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Questions or
Comments?

“Why am I muted?” 
Don’t worry. Everyone is 
muted except the Presenter 
and the Host. Thank you 
and enjoy the show.

Type them into the
questions box!
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linkedin.com/company/
american-chemical-society@amerchemsociety@AmericanChemicalSociety@AmerChemSociety

Let’s Get Social!
Follow the American Chemical Society on Twitter, Facebook, 
Instagram, and LinkedIn for the latest news, events, and 
connect with your colleagues across the Society.

Contact ACS Webinars® at acswebinars@acs.org

www.acs.org/acswebinars
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Where is the Webinar Recording?

All Registrants
Watch the unedited recording 
linked in the Thank You Email 

for 24 hours.

www.acs.org/acswebinars

ACS Members w/Premium Package

Visit the ACS Webinars® Library 
to watch the edited and 

captioned recording.
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A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan 
designed specifically for graduate students and 
postdoctoral scholars in the chemical sciences. 
Through immersive, self-paced activities, users 
explore potential careers, determine specific skills 
needed for success, and develop plans to achieve 
professional goals. ChemIDP tracks user progress 
and input, providing tips and strategies to 
complete goals and guide career exploration.
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Career Consultant Directory

• ACS Member-exclusive program that allows you to arrange a one-on-one appointment with 
a certified ACS Career Consultant.  

• Consultants provide personalized career advice to ACS Members.

• Browse our Career Consultant roster and request your one-on-one appointment today!
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If you are a student from a group underrepresented in the chemical sciences, we 

want to empower you to get your graduate degree!

The ACS Bridge Program offers:

• A FREE common application that will highlight your achievements 

to participating Bridge Departments

• Resources to help write competitive grad school applications and 

connect you with mentors, students, and industry partners!

Are you thinking of Grad School?

Learn more and apply at www.acs.org/bridge

Email us at bridge@acs.org 
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cen.acs.org/sections/stereo-chemistry-podcast.html 11

ACS Industry 
Member Programs

• ACS Industry Matters

ACS member only content with exclusive 
insights from industry leaders to help you 
succeed in your career. #ACSIndustryMatters

Preview Content: acs.org/indnl

• ACS Innovation Hub LinkedIn Group

Connect, collaborate and stay informed about 
the trends leading chemical innovation.

Join: bit.ly/ACSinnovationhub
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Creating Your Title, Abstract, 

and Table of Contents Graphic

ACS on Campus is the American Chemical 
Society’s initiative dedicated to helping students 
advance their education and careers.

acsoncampus.acs.org
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ACS Career Resources

13

14

https://www.acs.org/careerconsulting.html
https://www.acs.org/careerconsulting.html
https://www.acs.org/linkedInlearning


11/16/2023

8

https://pubs.acs.org 15

16

ACS OFFICE OF DEIR
Advancing ACS' Core Value of Diversity, Equity, 

Inclusion and Respect

Resources

https://www.acs.org/diversity 
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ACS Advocacy

The impact and results of ACS member advocacy outreach and efforts by the numbers!

See your influence in action!

Get Involved Enroll in a workshop Become a Fellow Take Action

2439+
Members participated

In Act4Chemistry

1739+
ACS Advocacy 

Workshops participants 

or enrollees

49
Years of Public 

Policy Fellows

2000
Letters sent to 

Congress

https://www.acs.org/policy 

z

www.acs.org/acswebinars

18

Register for Free Browse the Upcoming Schedule at www.acs.org/acswebinars

Co-produced with the Sociedad Química de México

Desafíos y Soluciones a través 
de la Ecofarmacovigilancia

Wednesday, November 22, 2023 | 2-3pm ET

Co-produced with the ACS Division of Polymeric Materials: 
Science & Engineering

Breaking Down the Mechanics of Polymers: 
From Networks to Viscoelasticity

Wednesday, December 13, 2023 | 2-3:30pm ET

Co-produced with the ACS Industry Member Programs and 
ACS Division of Business Development and Management

Chemistry and the Economy: Looking 
forward to 2024?

Wednesday, December 6, 2023 | 2-3pm ET
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A complete listing of ACS Safety Programs and Resources

Download it for free in the “Projects & Announcements” Section! www.acs.org/ccs  
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THIS ACS WEBINAR® 

WILL BEGIN SHORTLY…

🖐 Say hello in the 
questions window!

www.acs.org/acswebinars

21
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https://polyacs.org/awards/
https://polyacs.org/poly-electronic-discussion-list/
https://polyacs.org/iab/
https://polyacs.org/poly-electronic-discussion-list/
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https://polyacs.org/awards/
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This ACS Webinar ® is co-produced with the ACS Division of Polymer Chemistry.

Unbreakable Design: The Polymer 
Mechanochemistry of Self-Healing Materials

Download 
the Presentation Slides
Under Handouts

JEFF MOORE, PHD 

Assistant Professor of Polymer 
Science, University of Akron

Stanley O. Ikenberry Research 
Professor of Chemistry, University 

of Illinois Urbana-Champaign

JUNPENG WANG, PHD STEPHEN CRAIG, PHD

William T. Miller Distinguished 
Professor of Chemistry,

Duke University

Mechanotriggered Aggregation-Induced Emission
Yunyan Sun & Jeffrey S. Moore 

Department of Chemistry
The University of Illinois at Urbana-Champaign

Saturday, August 13, 2022

ACS WEBINARS
 

Unbreakable Design: 
The Polymer Mechanochemistry

of Self-Healing Materials

Jeff Moore (UIUC)

Nov-16, 2023

23

24



11/16/2023

13

OUTLINE

Concepts for Polymer Lifecycle Control

Mechanophore Phenomenology   
•Statics

•Dynamics

The Thermoset Lifecycle

Circular Lifecycle

Steps for a better lifecycle

1) Rapid, energy-efficient manufacturing
2) Resilient materials that last longer
3) Deconstruction & upcycling/recycling

Linear Lifecycle
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Lifecycle Control in Polymeric Materials

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.
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Toolbox of concepts

Mechanophore

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.

The mechanophore hypothesis 
states that force drives chemical 
change in selective and 
productive ways.

Toolbox of concepts

Mechanophore

Qian, Purwanto, Ivanoff, Halmes, Sottos, Moore, "Fast, Reversible Mechanochromism of Regioisomeric Oxazine Mechanophores: 
Developing in situ Responsive Force Probes for Polymeric Materials" Chem, 2021, 7, 1080 - 1091
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Toolbox of concepts

Mechanophore

Qian, Purwanto, Ivanoff, Halmes, Sottos, Moore, "Fast, Reversible Mechanochromism of Regioisomeric Oxazine Mechanophores: 
Developing in situ Responsive Force Probes for Polymeric Materials" Chem, 2021, 7, 1080 - 1091

Toolbox of concepts

Mechanophore µ-Capsule

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.
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Toolbox of concepts

White, Sottos, Geubelle, Moore, Kessler, Sriram, Brown, Viswanathan, 
"Autonomic Healing of Polymer Composites," Nature 2001, 409, 794-797. 

Mechanophore µ-Capsule

Toolbox of concepts

Mechanophore µ-Capsule µ-Vasculature

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.
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Toolbox of concepts

Mechanophore µ-Capsule µ-Vasculature

Patrick, Hart, Krull, Diesendruck, Moore, White, and Sottos, “Continuous Self-healing 
Life Cycle in Vascularized Structural Composites”, Adv. Mater., 2014, 26, 4189-4396.

Toolbox of concepts

Mechanophore µ-Capsule µ-Vasculature

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.

35

36



11/16/2023

19

Toolbox of concepts

Multi-gen 
materials 

Mechanophore µ-Capsule µ-Vasculature

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.

Toolbox of concepts

Multi-gen 
materials 

Mechanophore µ-Capsule µ-Vasculature

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.
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Toolbox of concepts

Multi-state 
materials 

Mechanophore µ-Capsule µ-Vasculature

Patrick, Robb, Sottos, Moore, White, "Polymers with Autonomous Life-cycle Control", 
Nature, 2016, 540, 363-370.

Li, Nagamani, Moore, "Polymer Mechanochemistry: From Destructive to Productive", Acc. Chem. Res. 2015

39
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Mechanochemistry’s Historical Roots in Polymer Science

My first introduction to mechanochemistry 
came from the annual UIUC – Northwestern 
Polymer Science Symposia 

Mechanochemistry for Mechanoresponsive Materials

Web of Science
Sep-2023

Web of Science
Sep-2023
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Mechanophores: from Concepts to Mechanoresponsive Materials
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ArtOfPolymers.com

Mechanophore by Scott Barton (WPI) 
played by musical robots

Unbreakable Design: The 
Polymer Mechanochemistry 

of Self-Healing Materials

Part II

Steve Craig, Duke University
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Otsuka, Xia, Boulatov, Göestl, Weder, X. Lu,

Diesendruck, Robb, Boydston, Wang, Yoon,

Binder, DeF   VF ries, Jia, Bai, Filonenko, Weng…)

45

46



11/16/2023

24

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

2. Can embedded mechanochemistry redefine polymer material performance 

limits?

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

Questions for today

big picture; happy to 
address details in Q&A

1. How do I think about kinetics and reactivity in polymer 

mechanochemistry?

2. Can embedded mechanochemistry redefine polymer material performance 
limits?

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

Questions for today

big picture; happy to 
address details in Q&A

47

48



11/16/2023

25

In polymer mechanochemistry:

Audience Survey Question
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

• A. All of the energy needed for a reaction to occur is provided by an external force,

without any energy input from heat or light.

• B. Traditional chemical intuition is no longer useful, because force-free potential energy

surfaces are not related to force-coupled potential energy surfaces.

• C. The range of system sizes and timescales associated with mechanochemistry means

that connections between different experiments are almost impossible.

• D. All of the above are false.

• E. All of the above are true.

49

Observed in many different contexts

Cavitation

slow or static 
Favg low 

heterogenous

fast 
Fmax high 

transient

slow or static 
F high 

single F

static

F moderate 

single F
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very different environments, but principles the same

Observed in many different contexts

Cavitation

slow or static 
Favg low 

heterogenous

fast 
Fmax high 

transient

slow or static 
F high 

single F

static

F moderate 

single F

Force-coupled reactivity

FF

1. Distortion of the reactant, TS (minor)

2. Work coupled to reaction path (major)

Δx

ln(krel) = -ΔΔG = FΔx

• still a thermal barrier; rxn accelerated by force

• same reactivity concepts remain relevant (but 

mechanism & TS position can change)

• k vs. F is opportunity to “measure” position of TS

51
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A

A

B C

C

B

Quantifying molecular response

get k(F) 
“measure” transition states 
test mechanistic hypotheses

Shu Wang Brandon Bowser

Mechanophore design

J. Am. Chem. Soc. 2021, 143, 5269–5276

7
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Shu Wang Brandon Bowser

• Resonance stabilization of the diradical 

character in transition state

Mechanophore design

diradical character in rate-determining step

J. Am. Chem. Soc. 2021, 143, 5269–5276

7

Mechanophore design

O

O O

O

8

O O

OO

experiment matches 
modeling

8

1.5 nm

4.9 nm
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larger x indicates 

better coupling
these two mechanophores with characterized

reactivities are used in the next story

Rate-force dependence

J. Am. Chem. Soc. 2021, 143, 5269–5276

ln(krel) = -ΔΔG = FΔx

9

2. Can embedded mechanochemistry redefine polymer material performance 
limits?

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

Questions for today

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to 

force

57
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3. Can I use polymer materials for the top-down manipulation of reaction 
pathways?

Questions for today

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to 

force

2. Can embedded mechanochemistry redefine polymer material performance limits?
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5 kDa tetra-arm PEG 
25 mM

weaker

~700 pN

weak

~2 nN

strong

> 3 nN

Networks held together by mechanophores

JACS, 2021, 143, 3714–3718.

force depends on timescale 

focus here on relative behavior

weaker

~700 pN

weak

~2 nN

strong

> 3 nN

Networks held together by mechanophores

single unit per chain, huge effect!

notched  
films

tear 

resistance

make films, stretch until they tear

Mechanics of Soft Materials 2, 14 (2020)

JACS, 2021, 143, 3714–3718.
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https://link.springer.com/journal/42558
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melt of linear chains 
poor mechanical properties

From end-linking to cross-linking

1

7

cross-linked chains 
good mechanical properties

From end-linking to cross-linking

vs.

effect of easily broken 

cross-linkers?

Control strand length (gray) 

within and across networks

1

8
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cross-linked chains 
good mechanical properties

From end-linking to cross-linking

vs.

1

9

effect of easily broken cross-linkers?

Weak Strong

same behavior in gels, different monomers, fatigue… 

but magnitude very much depends on network

Tearing comparison

otherwise identical

still a large effect, 
but opposite direction!

20

control xlinkmechanophore

See also: Otsuka, Macromolecules, 2022, 55, 5795-5802.
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Mechanistic hypothesis

Simulations by Sapir & 

Rubinstein support this picture

21

Strong xlinks have almost no dependence on N 
Weak xlinks have strong dependence on N

[M ]  
= 300

[cTA]
200 3600

Vary primary chain length

vs.

22
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NetSwtororkntgopxolilnogkys chaanvme oadlmulaotset, onroedveenperenvdeersnec, ethoenefNfect.

WeakWxhlaint akbsohuat vmeecshtraonnopghdoerepreenadcetivnictye?on N

[M ]  
= 300

[cTA]
200 3600

Vary primary chain length

vs.

22

Effect of mechanophore reactivity

~ 0.7 nN > 3 nN

Is it enough to just be more reactive than the primary chain?
No. Mechanochemical reactivity matters

Ongoing: “optimal” mechanophore?

23
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Other attributes are indistinguishable

indistinguishable network properties 

no hysteresis in cyclic loading

2

4

conventional xlinkmechanophore

Consequences

path forward is molecular! 
reactivity, network topology

25

Need enough mechanochemical 
lability to redirect molecular fracture

Need enough thermal stability to 
otherwise stay intact & function

71
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Questions for today

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to force

2. Can embedded mechanochemistry redefine polymer material performance limits?

yes! consequences depend on network & mechanophore

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to force

2. Can embedded mechanochemistry redefine polymer material performance limits?

yes! consequences depend on network & mechanophore

3. Can I use polymer materials for the top-down manipulation of reaction 

pathways?

Questions for today
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Catalysis

Usual optimization

What about…

Ligand

Catalysis

Ligand

reaction with ligand = MeOBiphep 
improves selectivity with tension in 

small molecule force probe systems.

translate to bulk?

DOI: 10.26434/chemrxiv-2023-vt45d
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Catalysis

strain immerse

2.1 cm

gel

mechanically decoupled control

strain

also under compression

1.0

1.2

1.4

1.6

N1-compression

ln
(R

/S
)

0 40 80

Compression (%)

DOI: 10.26434/chemrxiv-2023-vt45d

Catalysis

Key points

• Effect is reproducible, but small (from 

50% ee to 60% ee)

• Very heterogenous — some catalysts 

unaffected. But…

• Small molecule probes and 

computations suggest some sites might 

undergo up to 300-fold improvement 

(e.g., racemic to 99.7% ee)

Top-down manipulation of catalytic 
reaction pathways is possible

DOI: 10.26434/chemrxiv-2023-vt45d
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1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to force

2. Can embedded mechanochemistry redefine polymer material performance limits?

yes! consequences depend on network & mechanophore

Questions for today

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

yes! opportunities for reaction and material/device 

design

Questions for today

1. How do I think about kinetics and reactivity in polymer mechanochemistry?

same kinetic and mechanistic principles — coupled to force

2. Can embedded mechanochemistry redefine polymer material performance limits?

yes! consequences depend on network & mechanophore

3. Can I use polymer materials for the top-down manipulation of reaction pathways?

yes! opportunities for reaction and material/device design

Thank you (and 
back to Jeff)!
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How did the understanding of polymer mechanochemistry change about 20 

years ago, shifting from a focus on destruction and limits of polymer strength?

Audience Survey Question
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

• A. Mechanical forces were found to uniformly degrade polymers, regardless of their structure.

• B. Mechanical forces were realized to selectively trigger chemical changes in certain polymers, 

leading to mechanoresponsive materials.

• C. It was determined that all polymers exhibit similar strengths and weaknesses under mechanical stress.

• D. Mechanical stress was deemed irrelevant in altering polymer properties at the molecular level.

81

Many mechanophores 
are based on selective 
C-C bond scission

Representative Mechanophores 

HJ Yoon, 2020Moore, 2022

S Craig, 2009Moore, 2010
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Morse, P. M. (1929). "Diatomic molecules according to the wave mechanics. II. Vibrational levels". Phys. Rev. 34 (1): 57–64

–dE/dL =
CoM

fa = applied force (extrinsic)
fr = restoring force (intrinsic)

(+)

Making Sense of Mechanochemistry – The Restoring Force Triangle

https://chemrxiv.org/engage/chemrxiv/article-details/64c326d1ce23211b20accfc5 [chemrxiv.org]

The Tension Activated Bond

83
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https://urldefense.com/v3/__https:/chemrxiv.org/engage/chemrxiv/article-details/64c326d1ce23211b20accfc5__;!!PDiH4ENfjr2_Jw!Ej8-hBroyvOfD2rMgppA9U3VQnKtjkz7ax-Tkbb5L-m_KlVI8DP46O7WQ3mwAijO6DR2nThpBe6EQ_hgkVjyjoR8WImRm78$
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The Tension Activated Bond

The Tension Activated Bond

∑fi = fa + fr 

85
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The Tension Activated Bond

poorer force transduction
larger keff

better force transduction
smaller keff

Invoke keff as an effective bond force constant
• keff is the resistance to deformation under applied force
• includes structural features that transduce force to bond 

Force balance:
fapplied = frestoring

FMPES

-keff 

The Tension Activated Bond
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The Tension Activated Bond

The Tension Activated Bond

89

90



11/16/2023

46

The Tension Activated Bond

The Tension Activated Bond
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The Tension Activated Bond

An intuitive, easy-to-compute 
reactivity model for the TAB
• The larger the △E (force-free 

dissociation energy) the larger 
the force to activate

• The larger keff, the larger the 
force to activate 

• Surmounting △E‡ depends on 
the reaction conditions and 
timescale of the experiment

Dependence of TAB, ∆E‡, and TTS‡ on Applied Force

93
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Application of the Restoring Force Triangle

96

Predictions from the Tension Activated Bond Model

• Cubane is the outliner

• Easy computational workflow

compared to CoGEF (1-2 days

for >20 mechanophores)

experimental/predicted forcek: nN/ Å ; ∆E (diradical intermediate) : kcal mol-1

M1

∆E=59.4 k =29.4

F =2.51/2.36

OO

O

O

O

OO

O

O

O

M2

∆E=62.5 k =44.3

F = 3.4/3.17

M3

∆E=65.8 k =16.7

F = 2.02/1.89

M4

∆E=59.6 k =15.7

F = 1.53/1.69

M5

∆E=29.9 k =22.9

F = 1.30/1.34

M9

∆E=26.8 k =22.7

F = 1.20/1.26

M7

∆E=20.8 k =24.4

F = 1.16/1.20

M8

∆E=20.7 k =18.4

F = 0.77/0.90

M6

∆E=28.8 k =18.7

F = 0.90/1.11

M10

∆E=21.1 k =18.7

F = 0.74/0.92

M11

∆E=17.2 k =19.8

F = 0.88/0.89

M12

∆E=47.9 k =18.4

F = 1.29/1.54

M13

∆E=30.8 k =36.3

F = 2.29/2.03

M14

∆E=48.8 k =31.3

F = 1.84/2.21

M22

∆E=43.6 k =25.6

F = 1.79/1.80

M23

∆E=45.7 k =44.5

F = 2.47/2.79

M15

∆E=50.0 k =22.8

F =2.20/1.81

M16

∆E=51.7 k =23.1

F =2.00/1.87

M17

∆E=55.3 k =20.9

F =1.91/1.84

M18

∆E=52.5 k =21.2

F =1.92/1.80

M19

∆E=60.3 k =22.2

F =1.86/2.03

M20

∆E=34.1 k =7.0

F =0.60/0.66

M21

∆E=59.5 k =20.5

F =1.80/1.93

M24

∆E=22.7 k =16.7

F =1.55/0.87

With H Kulik (MIT) and S Craig (Duke)
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Thermally Stable, Mechanically Active

Excess Force Leads to Flyby Trajectories

Liu et al. Science 2021, 373, 208-212 “Flyby Reaction Trajectories”

kinetic energy 
directed by fa

97

98



11/16/2023

50

Force-Driven Dynamic Trajectories

Liu et al. Science 2021, 373, 208-212 “Flyby Reaction Trajectories”

RA IntA

RB

IntB

PA

PB

Z / E

mixtures

Reactant Intermediate Product

With T Martinez (Stanford)

E Z E Z

79% conversion

38% conversion 

Ultrasound: 8 h on time, 8.9 W cm–2, 1 s on, 2 s off; –10 oC bath, THF, Ar, ~100 kDa, 1.5 mg mL–1

CH Edited HSQCCH2

77% conversion

E,Z

Z,Z:E,Z

8:1

S/N = 45

E,E

S/N = 167

Z/E Assignment

122.1

(ppm)

122.0

60

65

13C labels

Experimental Realization
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Force
Work done

to activate

Molecular

deformation

Molecular

deformation 

rate

Stress

Strain

Toughness

Strain rate

Linking the Molecular and Macroscopic Scales

Mechanophores: from Concepts to Mechanoresponsive Materials

Cargo Release
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THE LIVE Q&A IS
ABOUT TO BEGIN!

Keep submitting your questions 
in the questions window!

www.acs.org/acswebinars
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105https://polyacs.org
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✓
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✓
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www.acs.org/acswebinars

107

Register for Free Browse the Upcoming Schedule at www.acs.org/acswebinars

Co-produced with the Sociedad Química de México

Desafíos y Soluciones a través 
de la Ecofarmacovigilancia

Wednesday, November 22, 2023 | 2-3pm ET

Co-produced with the ACS Division of Polymeric Materials: 
Science & Engineering

Breaking Down the Mechanics of Polymers: 
From Networks to Viscoelasticity

Wednesday, December 13, 2023 | 2-3:30pm ET

Co-produced with the ACS Industry Member Programs and 
ACS Division of Business Development and Management

Chemistry and the Economy: Looking 
forward to 2024?

Wednesday, December 6, 2023 | 2-3pm ET

www.acs.org/acswebinars

108

Edited Recordings
are an exclusive benefit for ACS Members with the 
Premium Package and can be accessed in the 
ACS Webinars® Library at www.acs.org/acswebinars

Learn from the best and brightest minds in chemistry!
Hundreds of webinars on a wide range of topics relevant to 
chemistry professionals at all stages of their careers, presented 
by top experts in the chemical sciences and enterprise.

Live Broadcasts
of ACS Webinars® continue to be available free to 
the general public several times a week generally 
from 2-3pm ET. Visit www.acs.org/acswebinars to 
register* for upcoming webinars. 

*Requires FREE ACS ID
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www.acs.org/acswebinars

109

ACS Webinars® does not endorse any 
products or services. The views expressed in 
this presentation are those of the presenter 
and do not necessarily reflect the views or 
policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org
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