Questions or Comments?

Type them into the questions box!

"Why am I muted?"

Don’t worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat

Announcements and hyperlinks from our team
Let’s Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

Contact ACS Webinars® at acswebinars@acs.org

Where is the Webinar Recording?

All Registrants
Watch the unedited recording linked in the Thank You Email for 24 hours.

ACS Members w/Premium Package
Visit the ACS Webinars® Library to watch the edited and captioned recording.
A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

- ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
- Consultants provide personalized career advice to ACS Members.
- Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

• A FREE common application that will highlight your achievements to participating Bridge Departments
• Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge
Email us at bridge@acs.org
Make Our Future Greener Through Hydrocarbon Research

CALL FOR PROPOSALS | AUGUST 14 – SEPTEMBER 8, 2023

American Chemical Society Petroleum Research Fund
Seed Money for Petroleum-Relevant Science

ACS Scholar Adunoluwa Obisesan
BS, Massachusetts Institute of Technology, June 2021
(Chemical-biological Engineering, Computer Science & Molecular Biology)

“The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!”

GIVE TO THE

ACS SCHOLARS PROGRAM

Donate today at www.donate.acs.org/scholars
ACS OFFICE OF DEIR
Advancing ACS’ Core Value of Diversity, Equity, Inclusion and Respect

Resources

- Inclusivity Style Guide
 Designed to help staff and volunteers use language and images that respect diversity in all forms.

- ACS Webinars on Diversity
 Covering diversity and inclusion at the workplace.

- ACS Publications DEIR Hub
 See what ACS publications is doing for fostering inclusivity in scholarly publishing.

- ACS Volunteer and ACS Meetings Code of Conduct
 Establishing a positive and welcoming environment for all ACS members and staff.

- C&EN Trailblazers
 Each highlight stories from different backgrounds who are making an impact daily.

- DEIR Educational Resources
 Download this educational guide for additional recommendations on videos, articles, books, podcasts, and more on diversity, inclusion, and equity.

- Quick Guide: Inclusion Moments
 Learn more about what inclusive moments are and how to create them during your meetings.

- Quick Guide: How to host Inclusive In-Person Events
 Recommendations and best practices to ensure that your events can accommodate everyone.

Diversity, Equity, Inclusion, and Respect

- Equity**:
 Seeks to ensure for treatment, equality of opportunity, and fairness in access to information and resources for all. We believe this is only possible in an environment built on respect and dignity. Equity requires the identification and elimination of barriers that have presented the full participation of some groups.

- Diversity**:
 The representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, tribe, caste, socio-economic status, thinking, and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

- Inclusion**:
 Builds a culture of belonging by actively inviting the contribution and participation of all people. Every person’s voice adds value, and ACS strives to create balance in the face of power differences. In addition, our multifaceted career should be defined to represent an entire community.

- Respect
 Ensures that each person is treated with professionalism, integrity, and ethics undergirding all interpersonal interactions.

https://www.acs.org/diversity

https://www.youtube.com/c/ACSReactions/videos
Looking for a new science podcast to listen to?

Tiny Matters

Check out Tiny Matters, from the American Chemical Society.

TO SUBSCRIBE visit http://www.acs.org/tinymatters or scan this QR code.

c&en's STEREO CHEMISTRY

Carolyn Bernard and S. Barry Sharpe chat about sharing the 2020 Nobel Prize in Chemistry

Biometric authentication to prevent identity theft sparks bitter conflicts and novel chemistry

For John Goodenough’s 90th birthday, Stereo Chemistry revisits a few favorite interviews with the renowned scientist

Jess Wade on Wikipedia and work-life balance

The sticky science of why we eat so much sugar

There’s more to James Harris’s story

The helium shortage that wasn’t supposed to be

Subscribe now to C&EN’s podcast

cen.acs.org/sections/stereo-chemistry-podcast.html
ACS Industry Member Programs

• ACS Industry Matters
ACS member only content with exclusive insights from industry leaders to help you succeed in your career. #ACSIndustryMatters

Preview Content: acs.org/indnl

• ACS Innovation Hub LinkedIn Group
Connect, collaborate and stay informed about the trends leading chemical innovation.

Join: bit.ly/ACSinnovationhub

ACS on Campus is the American Chemical Society’s initiative dedicated to helping students advance their education and careers.

Get Results. Discover how to prepare an effective resume, interview with confidence, land a graduate or post-doctoral program, and more!

Get Published. Share your science with confidence - get essential tips for becoming a better writer, reviewer and communicator.

Get Ahead. Develop your career, network with local professionals, and learn how to leverage your ACS membership.

acsoncampus.acs.org
ACS Career Resources

Virtual Office Hours

Personal Career Consultations

Jim Tang
Ph.D., Analytical Chemistry
UO-Moss, University of Oregon
PhD, Organic Chemistry, University of Arkansas

Jim Tang works at Leucine (Laboratories) in Portland, OR, currently as a chemical development manager. He has been with Leucine for 10 years, working on developing new chemical banking projects. Before that, he was a research chemist at diverse Moss Building Campbell, a performing arts center, and chemistry.

He earned his bachelor’s degree from the University of Oregon, his Ph.D. in organic chemistry from the University of West Virginia, with postdoctoral experiences at the University of Iowa. He has interests in chemical, biology, and environmental science, and enjoys reading about new developments in chemistry.

https://www.acs.org/careerconsulting.html

LinkedIn Learning

https://www.acs.org/linkedInlearning

ACS Publications

Most Trusted. Most Cited. Most Read.

ACS Publications’ commitment to publishing high-quality content continues to attract impactful research that addresses the world’s most important challenges.

Get Access

Browse Content

All Subjects
Analytical
Applied
Biological
Materials Science & Engineering
Organic-Inorganic
Physical

https://pubs.acs.org
TWENTY-SEVENTH ANNUAL
GREEN CHEMISTRY &
ENGINEERING CONFERENCE
June 13-15, 2023 | Long Beach, CA & Hybrid

Closing the Loop: Chemistry for a Sustainable Future

Platinum Sponsor

Register Now! www.gcande.org

ACS Green Chemistry Institute
Chemistry for Life

AMERICAN CHEMICAL SOCIETY
MEETINGS & EVENTS

ACS
Chemistry for Life

FALL 2023
HARNESSING THE POWER OF DATA
AUGUST 13-17 | San Francisco, CA | Hybrid

https://www.acs.org/meetings/acs-meetings/fall-2023.html
Biosynthetic Breakthroughs: Paving the Way for Future Drug Development

CHRISTINA SMOLKE, PhD
CEO and Co-founder, Antheia, Inc., and Adjunct Professor, Bioengineering, Stanford University

YI TANG, PhD
Parsons Family Professor, Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, UCLA

CATHERINE GOODMAN, PhD
Senior Associate Publisher, American Chemical Society

This ACS Webinar® is co-produced with ACS Division of Medicinal Chemistry and ACS Publications.

Genome Mining of Fungal Natural Products

Yi Tang
Department of Chemistry and Biochemistry
Department of Chemical and Biomolecular Engineering
University of California, Los Angeles, USA
NP Biosynthetic Gene Clusters (BGCs)

Central dogma in biology and biosynthesis

DNA → RNA → Protein → NP

Biosynthetic genes are clustered

Genome

Balk and Tang, Natural Product Biosynthesis – Chemical Logic and Enzymatic Machinery 2017, RSC Press

Major Natural Products Families and BGCs

- Major NP families are assembled by “core, polymerizing” enzymes, and decorated by “tailoring” enzymes.

polyketides

nonribosomal peptides

terpenes

The anchoring core enzymes serve as the starting point for genome-driven NP mining.
Genome Mining of Natural Products

Pathway activation
Constitutively overexpress silent transcriptional factors

Oxaleimides from Penicillium oxalicum

IC_{50}: 0.32 μM (HeLa)

Epigenetic changes
Modify chromatin to make and P_{min} more accessible
Inactivate HDAC in C. arbuscula

Activated >75% of NP pathways, isolated 10 new compounds

Heterologous expression

Filamentous Fungi Baker’s yeast

Harvey, Science Advances 2018

Yee, JACS 2020

Genomics Guided Natural Product Discovery
How to mine new NPs from genomes?

~97% of Fungal biosynthetic gene clusters are uncharacterized

<table>
<thead>
<tr>
<th>Type of pathway</th>
<th>Characterized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyketides</td>
<td>127</td>
<td>4984</td>
</tr>
<tr>
<td>Nonribosomal peptides</td>
<td>81</td>
<td>2983</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>44</td>
<td>550</td>
</tr>
<tr>
<td>Diterpenes</td>
<td>25</td>
<td>336</td>
</tr>
<tr>
<td>Total</td>
<td>277 (3.1%)</td>
<td>8853</td>
</tr>
</tbody>
</table>

How to search through genomes for gene clusters of interest?
Can we search gene clusters based on desired biological activity and structural novelty?

Natural Products (NPs) and BGCs

Types of BGC

- Unknown
- Known

PKS, NRPS, Terpene cyclase, Etc.

Natural products (metabolites)

1. Known BGC, Known Compound
2. Unknown BGC, Known Compound
3. Known BGC, Unknown Compound
4. Unknown unknowns, biosynthetic dark matter
Natural Products (NPs) and BGCs

Types of BGC

PKS, NRPS, Terpene cyclase, Etc.

Natural products (metabolites)

Unknown BGC, Known Compound

Gene clusters

Natural products (metabolites)

Known BGC, Unknown Compound

Biosynthetic dark matter

Unknown BGC, Known Compound

From NP Biosynthesis to Biocatalysis

Biosynthesis

Science 2009

JACS 2009

ACIE 2013

Melonyl-CoA → Dihydromonocolin L (DML) → Monocolin J (MJ) → Lovastatin

Semisynthesis by biocatalysis

9 rounds of evolution

H₂O, NH₄OH

25°C, pH 9

98%, 75 g/L

Semisynthesis by biocatalysis

Used in commercial API manufacturing

LovG

LovB

LovC

LovD

LovF

LovE

Ro et al, JACS 2011

Lovastatin

Simvastatin

A U.S. EPA Program

2012

GREEN CHEMISTRY CHALLENGE

CODEXIS®
Natural Products (NPs) and BGCs

Types of BGC

PKS, NRPS, Terpene cyclase, Etc.

Unknown BGC, Known Compound

Known BGC, Unknown Compound

known

unknown

unknowns

biosynthetic dark matter

Unknown BCG-
Known Compounds

fluopsin

Bo Li and coworkers, Science 2021

altemicidin

Ikuro Abe and coworkers, Nature 2022

guanitoxin

Bradley Moore and coworkers, JACS 2022
Natural Products (NPs) and BGCs

Biosynthetic gene clusters (BGCs) were predicted by AntiSMASH 5.0
Output for a biocontrol fungus *Trichoderma afroharzianum* t-22

<table>
<thead>
<tr>
<th>Compound family</th>
<th># of BGC</th>
<th>Reported NPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyketides</td>
<td>16</td>
<td>harzianolide, pachybasin azaphilone</td>
</tr>
<tr>
<td>Nonribosomal Peptides</td>
<td>22</td>
<td>peptaibols, gliotoxin</td>
</tr>
<tr>
<td>Polyketide-peptide hybrids</td>
<td>8</td>
<td>trichosetin, harzianic acid,</td>
</tr>
<tr>
<td>Terpenes</td>
<td>11</td>
<td>abscisic acid*</td>
</tr>
<tr>
<td>RiPPs</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>9</td>
</tr>
</tbody>
</table>

Most predicted BGCs are cryptic and have no associated NPs
How to mine new NPs from genomes?

~97% of Fungal biosynthetic gene clusters are uncharacterized

<table>
<thead>
<tr>
<th>Type of pathway</th>
<th>Characterized</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyketides</td>
<td>127</td>
<td>4984</td>
</tr>
<tr>
<td>Nonribosomal peptides</td>
<td>81</td>
<td>2983</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>44</td>
<td>550</td>
</tr>
<tr>
<td>Diterpenes</td>
<td>25</td>
<td>336</td>
</tr>
<tr>
<td>Total</td>
<td>277 (3.1%)</td>
<td>8853</td>
</tr>
</tbody>
</table>

How to search through genomes for gene clusters of interest?

Can we search gene clusters based on desired biological activity and structural novelty?

What Makes a Known-Unknown BGC Novel?

- **Novel clusters lead to novel natural products**
 - A cluster that offers minimal clue to the structure of NP
 - For fungi, >30 kB of biosynthetic enzymes
 - Abundance of tailoring enzymes (redox enzymes transferases, PLP-dependent, pericyclases, etc)
 - Hypothetical proteins (including DUFs)
 - Atypical core enzyme domain arrangements
 - Combinations of core enzymes in a single cluster
 - Etc.
Example of KU Mining from Fungi

Penicillium oxalicum from Baja

OE wild type

Sato et al., *JACS*, 2017

The cluster is entirely conserved in *Aspergillus oryzae*, *Aspergillus turcosus*, etc.

Yee et al., *JACS*, 2020
Genome Mining for Desired Activity

<table>
<thead>
<tr>
<th>New Compound?</th>
<th>Bioactivity?</th>
<th>Target?</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>oxaleimide J</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Mining Guided by Self-Resistance Enzyme

Self-resistance enzyme
- provides the essential resistance needed to neutralize the effects of the natural product on the producing host.
- is frequently a mutated version of a housekeeping enzyme that is insensitive to the natural product and performs the same function.
- The encoding gene is colocalized in the natural product biosynthetic gene cluster.

Provides a predictive window to the function of the NP encoded by the gene cluster
Step 1: Biosynthetic cluster Identification

Step 2: NP Production and Target Validation

Step 3: Biological Activity Demonstration

Target: Branched Chain Amino Acid Biosynthesis

The BCAA pathway is present in bacteria, fungi and plants, but absent in animals and humans.

Attractive as targets for antimicrobials (esp anti TB) and herbicide development.
BCAA as herbicide targets

Acetolactate synthase (ALS)
Acetohydroxy acid isomeroreductase (KARI)
Dihydroxy acid dehydratase (DHAD)

1. Targeted for development of herbicide by major ag chemical companies with no success.
2. No crystal structure available.
3. No natural product inhibitor of DHAD is known.

A potential DHAD inhibitor BGC

A conserved fungal terpene BGC contains DHAD as second copy (60% identity) in addition to the housekeeping DHAD.
Heterologous Expression of BGC in Yeast

Saccharomyces cerevisiae

- **Kinetic parameters**
 - *Aspergillus terreus*
 - DHAD (housekeeping)
 - \(k_{\text{cat}} = 3.0 \text{ s}^{-1} \)
 - \(K_m > 20 \text{ mM} \)
 - IC\text{}_{50} = 0.31 \text{ mM} (sensitive)
 - **Arabidopsis thaliana**
 - DHAD (target)
 - \(k_{\text{cat}} = 1.2 \text{ s}^{-1} \)
 - \(K_m = 5.7 \text{ mM} \)
 - IC\text{}_{50} = 0.50 \text{ mM} (competitive) sensitive
 - **Aspergillus terreus**
 - AstD (resistance?)
 - \(k_{\text{cat}} = 0.05 \text{ s}^{-1} \)
 - \(K_m = 5.4 \text{ mM} \)
 - IC\text{}_{50} > 8 \text{ mM} (solubility limit) insensitive

Mechanism of Inhibition

- **DHAD (dihydroxyacid dehydratase)**
 - **DHAD**
 - dihydroxyacetone
 - dihydroxyacetone phosphate
 - **DHAD**
 - ketoacid
 - ketoacid phosphate

Yan, et al., Nature 2018
Herbicidal Activities of AA

Growth inhibition of plant on agar plate

Yan, et al. Nature 2018

Hexagon Bio
Menlo Park, CA

Genomics
- Strain collecting
- Strain dereplication
- Genome sequencing
- Genome assembly & annotation

Data Science
- Genome assembly & annotation
- Gene cluster mining
- Target prediction & gene cluster scoring
- LCMS data processing and analysis

Synthetic biology
- Manual gene cluster curation
- Cluster activation and expression
- Cluster product analysis and characterization

Drug Discovery
- Assay development
- Bioactivity screening of cluster products
- Medicinal chemistry and lead optimization
Natural Products (NPs) and BGCs

Types of BGC

- Known BGC, Known Compound
- Unknown BGC, Known Compound
- Known BGC, Unknown Compound
- Unknown BGC, Unknown Compound

Unknowns

- PKS, NRPS, Terpene cyclase, Etc.

Unknowns

- Biosynthetic dark matter

Unknown

- New methods to generate molecular scaffold (C-X bond formation)

Unknown

- Abundance of modification enzymes (redox enzymes, transferases, PLP-dependent enzymes, pericyclases, etc)

Natural products (metabolites)

Search for the Unknown/Unknown

What makes a cluster UU?

- No predicted core enzymes (PKS, NRPS, TS, Prenyltransferase) → new methods to generate molecular scaffold (C-X bond formation)
- Abundance of modification enzymes (redox enzymes, transferases, PLP-dependent enzymes, pericyclases, etc)
- Hypothetical protein (HP)
- DUFs (proteins with domains of unknown function)
- Etc.
Example of Unknown-Unknown BGC Mining

<table>
<thead>
<tr>
<th>Gene</th>
<th>Predicted Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>NIS synthetase</td>
</tr>
<tr>
<td>B</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>H</td>
<td>ABC bile acid transporter</td>
</tr>
<tr>
<td>A</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>D</td>
<td>PLP-dependent transferase</td>
</tr>
<tr>
<td>C</td>
<td>FAD monooxygenase</td>
</tr>
<tr>
<td>F</td>
<td>O-methyltransferase</td>
</tr>
<tr>
<td>G</td>
<td>Hypothetical protein</td>
</tr>
</tbody>
</table>

Heterologous recon. of ank cluster

New compound, but..

NK13650 C

NK13650 A
Biosynthesis of NK13650

Aspergillus thermomutatus (ank)

NIS P450 ABC HP PLP FMO MT AGE

E B H A D C F G

AnkA??

Building molecular complexity without core “polymerization” enzyme

AnkB C D E F G

NK13650 C

AnkA is the core enzyme?

AnkA is the core enzyme in this pathway!

Verified function in yeast

A Cyclo-Arg-Tyr synthase

AnkA

Verified function

citrate ligase

cytochrome P450

hypothetical protein

PLP-dependent C-O forming

FAD monoxygenase

O-methyltransferase

ATP grasp enzyme

AnkA is the core enzyme in this pathway!

Initial assignment

A hypothetical protein

518 aa protein

No predicted function

No characterized sequence homolog

No structural homolog

No sequence resemblance to NRPS or bacterial CDPS.

Yee, et al, Nature Chemical Biology 2023
Genome Mining of AnkA-like Enzymes

Over 100 homologs of AnkA detected from JGI/NCBI blast search

Fungal AnkA homologs (CDRPSs) generate rare and new-to-nature Cyclo-Arg-Xaa dididpeptides.
Using CDRPS to find UU Natural Products

Aspergillus versicolor (ava)

Aspergillus nidulans A1145

DY225

New compound identified from UU genome mining

<table>
<thead>
<tr>
<th>gene</th>
<th>predicted function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>cRW synthase (verified)</td>
</tr>
<tr>
<td>B</td>
<td>FAD monooxygenase</td>
</tr>
<tr>
<td>C</td>
<td>kynurenine formamidase (KFA)</td>
</tr>
<tr>
<td>D</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>E</td>
<td>transporter</td>
</tr>
</tbody>
</table>

DY225 may not represent the final NP of the cluster. Surrounding enzyme (including P450s) are currently being tested for function.
Conclusions

unknown BGC, known Compound | unknown unknowns
unknown | biosynthetic dark matter
Gene clusters

known BGC, known Compound | known BGC, unknown Compound
New Enzymes | New Structures
New Biosynthetic Logic | Targeted Bioactivities

Natural products (metabolites)

Current Members
Ike Okorafor
Moriel Dror
Yorick Chiang
Abner Abad
Chunsheng Yan
Colin Johnson
Wenyu Han
Theodosia Bartashevitch
Dr. Masao Ohashi
Dr. Zuodong Sun
Dr. Kanji Niwa
Dr. Yalong Zhang
Dr. Mengting Liu
Dr. John Billingsley (VS)

Former Members
Graduate students
Wenjun Zhang
Zhen Gu
Yanran Li
Xue Gao
Ralph Cacho
Jingjing Wang
Anthony DeNicola
John Billingsley
Cooper Jameson
Joshua Misa
Xinkai Xie
Hui Zhou
Kangjian Qiao
Peng Wang
Muxun Zhao
Carly Bond
Nicholas Liu
Eun Bin Go
Suzanne Ma
Lauren Pickens
Angelica Zabala
Wei Xu
Sunny Hung
Leibniz Hang
Undaramaa Bat-Erdene
Danielle Yee

Postdoctoral Fellows
Jiun Zhan
Yi Heng Chooi
Youcai Hu
Hsiao-Ching Lin
Xia Yu
Thomas Kakule
Tang Hai
De-wei Gao
Wonsoon Kim
Wenbing Yin
Sameh Solliman
Wei Xu
Yi Zou
Mancheng Tang
Mengbin Chen
Wei Cheng
LI LI
Nidhi Tibrewal
Jaclyn Winter
Muxun Zhao
Shuhan Gao
Bora Shin
Zuhan Zhang
Bruno Perlattti

Collaborators
Prof. K. N. Houk (UCLA)
Prof. Neil Garg (UCLA)
Prof. Jose Rodriguez (UCLA)
Prof. Hosea Nelson (Caltech)
Prof. Steve Jacobsen (UCLA)
Prof. Dino Di Carlo (UCLA)
Prof. Ben Tu (UTSW)
Prof. Kenji Watanabe (Shizuoka)
Prof. Jiahai Zhou (SIOC)

Funding Sources
National Science Foundation
National Institute of Health
Department of Agriculture
Packard Foundation
UCLA SEAS Endowment
UCLA SEAS Endowment

Visiting Scientists
Yingtong Di
Qian Liu
Li Li
Youxiang Song
Yuguang Zhu
Mengting Liu
Zhajun Zhan
Xuming Mao
Michio Sato
Tan Elan
Junfeng Wang
Wenyu Han
Wenming Chen
Dehai Li
Youming Ying
Ling Liu
Linan Xie

Conflict of Interest
Y. Tang is a shareholder of Hexagon Bio. Inc.
THE LIVE Q&A IS ABOUT TO BEGIN!

Keep submitting your questions in the questions window!

Register for Free

Browse the Upcoming Schedule at www.acs.org/acswebinars
Learn from the best and brightest minds in chemistry!

Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings

are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts

of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

*Requires FREE ACS ID

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org