Questions or Comments?

Type them into the questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat
Announcements and hyperlinks from our team
Let's Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

Contact ACS Webinars® at acswebinars@acs.org

Where is the Webinar Recording?

- All Registrants: Watch the unedited recording linked in the Thank You Email for 24 hours.
- ACS Members w/Premium Package: Visit the ACS Webinars® Library to watch the edited and captioned recording.
A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

- ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
- Consultants provide personalized career advice to ACS Members.
- Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

• A FREE common application that will highlight your achievements to participating Bridge Departments
• Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge
Email us at bridge@acs.org

ACS Scholar Adunoluwa Obisesan
BS, Massachusetts Institute of Technology, June 2021
(Chemical-biological Engineering, Computer Science & Molecular Biology)

“The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!”

GIVE TO THE

ACS SCHOLARS PROGRAM

Donate today at www.donate.acs.org/scholars
The impact and results of ACS member advocacy outreach and efforts by the numbers!

- **2439+** Members participated in Act4Chemistry
- **1739+** ACS Advocacy Workshops participants or enrollees
- **49** Years of Public Policy Fellows
- **2000** Letters sent to Congress

Get Involved | Enroll in a workshop | Become a Fellow | Take Action

https://www.acs.org/policy

ACS on Campus is the American Chemical Society’s initiative dedicated to helping students advance their education and careers.

acsoncampus.acs.org
ACS Industry Member Programs

- ACS Industry Matters
 ACS member only content with exclusive insights from industry leaders to help you succeed in your career. #ACSIndustryMatters
 Preview Content: acs.org/indnl

- ACS Innovation Hub LinkedIn Group
 Connect, collaborate and stay informed about the trends leading chemical innovation.
 Join: bit.ly/ACSinnovationhub

CALL FOR PAPERS

Exploring Covalent Modulators in Drug Discovery and Chemical Biology

Learn More
Register for Free Browse the Upcoming Schedule at www.acs.org/acswebinars

A Bond Worth Forming: The Rise of Targeted Covalent Inhibitors
Thursday, October 19, 2023 | 2-3:30pm ET
Co-produced with NCW and CAS, a division of the American Chemical Society

Microrobots que Limpian Agua Contaminada
Miercoles, 1 de Noviembre, 2023 | 2-3pm ET
Co-produced with the Sociedad Química de México

The Polymer Mechnanochemistry of Self-Healing Materials
Thursday, November 16, 2023 | 2-3:30pm ET
Co-produced with the ACS Division of Polymer Chemistry

Save 50% on ACS Membership with Code NCW23!
Offer is valid from Oct. 15 - 21, 2023, for new or upgrading members only.
Learn more at https://www.acs.org/membership.html
THIS ACS WEBINAR® WILL BEGIN SHORTLY…

Say hello in the questions window!

www.acs.org/acswebinars

The Healing Power of Chemistry:
Cutting Edge Antibiotic and Gene Therapy Research

JAYANTA HALDAR, PHD
Editor-in-Chief, ACS Infectious Diseases and International Publisher, New Chemistry Unit
Senior Associate Publisher, American Chemical Society

KARMELLA A. HAYNES, PHD
Associate Editor, ACS Synthetic Biology and Technical Publisher, Wallace H. Coulter Department of Biomedical Engineering, Emory University

CATHERINE GOODMAN, PHD
Senior Associate Publisher, American Chemical Society

This ACS Webinar® is co-produced with National Chemistry Week, ACS Publications, and the ACS Division of Medicinal Chemistry.
Pursuit of Next-Generation Glycopeptides: A Journey with Vancomycin

Jayanta Haldar
Professor
Editor-in-Chief of ACS Infectious Diseases
Antimicrobial Research Laboratory
New Chemistry Unit (NCU) and
School of Advanced Materials (SAMAT)
Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
Bangalore, INDIA
Email: jayanta@jncasr.ac.in Twitter: @jayanta_amr
Web: http://www.jncasr.ac.in/jayanta

National Chemistry Week, ACS Webinar, October 18, 2023

Plan of the Talk

- Glycopeptide antibiotics (Vancomycin) and mechanisms of action
- Inherent and acquired resistance to glycopeptides
- Next-generation glycopeptides to tackle resistance and complicated infections
Antimicrobial Resistance (AMR) – Global Threat

Impact of AMR
- 700,000 deaths annually
- 10 million deaths annually by 2050
- $100 trillion by 2050

Number of antibiotics approved

- Gap between the availability of new antibiotics and increasing severity of AMR is threatening to push the world towards a pre-antibiotic era.

Vancomycin: A natural glycopeptide antibiotic

- **Isolated:** from soil bacterium
 Amycolatopsis orientalis in 1952

- **Approved:** FDA 1958

Vancomycin

- **DRUG OF LAST RESORT**
- Used to treat: Gram-positive lethal bacterial infections such as Staphylococcal (MRSA), Enterococcal, *Clostridium difficile* infections
- **Diseases:** sepsis, endocarditis, skin infections, bone infection, pneumonia, *Clostridium difficile*-associated diarrhea etc.
- Side effects: kidney damage and hearing loss
Clinically approved Semi-synthetic glycopeptides

TELAVANCIN
- Approved in 2009
- Complicated skin and skin-structure infections (cSSSi)
- Hospital-acquired and ventilator-associated pneumonia caused by *S. aureus*, enterococci & streptococci.

DALBAVANCIN
- Approved in 2014
- Acute skin and skin-structure infections caused by methicillin-susceptible and resistant *S. aureus* (MSSA, MRSA), Streptococci and vancomycin sensitive *E. faecalis*

ORITAVANCIN
- Approved in 2014
- Acute skin and tissue infections caused by MRSA, MSSA, Streptococci and vancomycin-susceptible *E. faecalis*

Cell Wall (Peptidoglycan) Biosynthesis

Varki A et al. *Essential of Glycobiology*

Transporters/Flippases: FtsW, Muri, AMI

Paramita et al. *Med Chem Commun* 2017, 8, 516
Vancomycin: Mechanism of action

- Vancomycin is a cell wall biosynthesis inhibitor.
- It binds to D-alanyl-D-alanine (D-ala-D-ala) residues on the end of the growing peptidoglycan chain.
- This prevents the peptidoglycan chains from cross-linking, which weakens the cell wall and makes the bacterium more susceptible to lysis.

Concern of vancomycin resistant bacteria: Acquired resistance

- Vancomycin-resistant Enterococci (VRE)
- Vancomycin-intermediate-resistant Staphylococcus aureus (VISA)
- Vancomycin-resistant Staphylococcus aureus (VRSA)

- **Original strain**
 - D-Ala-D-Ala
 - \(K_a = 1.3 \times 10^9 \text{ M}^{-1} \)

- **Resistant strain**
 - D-Ala-D-Lac
 - \(K_a = 5 \times 10^7 \text{ M}^{-1} \)

Lack of one Hydrogen bond and the presence of lone pair repulsions:

- The binding constant decreases by ~1,000 fold.
- The antibacterial activity decreases by more than 100–1,000 fold.

Gram-negative bacteria: Inherent resistance to vancomycin

- Gram-Positive Bacteria (Staphylococcus aureus, Enterococcus faecium)
- Gram-Negative Bacteria (Escherichia coli, Pseudomonas aeruginosa)

Vancomycin is not active against gram-negative bacteria. This is because gram-negative bacteria have an outer membrane (Lipopolysaccharide; LPS) that prevents vancomycin from reaching the cell wall (Periplasmic region).

Challenges associated with bacterial infections & Drug resistance

- Problem-1: Acquired resistance (VISA, VRSA & VRE)
- Problem-2: Intrinsic Resistance to Gram-negative bacteria (OM impermeability)
- Problem-3: Adaptive resistance (Persister bacteria)
- Problem-4: Biofilms are resistant to antibiotics (Diffusion barriers & metabolically repressed cells)
- Problem-5: Intracellular infections (Evasion from antibiotics & host immune response)

References:
- Varki A et al. Essential of Glycobiology (Book)
- Christopher Walsh, Antibiotics: Actions, Origin, Resistance (Book)
- Lewis, Nat Rev Microbiol 2007, 5, 48
- Paramita et al. Med Chem Commun 2017, 8, 516; Canton et al. Nat Microbial 2016, 1, 16051
Glycopeptide Research: Contribution from other Scientists

- **Multivalency Approach**
 - K. C. Nicolaou (Rice University)
 - G. M. Whitesides (Harvard University)
 - Daisuke Shimura (Nagoya University)

- **Synthetic & Semi-Synthetic Analogues**
 - Dale Boger (Scripps Institute)
 - Lynette Cagasaki (Stanford University)
 - Scott J. Miller (Yale University)

- **Peptide-Based Derivatives**
 - Matthew Cooper (University of Queensland)
 - Hirokazu Arimoto (Tohoku University)
 - Nathaniel Martin (Leiden University)
 - Gerard D. Wright (MacMaster University)

- **Membrane-Anchoring Semisynthetic Derivatives**
 - Marvin Miller (University of Notre Dame)

- **Siderophore-Glycopeptide Conjugates**
 - Matthew Cooper (University of Queensland)

- **Vancomycin-Polymyxin Nonapeptide Conjugates**
 - Matthew Cooper (University of Queensland)

- **Type V Glycopeptide Aglycons**
 - Matthew Cooper (University of Queensland)

- **Site-Selective Modification of Vancomycin**
 - Matthew Cooper (University of Queensland)

- **and many more!!**

Our Contribution: Novel class of semi-synthetic glycopeptides

Strategy-I: Improved binding affinity & greater cell wall inhibition

Strategy-II: Membrane active mode of action

Strategy-III: Improved binding affinity & additional membrane active mode of action

Strategy-IV: Targeting: bactoprenol pyrophosphate & lipid II and the enzymes involved in resistance (metallo-lactamase)

References
- Venkateswarlu et al. J Med Chem 2014, 57, 4048
- Int. J Antimicrob Agents 2015, 45, 627
- ACS Infect Dis 2016, 2, 132
- Global Antimicrob Res 2016, 5, 71

Preprints
- ACS Chem Biol 2020, 15, 884
- J Med Chem 2022, 65, 10385
- Chem Sci 2023, 14, 2386

Patents
- WO2013072838
- WO201610284A1
- WO201504067A1

Review Papers
- Med Chem Commun 2017, 8, 516
- J Med Chem 2019, 62, 1181 (Perspective)
- ACS Infect Dis. 2016, 2, 132
- Global Antimicrob Res 2016, 5, 71
- ACS Chem Biol, 2020, 15, 884
- J Med Chem 2021, 64, 10185
- Chem Sci 2023, 14, 2386
- Manuscript to be submitted 2023
Our Contribution: Novel class of semi-synthetic glycopeptides

Strategy-I: Improved binding affinity & greater cell wall inhibition

Venkateswarlu et al. J Antibiot 2015, 68, 302
Int J Antimicrob Agents 2015, 46, 446

Strategy-II: Membrane active mode of action

Our Contribution: Novel class of semi-synthetic glycopeptides

Strategy-III: Improved binding affinity & additional membrane active mode of action

Our Contribution: Novel class of semi-synthetic glycopeptides

Strategy-IV: Targeting: bactoprenol pyrophosphate & lipid II and the enzymes involved in resistance (metallo-\beta-lactamase)
Next-generation glycopeptide: Cationic lipophilic vancomycin

Antibacterial activity

- MIC of VanQAmC10 against Gram-positive bacteria (MRSA, VRSA, VISA, VRE)
 - 0.2-6 μM
- MIC of VanQAmC10 against 20 clinical isolates of A. baumannii
 - 3.9-7.7 μM

Vancomycin-Resistant S. aureus

Gram-negative bacteria: A. baumannii

Activity against metabolically inactive bacteria and biofilms

Gram-positive: MRSA

- Stationary phase cells
- Persistor cells
- Biofilm

Gram-negative: A. baumannii

- Stationary phase cells
- Biofilm

Paramita et al, ACS Chem Biol, 2020, 4, 884
In-vivo Efficacy & Toxicity

MRSA: Thigh infection model
- 20% of all hospital-acquired infections
- Difficult to treat infections

Burn wound infection model
- Carbapenem-resistant A. baumannii
- Opportunistic pathogen
- Causes severe wound infections

MRSA: Thigh infection model
- VanQAmC dose: 32 mg/kg
- 5.2 log CFU/mL lower than untreated

<table>
<thead>
<tr>
<th>Compound</th>
<th>LD50 (mg/kg, i.v.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VanQAmC</td>
<td>70</td>
</tr>
<tr>
<td>Colistin</td>
<td>8-30</td>
</tr>
</tbody>
</table>

Burn wound infection model
- VanQAmC dose: 30 mg/kg
- 1.9 log CFU/g lower than untreated

Propensity to induce resistance

- **Gram-positive bacteria: MRSA**
 - VanQAmC
 - Vancomycin
- **Gram-negative bacteria: A. baumannii**
 - VanQAmC
 - Colistin

No propensity to develop induce resistance in MRSA and A. baumannii
Mechanism of action: Cell wall inhibition and targeting cell membrane

- **Gram-positive bacteria**
 - **Gram-negative bacteria**
 - Cell wall biosynthesis inhibition
 - 535 nm Ex: 535 nm Em: 617 nm
 - DiSC3(5)
 - Membrane depolarisation
 - Membrane permeabilization
 - NPN
 - Ex: 350 nm Em: 420 nm

- **VanQAmC10** inhibits cell wall synthesis

- **Inhibition of cell wall biosynthesis**
 - A. baumannii
 - B. subtilis

Mechanism of action: Cell division

- Stage 1: Assembly of Z-ring
 - Marking of mid-cell

- Stage 2: Septa ring maturation
 - Invagination of the cell wall and membrane to form a division septum

- Stage 3: Septum formation
 - Peptidoglycan hydrolases hydrolyse the completed cross wall, producing two newborn cells

- **Lysis**
 - VanQAmC10 inhibits cell division in mutants
 - Inhibition of mid-stage of cell division

- *Adapted from Lock, R. Nat. Rev Drug Disc., 2008*
 - Paramita Sarkar et al, Chem Sci, 2023, 14, 2386
New insights into mechanisms of action of membrane active vancomycin derivatives

MULTIPLE MECHANISMS OF ACTION
1) Inhibition of cell wall biosynthesis

ADDITIONAL MECHANISMS:
2) Inhibition of cell division
 a) Membrane-depolarisation
 b) Membrane-permeabilization
 c) Delocalisation of MinD
 d) Delocalisation of FtsI (PBP3)
3) Induces autophagy (Xenophagy)

- Active against vancomycin-resistant Gram-positive bacteria (VRSA, VRE)
- Active against Gram-negative bacteria
- No propensity to induce resistance
- Active against stationary, persister cells and biofilm
- Showed good in-vivo activity with minimum toxicity

Summary

Acknowledgement

Past Members
- Dr. Venkateswarlu
- Dr. Dukara S.S.M. Uppu
- Dr. Chandrudhish Ghosh
- Dr. Jaiul Hoque
- Dr. Mohini-Mohan Konai
- Dr. Paramita Sarkar
- Dr. Swagatam Barman
- Dr. Binti Bhattacherjee
- Dr. Sandip Samaddar
- Dr. Padma Akappadali
- Ms. Sowdham B. Manjusarith
- Dr. Pratik Kumar
- Mr. Utsarga Adhikary
- Ms. Shanola S. Sequeira
- Dr. Spandhana Gunuguntala
- Dr. Roys Mukharjee
- Dr. Debojyoti Baner

Collaborators
- Prof. Richa Priyadarshini, Shiv Nadar University
- Prof. Julia Bandow, Ruhr University Bochum, Germany
- Dr. Sidharth Chopra, CDRI
- Prof. Ravi Manjithaya, JNCASR

Thank You All
Macrogenomic Engineering: Designing Proteins That Sense Chromatin Signals and Regulate Genes

Karmella A. Haynes, PhD
Assistant Professor
Emory University
Wallace H. Coulter Dept. of Biomedical Engineering
Atlanta, GA 30322
kahayne@emory.edu

Haynes Lab: Epigenetic Chromatin Engineering
Health Sciences Research Building 3
Epigenetic Cancer Therapy

Triggers the expression of tumor suppressor genes within the cancer cells.

Gene-centric, but does not require DNA delivery of therapeutic genes.

Repressive closed chromatin

Epigenetic therapy

Open chromatin

Silenced tumor suppressor genes

Activated tumor suppressor genes

X Proliferation

X Invasion

Epigenetic Cancer Therapy

Drugs (e.g. Tazemetostat) that target hyperactive Polycomb work well for blood cancers, but in breast cancer the mechanism of the therapeutic effect is not entirely clear.

The targeted active site of EZH2 is also in other enzymes.

EZH2 can gain inhibitor-resistant mutations. (T. Baker 2015, V. Gibaja 2016)

Polycomb complexes

Inhibitor targets

Mediator eviction

Inhibited EZH2 becomes a transcriptional activation partner for invasion genes (Mahara 2016)

Loss of repressor proteins does not always lead to robust activation
Epigenetic Engineering

A restorative approach: Can we install engineered chromatin components to understand chromatin’s direct impact on epigenetic reprogramming of cancer?

Significance: Reader-Effector Proteins are Mutated/ Misregulated in Neurological, Immune, and Cardiovascular Disorders and Cancer

Cancer: solid and blood cancers

Neurological: Rett syndrome, autism, epilepsy

Immune: severe combined immunodeficiency (SCID), Omenn syndrome, systemic lupus erythematosus

Cardiovascular disease
Can we build a synthetic, functional reader-effector?

Testing a synthetic reader-actuator (SRA) at a single model locus

What did we learn about reader-effector design?

Functional RE's can be streamlined (PcTF = 55 kD)

Affinity/ avidity matters:
- Monovalent PcTF has a higher stoichiometry of activator to target.
- But bivalent PcTF is a stronger activator.
- Therefore, enhanced affinity/ avidity (per molecule) has more impact for RE function effector stoichiometry.

What happens when we unleash a synthetic reader-effector onto a natural epigenome?
Reader-Effector Chromatin Proteins are Misregulated in Triple Negative Breast Cancer

Polycomb expression levels (RNA-seq)

Pair of TNBC tumor/normal

log2(tumor/normal)

0.58 (1.5-fold)

Paired TNBC tumor/normal

log2(RPKM TNBC/HMEL)

Mesenchymal

Basal and unclassified

Reader-effectors

Writer complex

RE partners

cBioPortal

Xena

The Problem with Epigenetic Therapy for Cancer Treatment and Research

It is expected that activation will occur after repressive proteins are blocked or degraded ... but activation requires additional protein activity that is lost in many cancers

Epigenetic therapy

Silenced tumor suppressor genes

Activated tumor suppressor genes

TP53, and BAF

SWI/SNF: BAF57, SMARCA1, ARID1A, ARID1B, KDM6A, BAP1

Promotion

Invasion
The Problem with Epigenetic Therapy for Cancer Treatment and Research

Standard polycomb-targeting approaches show inconsistent effects on transcription levels for lowly and highly-expressed genes.

Gene expression profiling

Treatment of BT-549 cells with polycomb inhibitors or siRNAs

The Problem with Epigenetic Therapy for Cancer Treatment and Research

Gene expression profiling

Treatment of BT-549 with polycomb inhibitors or siRNAs

Engineering Chromatin to Restore Transcriptional Activation

OUR APPROACH: Epigenome actuation

To develop a better tool to study how reactivation blocks cancer, we design proteins that target repressed chromatin and activate gene expression

Silenced tumor suppressor genes

Activated tumor suppressor genes

* Proliferation
 * Invasion

Epigenome actuation

Synthetic reactivation

Enhancer Promoter

CPC complexes

Mediator eviction

PcG complexes

Enhancer

Promoter
Engineering Chromatin to Restore Transcriptional Activation

Most genes affected by SRAs are upregulated, as expected

Gene expression profiling

SRA-upregulated genes (UpDEGs) include early, mid and late activated genes that include major tumor suppressors

Gene expression profiling
Engineering Chromatin to Restore Transcriptional Activation

SRA-upregulated loci have features characteristics of repressed chromatin
Low ATAC-seq signal, high H3K27me3 compared to highly expressed genes

Gene expression profiling

Transfected BT-549 parental cells

PIC assembly

SRA

Total mRNA, RNA-seq
(versus BT-549 control)

CMV

SRA

48 hrs 72 hrs

Engineering Chromatin to Restore Transcriptional Activation

SRA-upregulated genes (UpDEGs) include several tumor suppressor genes and some cancer-promoting genes.

Gene expression profiling

SRA-mediated gene regulation is accompanied by apoptosis, spheroid shrinkage, and loss of invasion in vitro in 3 days or less.

What is the overall impact on cell phenotype?

Engineering Chromatin to Restore Transcriptional Activation

SRA-mediated gene regulation is accompanied by apoptosis, spheroid shrinkage, and loss of invasion in vitro in 3 days or less.

3-D spheroid assay

Engineering Chromatin to Restore Transcriptional Activation

SRA-mediated gene regulation is accompanied by apoptosis, spheroid shrinkage, and loss of invasion in vitro in 3 days or less.

3-D spheroid assay

Acknowledgements

Haynes Lab @Emory
Dr. Natacia Williams
Lauren Hong
Dr. Cara Shields
Maya Jaffe

Haynes Lab @ASU
Dr. Stefan Tekel
Daniel Vargas

Funding

Genentech Research Awards Program

NIH NCI R21

khayneslab.wordpress.com @hayneslab Dr. Karmella Haynes, PhD
THE LIVE Q&A IS ABOUT TO BEGIN!
Keep submitting your questions in the questions window!

Learn More
https://go.acs.org/6tP

CALL FOR PAPERS
https://acsbiosci.org/CFP

Exploring Covalent Modulators in Drug Discovery and Chemical Biology

Learn More
Browse the Upcoming Schedule at www.acs.org/acswebinars

TOMORROW!

A Bond Worth Forming: The Rise of Targeted Covalent Inhibitors
Co-produced with NCW and CAS, a division of the American Chemical Society

Microrobots que Limpian Agua Contaminada
Co-produced with the Sociedad Química de México

The Polymer Mechanochemistry of Self-Healing Materials
Co-produced with the ACS Division of Polymer Chemistry

Register for Free

Learn from the best and brightest minds in chemistry!
Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings
are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts
of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

Requires FREE ACS ID
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswебinars@acs.org