Silk: Sequence Yields Desirable Materials Properties

Vollrath, Polymer, 2009, 50, 5623

Random PLGAs

poly(lactic-co-glycolic acid)

Biodegradable – Biocompatible – FDA Approved

Random copolymer
Sequence Classes

Structural Sequence

- Homopolymer
- Alternating
- Periodic sequence
- Block copolymer
- Random

Stereosequence

- Isotactic
- Syndiotactic
- Periodic sequence + stereoblock
- Periodic sequence + syndiotactic

Structural Sequence + Stereosequence

- *For polymers whose symmetry does not allow the assignment of absolute chirality, tacticity refers to the relationship of the pseudochiral substituents on adjacent monomers*

Synthesis of Polymers: Segmer Assembly

Trimeric Segmer

\[
\text{HO} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{R} \quad \text{O} \\
\text{R} \quad \text{O} \quad \text{R} \quad \text{O} \quad \text{OH}
\]

R: H or CH₃

1.5 eq DIC
0.2 eq DPTS
3.0 M, CH₂Cl₂
3 h

RSC Polymer

\[
\text{R} \quad \text{O} \quad \text{O} \quad \text{R} \\
\text{O} \quad \text{R} \quad \text{O} \\
\text{R}
\]

R: H or CH₃

Using NMR to Characterize Microstructure in PP

Polypropylene

\[m = \text{meso} \rightarrow \text{isotactic} \]
\[r = \text{racemo} \rightarrow \text{syndiotactic} \]

\(^1\text{H} \text{ NMR} \]

syndiotactic

isotactic

\[^{13}\text{C} \text{ NMR} \]

methylene

atactic

methyl

Using NMR to Characterize Microstructure in PLA

Using NMR to Characterize Microstructure in PLGA

Assigning structures past the dyad level is challenging even when stereosequence is not a variable

13C NMR (Isotactic)

1H NMR (Isotactic)

Poly LG: Sequenced Copolymer

 poly(L-lactic acid) (L) poly(R-lactic acid) (L) Glycolic acid (G) t = isotactic s = syndiotactic

<table>
<thead>
<tr>
<th>Tetrads</th>
<th>i i i</th>
<th>i s</th>
<th>s s</th>
<th>i s</th>
<th>s i</th>
<th>i i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG</td>
<td>i i i</td>
<td>i i i</td>
<td>s s s</td>
<td>i i i</td>
<td>i i i</td>
<td>i i i</td>
</tr>
<tr>
<td>L_{iso}G</td>
<td>i i i</td>
<td>i s</td>
<td>s s</td>
<td>i s</td>
<td>s i</td>
<td>i i</td>
</tr>
<tr>
<td>GLGL_R</td>
<td>i i i</td>
<td>i i i</td>
<td>s s s</td>
<td>i i i</td>
<td>i i i</td>
<td>i i i</td>
</tr>
</tbody>
</table>

60% LG + 40% L_{iso}G

^1H NMR Spectra of Poly LGs

S-lactic acid (L) R-lactic acid (L) Glycolic acid (G)
Nearly Tetrad Level Resolution

<table>
<thead>
<tr>
<th>Tetrad</th>
<th>Shift</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>4.857</td>
<td>(1,2)</td>
</tr>
<tr>
<td>III</td>
<td>4.857</td>
<td>(1,2) or (3,4)</td>
</tr>
<tr>
<td>III</td>
<td>4.855</td>
<td>(1,2) or (3,4)</td>
</tr>
<tr>
<td>III</td>
<td>4.855</td>
<td>(1,2) or (3,4)</td>
</tr>
<tr>
<td>III</td>
<td>4.813</td>
<td>6 or 7</td>
</tr>
<tr>
<td>III</td>
<td>4.809</td>
<td>6 or 7</td>
</tr>
<tr>
<td>III</td>
<td>4.808</td>
<td>5 or 8</td>
</tr>
<tr>
<td>III</td>
<td>4.804</td>
<td>5 or 8</td>
</tr>
</tbody>
</table>

*CDCl₃ at 600 MHz.

Diasterotopic protons

Tetrad level resolution = 8 combinations

Poly LLG Stereoisomers

\[\text{L}_{2}\text{L}_{2}\text{G} \quad \text{2x Stereopure S-lactic} + \text{G} \]
\[\text{L}_{n}\text{L}_{n}\text{G} \quad \text{2x Stereopure R-lactic} + \text{G} \]
\[\text{L}_{2}\text{L}_{2}\text{G} \quad \text{Stereopure S-lactic} + \text{R-lactic} + \text{G} \]
\[\text{L}_{n}\text{L}_{2}\text{G} \quad \text{Stereopure R-lactic} + \text{S-lactic} + \text{G} \]
\[\text{L}_{\text{rac}}\text{L}_{4}\text{G} \quad \text{rac-lactic} + \text{stereopure R-lactic} + \text{G} \]
\[\text{L}_{2}\text{L}_{\text{rac}}\text{G} \quad \text{Stereopure R-lactic} + \text{rac-lactic} + \text{G} \]
\[\text{L}_{\text{rac}}\text{L}_{\text{rac}}\text{G} \quad \text{2x rac-lactic} + \text{G} \]

Tacticity in Poly LLG

\[\text{Poly LLG} \]

Adj. Dist.

- **G-centered octad**
 - \[i \quad S \quad S \quad i \quad i \quad S \quad S \]

- **L^C-centered octad**
 - \[i \quad S \quad S \quad i \quad i \quad S \quad S \]

- **L^0-centered octad**
 - \[i \quad S \quad S \quad i \quad i \quad S \quad S \]

- **Central tetrad**

- **S-lactic acid (L)**
- **R-lactic acid (L^R)**
- **Glycolic acid (G)**

- \[i \] = isotactic
- \[s \] = syndiotactic

- **L^C** Lactic unit on C-side of Glycolic unit
- **L^0** Lactic unit on O-side of Glycolic unit

- Adj. Adjacent relationship
- Dist. Distant relationship

- Center of the polyad
Possible Tacticity in Poly LLGs

<table>
<thead>
<tr>
<th>Tetrads</th>
<th>Poly LLG</th>
<th>Poly LaLG</th>
<th>Poly L(RGLLG</th>
<th>Poly LaLG (LGLLG</th>
<th>Poly L(LGLLG</th>
<th>Poly L(RG)LG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iiii</td>
<td>sssss</td>
<td>sssss</td>
<td>iiii i</td>
<td>iiii i</td>
<td>iiii i</td>
</tr>
<tr>
<td>Hexads</td>
<td>iiii i</td>
<td>sssss</td>
<td>sssss</td>
<td>iiii i</td>
<td>iiii i</td>
<td>iiii i</td>
</tr>
<tr>
<td>Octads</td>
<td>iiii i</td>
<td>sssss</td>
<td>sssss</td>
<td>iiii i</td>
<td>iiii i</td>
<td>iiii i</td>
</tr>
</tbody>
</table>

1H NMR for a Selection of LLG Polymers

- Poly LLG
- Poly LaLG
- Poly L(RGLLG
- Poly L(LGLLG
- Poly L(RG)LG

![NMR Spectra](image-url)
Resolution Depends on Sequence

Octad Level Resolution in Poly LLG

30 backbone atoms
Assigning L units in Poly L_xLGs

2D HMBC NMR Spectra

1H-13C correlation (3 bonds)
A – Poly LLG
B – Poly L_pLLLG
C – Poly L_pLG

13C Spectra of LLGs
Mixtures of Structural Sequences

- Stereochemistry controlled
- Structural sequence mixed

Glycolic methylene region of a mixed 1H NMR spectrum for mixed sample (1:1:1) of poly LG, GLG and LLG at 600 MHz in CDCl$_3$.

Mixtures of Stereosequences

- Stereochemistry mixed
- Structural sequence controlled

Glycolic methylene region of poly L$_{rac}$L$_{rac}$G at 700 MHz in CDCl$_3$.
1H NMR Sensitivity to Conformation

Diastereotopic glycolic acid protons exhibit significant shift differences in the ring-closed and ring-opened version.

Sensitivity: Structural vs. Stereo

Hexad
- iisi
- LLGLL

Octad
- siiiss
- GLLGLGG

Hexad
- iisi
- LLGLL

Octad
- iiiiiii
- GLLGLGG

Hexad
- iiiiiii
- LLGLL

Octad
- iiiiiiiii
- LLLGLLL
Sensitivity: Structural vs. Stereo

Structural ≠ Stereo =

Hexad

Octad

LLLGLLL

LLLGLLL

GLLGGG

GLLGGG

LLLGLLL

LLLGLLL

Structural ≠ Stereo =
Sensitivity: Structural vs. Stereo

Structural =
Stereo ≠

Hexad

iiisii
LLGLL

L_R L_R G L_S L_S G

Octad

siisiis
GLGGLLL

iiisii
LLGGL

L_R L_R L_R G L_S L_S G

iii
LLGL

iiisi
LLGLG

L_R L_R G R L_R L_R G

iiiii
LLGGL

iiiiii
LLGLL

L_R L_R L_R G L_R L_R G

ppm

4.85
4.80
4.75
4.70
4.65
4.60
Conclusions: Distinctive Fingerprints

Poly $L_{\text{rac}}LG$

Poly $LL_{\text{rac}}G$

Conclusions: Conformational Control

- Each sequence exhibits different conformational preferences in CDCl$_3$
- Spectra exhibit unusually good resolution for polymeric chains
- Conformation is affected more by stereosequence than structural sequence
Conclusions: Assignment Challenges

Chemical shifts assignments made from complex mixtures do not perfectly correlate with those made based on isolated sequences.

Conclusions: Goldilocks System

- Monomer backbone is short (3 atoms)
- Sufficient # of protons to encode information but not so many that information is lost due to overlap
- Strong conformational preferences
- Stereoactive monomers
- Diastereotopic protons whose shift responds to conformational changes
Current Students
Megan Clark
Anneliese Schmidt
Jordan Fitch
Sarah Craig
Emily Barker
Charis White
Michael Cole

Former students involved in this project
Dr. Ryan M. Stayshich
Dr. Ryan Weiss
Dr. Michael Washington
Dr. Jamie Nowalk
Dr. Jordan Swisher

THE DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING

At the forefront of polymeric design and applications

The Polymeric Materials: Science and Engineering (PMSE) Division helps connect scientists seeking to leverage the unique design, functionality, engineering, and properties of macromolecules in challenging applications

Advancing Polymer Research
Developing New Members
Connecting Our Community

pmsedivision.org
THE LIVE Q&A IS ABOUT TO BEGIN!
Keep submitting your questions in the questions window!

Thursday, April 13, 2023 | 2:00-3:30pm ET
Engineering Polymers that Prevent Rejection of Gene Therapy and 3-D Printed Implants
Co-produced with the ACS Division of Polymer Chemistry

Friday, April 14, 2023 | 8:30-9:30am ET
An Indian Millennial Journey: Engineering to UPSC to MBA
Co-produced with the ACS International and ACS Publications

Monday, April 17, 2023 | 1-2pm ET
Towards an Integrated Algae Biorefinery
Co-produced Chemists Celebrate Earth Week, ACS GCI, and ACS Publications

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswебinars
Learn from the best and brightest minds in chemistry!

Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings
are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts
of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org