Questions or Comments?
Type them into the questions box!

"Why am I muted?"
Don't worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat
Announcements and hyperlinks from our team
Let’s Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

@AmerChemSociety @AmericanChemicalSociety @amerchemsociety

linkedin.com/company/american-chemical-society

Contact ACS Webinars® at acswebinars@acs.org

Where is the Webinar Recording?

All Registrants
Watch the unedited recording linked in the Thank You Email for 24 hours.

ACS Members w/Premium Package
Visit the ACS Webinars® Library to watch the edited and captioned recording.
A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.

Consultants provide personalized career advice to ACS Members.

Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
APPLY Today!
www.acs.org/industryworkshop

A PhD Workshop for Industrial Careers
WEDNESDAY, JUNE 21 2023 | 1:00 – 5:30 PM ET

Apply today for a chance to win $500 and an interview with DuPont!

ACS Career Resources

https://www.acs.org/content/acs/en/careers/personal-career-consulting.html
https://www.acs.org/content/acs/en/careers/developing-growing-in-your-career.html
If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:
- A FREE common application that will highlight your achievements to participating Bridge Departments
- Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge

Email us at bridge@acs.org
ACS OFFICE OF DEIR
Advancing ACS’ Core Value of Diversity, Equity, Inclusion and Respect

Resources

Inclusivity Style Guide
Inclusive to help staff and volunteers use language and images that respect diversity in all forms.

ACS Webinars on Diversity
Growing diversity and inclusion in the workplace.

ACS Publications DEIR Hub
See what ACS publications is doing for fostering inclusivity in scholarly publishing.

Advancing DEIR and ACS Meetings Code of Conduct
Fostering a positive and welcoming environment for attendees, volunteers and staff.

C&EN Trailblazers
Each highlights stories from different backgrounds who are making an impact in chemistry.

NEW! Download DEIR Educational Resources
Download this educational guide for additional recommendations on videos, articles, books, podcasts, and more on diversity, inclusion, and related topics.

Quick Guide: Inclusion Moments
Learn more about what inclusion moments are and how to look for them during your meetings.

Quick Guide: How to host Inclusive in-person events
Recommendations and best practices to ensure that your events can accommodate everyone.

Diversity, Equity, Inclusion, and Respect
*Modified from definitions from the National Institute for Work Life

Equity**
Seeks to ensure fair treatment, equality of opportunity, and fairness in access to information and resources for all. We believe this is only possible in an environment built on respect and dignity. Equity requires the identification and elimination of barriers that have prevented the full participation of some groups.

Diversity**
The representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, tribe, caste, socio-economic status, thinking and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

Inclusion**
Builds a culture of belonging by actively inviting the contribution and participation of all people. Every person’s voice adds value, and ACS strives to create balance in the face of power differences. In addition, no one person can or should be called upon to represent an entire community.

Respect
Ensures that each person is treated with professionalism, integrity, and ethics, underpinning all interpersonal interactions.

https://www.acs.org/content/acs/en/about/diversity.html

https://www.youtube.com/c/ACSReactions/videos
Looking for a new science podcast to listen to?

TINY MATTERS

Check out Tiny Matters, from the American Chemical Society.

Sam Jones, PhD
Science Writer & Exec Producer

Debokshi Chakravarti, PhD
Science Writer & Co-Host

TO SUBSCRIBE
visit http://www.acs.org/tinymatters or scan this QR code

cen.acs.org/sections/stereo-chemistry-podcast.html
ACS Industry Member Programs

- **ACS Industry Matters**
 ACS member only content with exclusive insights from industry leaders to help you succeed in your career. #ACSIndustryMatters

 Preview Content: acs.org/indnl

- **ACS Innovation Hub LinkedIn Group**
 Connect, collaborate and stay informed about the trends leading chemical innovation.

ACS on Campus is the American Chemical Society’s initiative dedicated to helping students advance their education and careers.

acs.org/acsncampus
Register for an ACS Institute course to gain new skills and excel in your career!

ACS Institute courses not only give you the tools you need to stay on top of new technology and growing trends in the science industry but also the professional development skills to advance in your career.

Each course is developed and reviewed by subject matter experts to bring you the high-quality instruction you've come to expect from ACS.

ACS member and early bird discounts are available.

Explore online live, in-person and on-demand courses at institute.acs.org

ACS OFFICE OF DEIR

Advancing ACS’ Core Value of Diversity, Equity, Inclusion and Respect

Resources

- Inclusivity Style Guide
- ACS Webinars on Diversity
- ACS Publications DEIR Hub
- ACS Volunteer and ACS Meetings Code of Conduct
- EDI Trailblazers
- NEW! Download DEIR Educational Resources
- Quick Guide: Inclusion Moments
- Quick Guide: How to host inclusive in-person events
- Diversity, Equity, Inclusion, and Respect

Diversity

This representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, age, color, religion, economic status, thinking and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

Equity

Ensures all individuals have fair treatment, equality of opportunity, and fairness in access to information and resources for all. The belief that this is only possible in an environment built on respect and dignity. Equity requires the identification and elimination of barriers that have prevented the full participation of some groups.

Inclusion

Enables a culture of belonging by actively inviting the contributions and participation of all people. Every person’s value adds value, and ACS strives to create balance in the face of power differences. In addition, no one person can or should be called upon to represent an entire community.

Respect

Ensures that each person is treated with professionalism, integrity, and ethics underlying all interpersonal interactions.

https://www.acs.org/diversity
CAS connect you to the world’s published science for better insights

- Over 50K scientific journals and documents
- Over 250 million substances
- Over 50 languages translated
- Over 64 patent offices worldwide

ACS Webinars®

www.acs.org/acswebinars

NEXT WEEK!

Wednesday, May 10, 2023 | 2-3pm ET
How You Can Benefit from New IRA Legislation
Co-produced with the ACS Office of Philanthropy

Thursday, May 11, 2023 | 2-3pm ET
Green Cards for Scientific Researchers
Co-produced with ACS Careers

Thursday, May 18, 2023 | 2-3pm ET
How to Safely Manage Chemicals in Educational Settings
Co-produced with ACS Division of Chemical Health & Safety and the Committee on Chemical Safety

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswebinars
THIS ACS WEBINAR® WILL BEGIN SOON...

Say hello in the questions window!

www.acs.org/acswebinars

Biomedical 3D Printing: Research Landscape, Applications, and New Innovative Materials

CHIA-WEI HSU, PhD
Information Scientist, CAS, a division of the American Chemical Society

SHRIKE ZHANG, PhD
Assistant Professor, Harvard Medical School

AXEL GUENTHER, PhD
Professor and Co-Director, Collaborative Centre for Research and Applications in Public Technologies (CRAFT), University of Toronto

ADAM W. FEINBERG, PhD
Professor, Regenerative Biomaterials and Therapeutics, Carnegie Mellon University

GILLES GEORGES, PhD
Vice President & Chief Scientific Officer, CAS, a division of the American Chemical Society

Download Presentation Slides Under Handouts Section

This ACS Webinar® is co-produced with CAS, a division of the American Chemical Society.
Breakthroughs in biomedical 3D printing

Decades in the making, recent advances have accelerated innovation

<table>
<thead>
<tr>
<th>Tissues/organs</th>
<th>Pharmaceuticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>First printed lung</td>
<td>Customized 3D printed drugs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bioprinting</th>
<th>Orthopedics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D bioprinting of heart valve</td>
<td>Hybrid biomaterials</td>
</tr>
</tbody>
</table>
Advancements in materials and techniques
Have enabled faster progress across the entire biomedical landscape

Materials

- **Natural**: gelatin, alginic acid, hyaluronic acid
- **Synthetic**: polycaprolactone, poly(lactic acid), polyethylene glycol
- **Inorganic**: titanium, hydroxylapatite

Techniques

- Powder bed fusion
- Jetting
- Extrusion
- Photopolymerization

Technique and materials are crucial drivers
Use cases and applications may dictate different prioritization across categories

<table>
<thead>
<tr>
<th>Tissues/organs</th>
<th>Pharmaceuticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusion</td>
<td>Extrusion</td>
</tr>
<tr>
<td>Photopolymerization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bioprinting</th>
<th>Orthopedics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetting</td>
<td>Powder bed fusion</td>
</tr>
<tr>
<td>Extrusion</td>
<td></td>
</tr>
<tr>
<td>Photopolymerization</td>
<td></td>
</tr>
</tbody>
</table>
Biomedical 3D printing application trend

Growth in materials is evident in all three classes
With key players emerging as publication trends
Growth in technique is driven by
Lower costs and material advancements

Global participation in biomedical 3D printing
Journals and patents

<table>
<thead>
<tr>
<th>Country</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>5,112</td>
</tr>
<tr>
<td>United States</td>
<td>4,255</td>
</tr>
<tr>
<td>Rep. of Korea</td>
<td>1,542</td>
</tr>
<tr>
<td>Germany</td>
<td>1,102</td>
</tr>
<tr>
<td>India</td>
<td>857</td>
</tr>
</tbody>
</table>
Handheld Skin Printer:
Rapid, wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns

CAS-ACS webinar, 3D Printing Materials in Biomedical Applications

May 4, 2023

Axel Guenther
University of Toronto

axel.guenther@utoronto.ca
Multinozzle Microfluidic Printhead for Biomaterial Sheet Extrusion

- One-step
- Continuous
- Dynamic control over material composition
- High throughput
- Scalable to 3D

Payload
Planar Organization
Coded Fluid
Coded Soft Material
Solidification
Time Dependent Molecular Transport
Stacked Layers
Tubular or Rolled-Up Multilayers

Microfluidic Printhead for Biomaterial Sheet Extrusion

Payload
Coded Fluid
Coded Soft Material
Solidification
Time Dependent Molecular Transport
Stacked Layers
Tubular or Rolled-Up Multilayers

Architected Biomaterial Sheets

Manual Stacking of Heterogeneous Biopolymer sheets

Rolled-Up Multilayered Bulk Soft Material

Tubular Soft Material

Architected Biomaterial Sheets with Cellular Payloads

Single Cell Patterning
- 1.2%w.v. alginate
- 19%v.v. Matrigel™
- 1.8mg/ml Collagen Type I
- 0.46mg/ml RGDs-functionalized
- 10million cell/ml

1Plouffe et al. Lab Chip 9, 2009.

Co-Culture

Cell Distribution

Leng et al. Adv. Mat. 2012, 24, 3650–3658 (with Milica Radisic)
Skin

- Largest organ of the body.

- Layered organization
 Epidermis, 0.2-0.5mm (dense barrier)
 Dermis, 0.5-20mm (fibrous collagen network)

- Total body surface area: 2.0-2.5m². Severe skin injuries (e.g., full-thickness burns) up to 80% skin loss

Handheld Skin Printer

Hakimi et al. Lab Chip (2018) 18, 1440-145
Characterization of Biomaterial Sheets

In-Situ Formation of Skin Tissues in vitro

In-Situ Delivery of Biomaterials in vivo

Hakimi et al. Lab Chip (2018) 18, 1440-145. (with Marc G. Jeschke)
in-vivo deposition on a porcine excisional wound model

Cheng, et al. (2020) *Biotfection* **12** (2) 025002
Cheng, et al. (2020) *Biofabrication* **12** (2) 025002

Cheng, et al. (2020) *Biofabrication* **12** (2) 025002
Summary

• Rapid in-situ bioprinting strategies based on multinozzle microfluidic printheads

• Formation of ECM-based biomaterial sheets and precursor tissues conformal to wound surface accelerates wound healing

• Current work: ECM-based granular bioinks with tailored printability and wound contraction, rapid biofabrication strategies for load bearing tissues.

axel.guenther@utoronto.ca
3D Bioprinting Human Tissues and the Path Towards Translation

Adam W. Feinberg, Ph.D.
Professor
Regenerative Biomaterials & Therapeutics Group
Department of Materials Science and Engineering
Department of Biomedical Engineering
Carnegie Mellon University

CTO and Co-Founder
FluidForm Inc

May 4, 2023

How do we get to therapeutic tissues & organs?

Volumetric Scaffolds with Patient-Specific Anatomical Structure

Heart Valves

Multiscale Vasculature from Coronary Arteries to Capillaries

Dense Ventricular Myocardium

Lee et al, Science (2019)
3D Printing → A Problem for Hydrogels & Cells

Fidelity is lost when printing hydrogels

3D Bioprinting of Soft Materials - SUPPORT

Tony Atala

Gabor Forgacs

Christopher Chen

Jennifer Lewis

Jordan Miller

Printed within a custom-made housing, this method can be used to create tissue of any shape.
FRESH → Supports Soft & Living Materials

- **Freeform Reversible Embedding of Suspended Hydrogels** (FRESH)
- Gelling fluid bioink is embedded into sacrificial support material
- Bath behaves as a yield stress fluid
- BioInk is uniformly supported during printing while it gels
- Support is melted to retrieve print

Embedded printing leaders
- Adam Feinberg (CMU)
- Jennifer Lewis (Wyss)
- Jason Burdick (UC)
- Tommy Angelini (UF)

FRESH → An Advanced Biofabrication Platform

Biologics
- Alginate
- Cell-Laden
- Cell Slurries
- Collagen
- Decell-ECM
- Fibrin
- GelMA
- Hyaluronic Acid
- Matrigel
- Silk Fibroin

Crosslinking
- pH-driven
- Ionic
- Photo-crosslinking
- Enzymatic
- Thermal
- “Click” chemistry

Synthetics
- Epoxies
- Photoresists
- Silicones
- Urethanes

Support Baths
- Gelatin
- Alginate
- Carbopol
- Agarose
- Cell/spheroid slurry
- Cell-laden

Print Pathing
- Layer-by-layer
- Non-planar layer-by-layer
- Freeform

Shiwariski et al, APL Bioengineering (2021)
Engineering a Contractile Human Ventricle

Cardiomyocyte alignment in printed ventricle wall

Calcium Imaging of Ventricle

Lee et al, Science (2019)

Building Multiscale Vasculature – Printing / Self-Assembly

Coronary Vasculature

Microvasculature Through GFs and Microporosity

CD31 Casted + VEGF

Lee et al, Science (2019)
Now that we can 3D bioprint cells and ECM, how exactly do we create tissues & organs?

- Tri-leaflet Heart Valve
- Organ-Scale 3D Printing
- ECM in the Developing Heart
- Bioinspired Matrix Design
- EHTs w/ Preload and Afterload
- Contractile Heart Tubes
Building a Functional Human Heart Tube

High-density Cardiac Syncytium

Contractile Function

Bead Tracking

Calcium Handling

Pumping

Collagen Scaffolds Guide Muscle Organization

Stang et al (Unpublished)
Patient-specific Decellularized ECM Scaffold for VML

- De-identified human CT image showing volumetric muscle loss (VML) injury with contralateral uninjured leg
- The scaffold (blue) was created by isolating the vastus lateralis muscle from the uninjured leg and overlaying it onto the injured leg
- The ECM scaffold was FRESH printed using decellularized ECM bioink with a length of ~14 cm
- Dimensional analysis of the 3D printed scaffold shows excellent fidelity with <1.5 mm mean deviation

Driving Tissue Biofabrication Forward

- Advanced tissue engineering applications, including disease models
- Multiscale solutions to vascularization
- Biomanufacturing platforms w/ advanced 3D imaging
- Translation to large animal pre-clinical models
- Supporting the research community through education and open-source technologies
- Development of commercial applications including biomanufactured medical devices & in vitro disease models
Acknowledgements

We are actively recruiting graduate students & postdocs to build human tissue

@RegenBio
http://regenerativebiomaterials.com

Collaborators

• Phil Campbell (CMU)
• Jana Kainerstorfer (CMU)
• Steve Badylak (Pitt)
• Peter Van der Meer (UGMC)
• Daniel Pijnappels (Leiden)

Disclosures

• FluidForm, Inc.
CTO & Co-founder

Participants/Collaborators

Zev Gartner, UC San Francisco
Beth Pruitt, UC Santa Barbara
Sarah Heilshorn, Stanford
Gordana Vunjak-Novakovic, Columbia
Ronke Olabisi, UC Irvine
Kevin Costa, Mount Sinai
Emilio Alacron, Univ of Ottawa
Shulamit Levenberg, Technion
Marcelle Machluf, Technion
Eben Alsberg, UI Chicago
Kent Leach, UC Davis
Monica Laronda, Northwestern
Reuben Govender, Univ. of Cape Town
Kris Killian, Univ. of New South Wales
Chelsea Magin, UC Denver
Christian Franck, Univ. of Wisconsin
Shelly Peyton, UMass Amherst
Riccardo Gottardi, U Penn
Jonathan Vande Geest, U Pitt
Ritu Raman, MIT
Brenden Baker, Univ. Michigan
Chris Highly, Univ. Virginia

3D BIOPRINTING OPEN-SOURCE WORKSHOP

BUILD A 3D BIOPRINTER - TAKE IT HOME - PRINT

Apply Now at http://3Dbioprint.org

December 2022
Data is valuable only when it is transformed into insight.

DATA

INFORMATION

HINDSIGHT

INSIGHT

CURATE

to give data meaning

CONNECT

information across disciplines

ANALYZE

to reveal insights
How You Can Benefit from New IRA Legislation
Co-produced with the ACS Office of Philanthropy

Green Cards for Scientific Researchers
Co-produced with ACS Careers

How to Safely Manage Chemicals in Educational Settings
Co-produced with ACS Division of Chemical Health & Safety and the Committee on Chemical Safety

Register for Free

Browse the Upcoming Schedule at www.acs.org/acswebinars

Learn from the best and brightest minds in chemistry!
Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

*Requires FREE ACS ID
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org