

A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. **ChemIDP** tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

- ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
- Consultants provide personalized career advice to ACS Members.
- Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting

ACS Bridge Program

Are you thinking of Grad School?

If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

- A FREE common application that will highlight your achievements to participating Bridge Departments
- Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at <u>www.acs.org/bridge</u> Email us at bridge@acs.org

ACS Scholar Adunoluwa Obisesan

BS, Massachusetts Institute of Technology, June 2021 (Chemical-biological Engineering, Computer Science & Molecular Biology)

"The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!"

GIVE TO THE

Donate today at www.donate.acs.org/scholars

https://www.youtube.com/c/ACSReactions/videos

9

Check out Tiny Matters, from the American Chemical Society.

Science Writer & Exec Producer

Sam Jones, PhD

Deboki Chakravarti, PhD Science Writer & Co-Host

TO SUBSCRIBE visit <u>http://www.acs.org/tinymatters</u> or scan this QR code

Wade on Wikipedia work-life balance

TIN≯ MATT≲R

34

The

sticky science of why we eat so much sugar

May 31, 2022

ithium mining's water use sparks bitter conflicts and novel chemistry September 13, 2022

There's more to James Ha story April 27, 2022

For John Goodenough's 100th birthday, *Stereo Chemistry* evisits a fan-favorite interview with the renowned scientist

e helium shortage tha asn't supposed to be March 24, 2022

Subscribe now to C&EN's podcast

VOICES AND STORIES FROM THE WORLD OF CHEMISTRY

cen.acs.org/sections/stereo-chemistry-podcast.html

11

ACS on Campus is the American Chemical Society's initiative dedicated to helping students advance their education and careers.

ACS Career Resources

Virtual Office Hours

https://www.acs.org/careerconsulting.html

Personal Career Consultations

Jim Tung works at Lacarosa Laboratories in Portland, OR, currently as a business development managen: He has been with Lacaross for Olysaers, working on developing new chemical manufacturing projects. Before that, he was a serior research chemica di Otter Research in Champagn. IL performing kilo scale organic chemistry.

At 0 region name, Jing anging chernis bus, Tomo the University of Name University of University of Name Univ

https://www.acs.org/careerconsulting.html

Linked in Learning

https://www.acs.org/linkedInlearning

ACS OFFICE OF DEIR

Advancing ACS' Core Value of Diversity, Equity, Inclusion and Respect

Resources

The impact and results of ACS member advocacy outreach and efforts by the numbers!

2439+	1739+	49	2000	
Members participated In Act4Chemistry	ACS Advocacy Workshops participants or enrollees	Years of Public Policy Fellows	Letters sent to Congress	
Get Involved	Enroll in a workshop	Become a Fellow	Take Action	
American Chemical Society https://www.acs.org/policy			16	

A complete listing of ACS Safety Programs and Resources

Download it for free in the "Projects & Announcements" Section! www.acs.org/ccs

THE BENEFITS OF PMSE MEMBERSHIP

- Be part of a community of highly motivated experts in polymer science and engineering with convenient opportunities for networking
- Enjoy the technical programming at ACS National Meetings and support for regional meetings in polymer science and engineering
- Be eligible to be nominated and to nominate others for PMSE awards
- Take advantage of volunteer and leadership opportunities for both students and professionals (committees, governance, and award panels)
- Obtain support and networking for early career scientists through the local PMSE chapters
- Make use of educational, professional development resources, and polymer-specific techniques through the MACRO initiative
- * Participate in expert-led technical webinars focusing on techniques and methods relevant to polymer materials
- Take part in professional development at a range of levels, from undergraduate students through early career independent scientists and engineers

19

Breaking Down the Mechanics of Polymers: From Networks to Viscoelasticity

Wednesday, December 13, 2023 | 2-3:30pm ET

Co-produced with the ACS Division of Polymeric Materials: Science & Engineering

Register for Free

Browse the Upcoming Schedule at <u>www.acs.org/acswebinars</u>

Adrianne Rosales The University of Texas at Austin

December 13, 2023

Breaking Down the Viscoelasticity of Polymer Networks and Gels

26

Viscoelastic gels are important to many fields and applications

Consumer products

Construction materials

The University of Texas at Austin McKetta Department

of Chemical Engineering

Peptide processing

Building blocks: small molecules, polymers, colloidal particles


```
25
```

Bioinspiration: reconfigurability of the extracellular matrix

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering

http://onlinelibrary.wiley.com/doi/10.1002/adma.201503918/full

Synthetic scaffolds do not replicate dynamic mechanics of ECM ²⁷

Breaking down the viscoelasticity of polymer networks and gels: Linking chemistry to mechanical response

I. Control of viscoelasticity with dynamic bonds

II. Measuring linear viscoelasticity with shear rheology

III. Nonlinear rheology

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering

30

Mimicking the ECM with Hydrogels

29

Dynamic chemistries for hydrogel crosslinks

- Various non-covalent and dynamic covalent mechanisms
- Most are explored in water
- Many more reactions and mechanisms beyond the ones shown!

Xu and Hsu. J Biomed Sci. 2023

32

Tetra-PEG macromers with dynamic bond motifs

Bond exchange kinetics describe the rate at which crosslinks form and break.

McKetta Department of Chemical Engineering

with:

modulus

ROSALES RESEARCH GROUP at The University of Texas at Austin

Reversible thiol-ene crosslinking reaction is highly tunable

Reversible thiol-ene crosslinking in model polymer networks

McKetta Department of Chemical Engineering

5 🎝 at The University of Texas at Austin

Breaking down the viscoelasticity of polymer networks and gels: Linking chemistry to mechanical response

I. Control of viscoelasticity with dynamic bonds

II. Measuring linear viscoelasticity with shear rheology

III. Nonlinear rheology

37

Phase Angle

- · Impose a deformation.
- Measure a response.

The University of Texas at Austin McKetta Department of Chemical Engineering

Rheology: Theory and Applications. TA Instruments (2019).

ROSALES RESEARCH GROUP at The University of Texas at Austin

Elastic thiol-ene gels have frequency independent moduli

Reversible thiol-ene gels have frequency dependent moduli

40

McKetta Department of Chemical Engineering

FitzSimons, Anslyn, Rosales, and coworkers. Macromolecules, 2020, 53(10), 3738-3746. Crowell, FitzSimons, Anslyn, Schultz, Rosales. Macromolecules, 2023.

ROSALES RESEARCH GROUP at The University of Texas at Austin

Reversible thiol-ene gels have frequency dependent moduli

McKetta Department of Chemical Engineering Cadrillshold Fagineering Cadrillshold Fagineering ROSALES RESEARCH GROUP at The University of Texas at Austin

1

Reversible thiol-ene gels have frequency dependent moduli

The University of Texas at Austin McKetta Department of Chemical Engineering

FitzSimons, Anslyn, Rosales, and coworkers. *Macromolecules*, **2020**, 53(10), 3738-3746. Crowell, FitzSimons, Anslyn, Schultz, Rosales. *Macromolecules*, **2023**.

44

Simple constitutive models of linear viscoelasticity

Hooke's Law: $\sigma = G\gamma$ $\sigma = stress$ G = shear modulus $\gamma = strain$

Newton's Law: $\sigma = \eta \frac{d\gamma}{dt} = \eta \dot{\gamma}$ $\sigma = \text{stress}$ $\eta = \text{viscosity}$

ROSALES RESEARCH GROUP

at The University of Texas at Austin

Interesting rheological properties arise when *G* and η are dependent on time and strain.

43

Simple constitutive models of linear viscoelasticity

Spring (elastic component)

Dashpot (viscous component)

Models consist of linear combinations of springs and dashpots:

46

Frequency sweeps fit by single-mode Maxwell model

Indicates one type of relaxation process

FitzSimons, Anslyn, Rosales, and coworkers. *Macromolecules*, **2020**, 53(10), 3738-3746. Crowell, FitzSimons, Anslyn, Schultz, Rosales. *Macromolecules*, **2023**. ROSALES RESEARCH GROUP at The University of Texas at Austin

45

Kinetics can be tuned via pH and temperature

- Reverse reaction rate increases faster with pH
- Relaxation time is tunable over multiple orders of magnitude

FitzSimons, Anslyn, Rosales. ACS Polymers Au, 2021, 2(2), 129-136.

Kinetics can be tuned via pH and temperature

R-s

Thapa, Rosales, Betancourt, et al. Submitted, 2023.

Tania Betancourt Texas State University

ROSALES RESEARCH GROUP 8 at The University of Texas at Austin

Breaking down the viscoelasticity of polymer networks and gels: ⁴⁹ Linking chemistry to mechanical response

I. Control of viscoelasticity with dynamic bonds

II. Measuring linear viscoelasticity with shear rheology

III. Nonlinear rheology

49

Dynamic covalent bonding enables injectability

Multi-arm polymers

50

ACS Macro Lett. 2020, 9(6), 776-780.

1+

McKetta Department of Chemical Engineering 0.1

Shear Rate (1/s)

10

Crowell, FitzSimons, Anslyn, Schultz, Rosales. Macromolecules, 2023.

ROSALES RESEARCH GROUP at The University of Texas at Austin

54

Reversible thiol-ene gels below c* are shear-thickening

Shear thickening behavior is observed at experimentally accessible shear rates.

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering

Crowell, FitzSimons, Anslyn, Schultz, Rosales. Macromolecules, 2023.

at The University of Texas at Austin

53

Shear thickening in other systems

Increasing Shear Rate

Transient shear data shows thickening is reversible

Decreasing Shear Rate

Crowell, FitzSimons, Anslyn, Schultz, Rosales. Macromolecules, 2023.

ROSALES RESEARCH GROUP at The University of Texas at Austin

McKetta Department of Chemical Engineering

ol of E

58

Summary: viscoelasticity depends on dynamic chemistry

Nanoscale

Macroscale

- Dynamic chemistry allows for molecular rearrangement under stress → viscoelastic materials!
- · Linear viscoelasticity: applicable for small deformations
- · Nonlinear viscoelasticity: larger deformations
- Biological tissues are viscoelastic

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering

Acknowledgements

59

Group Thomas FitzSimons, PhD Logan Morton **Anne Crowell** Darren Loh Katie Halwachs Carolyn Watkins Sam West Aldaly Pineda-Hernandez David Castilla Casadiego, PhD Nate Conrad, PhD **Collaborators**

Eric Anslyn **Thomas Truskett** Delia Milliron Nate Lynd Janet Zoldan Keith Keitz Kelly Schultz, Lehigh

The University of Texas at Austin McKetta Department of Chemical Engineering

NIGMS

BURROUGHS

WELLCOME

FUND 📧

Center for Dynamics and

ROSALES RESEARCH GROUP

at The University of Texas at Austin

Control of Materials:

an NSF MRSEC

Encoding network mechanics by architecture

Sergei S. Sheiko

University of North Carolina at Chapel Hill

Wound closureVascularReconstructiveOrthopedicsImage: StructureImage: StructureImage: StructureImage: StructureImage: StructureImage: StructureImage: StructureImage: StructureImage: StructureAdhesivesSoft RoboticsVaterproof sealantsImage: StructureImage: Structure</

Motivation: Materials with tissue-mimetic mechanical properties

Our Approach: Design-by-Architecture

architectural code: $[n_{sc}, n_g, n_{bb}, \phi_A, N_A, \chi_{AB}, ...]$

Challenge: Controlling properties at <u>constant</u> chemical composition

Mimicking tissue mechanics is challenging

Tissues combine very distinct mechanical properties:

soft-yet-firm and elastic-yet-damping

63

Outline

- 1. Mechanical properties
 - Definitions
 - Equilibrium vs apparent
 - Equation of state
 - Data analysis
 - Forensics of polymer networks

2. Encoding mechanical properties in architecture

- Disentanglement
- Architectural code
- Super-soft elastomers
- Decoupling modulus, elongation-at-break, and swelling ratio

Synthesis of a polymer network

- n_x degree of polymerization of network strand
- *n_e* degree of polymerization of entanglement strand
- b_K Kuhn length (strand flexibility)
 - crosslink functionality

Q1: What do we know about the structure of a synthesized network? (select all that apply)

- a) We know n_x
- b) We know *f*
- c) We know b_K
- d) We know n_e
- e) We know fraction of defects

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

A1: We know nothing.

Polymer networks are a black box sealed by a stochastic crosslinking process.

Audience Survey Question

Forensics of polymer networks?

Mechanical properties: Definitions

We will talk about equilibrium properties first.

Effect of network structure on elastic response

Q2: Can we get n_x and b_K from a stress-strain curve?

A2: It should be possible. But how to extract this information from a stress-strain curve? The answer to this question is hidden in the equation of state.

Equation of state: Flexible chains

10

69

 R_{in} - end-to-end distance before stretching (initial)

 $M_x = M_0 n_x$ - molar mass of network strand

 n_x - degree of polymerization of network strand

Approximation for flexible chains ($R_{in} \gg b_K$):

$$\sigma_{true}(\lambda) = G(\lambda^2 - \lambda^{-1}) \xrightarrow{\varepsilon \ll 1} \sigma(\varepsilon) = 3G\varepsilon$$

shear modulus:

$$G \cong \frac{\rho RT}{M_x} = \frac{RT}{V_x} = \frac{RT}{N_{av}v_x} = \frac{k_BT}{v_x} = \rho_x k_BT$$

 ρ_x - number of strands per unit volume

Young's modulus

$$E_{0} = 2(1+v)G \xrightarrow{v \cong 0.5} E_{0} \cong 3G$$

$$v = -\frac{d\varepsilon_{\perp}}{d\varepsilon_{\parallel}} \quad \text{Poisson ration}$$

$$\sigma(\varepsilon) = 3G\varepsilon \xrightarrow{v \cong 0.5} \sigma(\varepsilon) \cong E_{0}\varepsilon$$

Equation of state: Semiflexible chains

Full equation including semiflexible chains ($R_{in} \sim b_K$):

$$\sigma_{true}(\lambda) = \frac{G}{3}(\lambda^2 - \lambda^{-1}) \left[1 + 2\left(1 - \frac{\beta I_1(\lambda)}{3}\right)^{-2} \right]$$

 $I_1(\lambda) = \lambda^2 + 2T\lambda$ - first invariant

Mechanical characteristics:
$$G \cong \frac{\rho RT}{M_x}$$
- structural modulus $\beta = \frac{-R_{in.}^2}{R_{max}^2} \cong \frac{b_K}{R_{max}}$ - strain-stiffening (firmness) $E_0 = G\left(1 + \frac{2}{(1-\beta)^2}\right)$ - Young's modulus at $\lambda \to 1$

71

Equation of state: Transition from semiflexible to flexible

Young's modulus depends on chain flexibility (b_K) as

$$E_0 = G\left(1 + \frac{2}{(1-\beta)^2}\right)$$

For flexible chains, E_0 is defined by crosslink density

 $E_0\cong 3G$

Full equation including semiflexible chains ($R_{in} \sim b_K$):

$$\sigma_{true}(\lambda) = \frac{G}{3}(\lambda^2 - \lambda^{-1}) \left[1 + 2\left(1 - \frac{\beta I_1(\lambda)}{3}\right)^{-2} \right]$$
$$E_0 = G\left(1 + \frac{2}{(1 - \beta)^2}\right)$$
flexible strands ($R_{in} \gg b_K$):
$$\beta \cong \frac{b_K}{R_{max}} \to 0$$

Approximation for flexible chains ($R_{in} \gg b_K$):

$$\sigma_{true}\left(\lambda\right)=G\left(\lambda^{2}-\lambda^{-1}\right)$$

$$E_0 \cong 3G$$

Forensics of polymer networks

Extracting network structure from the non-linear response to deformation

Nature Materials 22, 1394 (2023)

73

Pol(n-butyl acrylate) networks with different crosslink densities

Two issues:

- actual n_x is unknown (Note: the indicated n_x values are targeted ones)
- Kuhn length (b_K) is unknown

74

Fitting analysis

Fitting with the equation of state (red dashed lines) $\sigma_{true}\left(\lambda\right) = \left(\lambda^2 - \lambda^{-1}\right) \left(\frac{G_e}{\lambda} + \frac{G}{3} \left(1 + 2\left(1 - \frac{\beta(\lambda^2 + 2\lambda^{-1})}{3}\right)^{-2}\right)\right)$

$$E_0 = \frac{G}{3} \left(1 + \frac{3G_e}{G} + 2(1 - \beta)^{-2} \right)$$

 n_x (

n_x	G(kPa)	$G_e(kPa)$	β	$E_0(kPa)$
20	102.4	36.3	0.133	483.8
50	46.5	20.2	0.045	209.1
100	25.1	23.5	0.031	149.1
200	17.3	18.3	0.014	107.8

75

Two measured properties (G and β) give two network parameters (n_x and b_K)

Elongation-at-break: expected vs. measured

 $\beta \equiv \frac{R_{in}^2}{R_{max}^2} \qquad \qquad \lambda_{max,theor} \cong \frac{R_{max}}{R_{in}} \cong \frac{1}{\sqrt{\beta}}$

Experimental elongation-at-break is always lower than the theoretical one due to molecular and macroscopic defects.

77

Real networks have defects

The dangling ends not only influence the density of the stress-supporting strands but also decrease the effective crosslink functionality.

tetrafunctional crosslinks: $\langle f \rangle = 4 - \frac{2(N_c + 2)}{N_c^2 - 2N_c + 4}$ f = 4 f = 3 f = 2

Forensics or real networks

f, N, Cloop are difficult to decouple without additional information

Nature Materials 22, 1394 (2023)

Equation of state:

79

What we have learnt so far

21

Network elasticity is controlled by two parameters: b_K and n_x

Entanglement plateau modulus

It is challenging to make materials softer than the entanglement modulus:

$$G_e \cong rac{
ho RT}{M_e} \cong 10^5 \ Pa$$
 $M_e \cong 10^4 \ g Tmol$

82

Soft tissues are much softer than the entanglement modulus

E = 10 Pa - 1 MPa

Q: How to disentangle chains?

83

Making molecules fatter...

Is the problem solved? Not quite... because $D \uparrow$ results in $b_K \uparrow$

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Q: What is more entangled: flexible or rod-like molecules?

- a) Flexible molecules
- b) Rod-like molecules
- c) They are equally entangled

Fat molecules: dilution vs. rigidity

"dilution" is not enough... rigidity matters!

Rigidity of filaments

Architecturally disentangled polymer melts

Fat and Flexible Macromolecules Give Ultra-Soft, Super-Elastic <u>Solvent-free</u> Materials

Nature Mater. <u>15</u>, 183 (**2016**)

89

Controlling properties by architecture

Chemical code: $[l, v, b,]$	τ_0]	Architectural code: $[n_x]$	
 monomer length: <i>l</i> monomer volume: <i>v</i> 		single parameter!	
 chain flexibility: b monomer relaxation time	me: $ au_0$		
Kuhn length	$b_K = b \sim 1 nm$	$\sigma \uparrow \qquad \stackrel{n_e}{\longleftrightarrow} \langle , \qquad /$	
Entanglement DP	$n_e \cong P_e^2 \frac{v^2}{(bl)^3} \sim 100$		
Modulus	$E_0 \cong 3G \cong \frac{k_B T}{\nu n_x}$	B	
Strain-stiffening and elongation-at-break	$\beta \cong \frac{1}{\lambda_{max}^2} = \frac{b}{n_x l}$	$\lambda = LTL_0$	
Rouse time	$\tau_R \cong \tau_0 n_x^2$	All properties of linear polymer networks <u>are</u> <u>coupled</u> : They cannot be varied independentl of one another without changing chemistry	y

Architectural code: $[n_{sc}, n_g, n_x]$

multiple parameters

Controlling properties by architecture

Kuhn length

$$b_K = b \sim 1 nm$$

Entanglement DP

 $E_0 \cong 3G \cong \frac{k_B T}{m_T}$

 $n_e \cong P_e^2 \frac{v^2}{(bl)^3} \sim 100$

Strain-stiffening and elongation-at-break

 $\beta \cong \frac{1}{\lambda_{max}^2} = \frac{b}{n_x l}$

Rouse time

Modulus

$$\tau_R \cong \tau_0 n_x^2$$

All properties are coupled through n_x

 $\tau_R \cong \tau_0 \frac{n_{sc}}{n_g^2} n_x^2$ decoupled: can be varied independently of one another for a given chemistry

 $b_{K} = \frac{v}{l^{3T2}b^{1T2}} \frac{1 + n_{sc} T n_{g}}{n_{sc}^{1T2}} \sim 10 \ nm$

 $n_e \simeq \left(\frac{b}{b_\kappa}\right)^3 \left(1 + \frac{n_{sc}}{n_a}\right)^2 n_{e,lin} \sim 1000$

 $G \cong \frac{k_B T}{v n_x \left(1 + n_{sc} \mathrm{T} n_a\right)}$

 $\beta \cong \frac{v}{l^{5\text{T2}}b^{1\text{T2}}} \frac{1 + n_{sc}\text{T}n_g}{n_s n_{sc}^{1\text{T2}}}$

"Golden" rule: Stiffer materials are less flexible

Biological tissues do no follow the rule: Independently varying stiffness and extensibility

92

Breaking the "Golden rule"

Linear-chain elastomers:

G and λ_{max} are coupled

G and λ_{max} are decoupled

34

Architecture-Chemistry Superposition

Same architecture - different elasticity

Matching elasticity by architecture

Encoding tissue mechanics by architecture

"Reverse tissue engineering"

Nature 549, 549 (2017)

Enhancing firmness

Self-assembled, moldable, reversible thermoplastic elastomers

97

Biological gels: Independent mechanics and swellability

Can we design gels with the modulus ranging from 0.1 to 100 kPa at a constant solvent fraction?

Synthetic gels: Stiffness and swellability are coupled

Equilibrium swelling ratio (Flory-Rehner for θ -solvent):

 $Q_{eq} = \frac{V_{gel}}{V_{dry}} \sim G^{-3T8} \sim n_x^{3T8} \quad - Q \text{ and } G \text{ are directly coupled through } n_x$

modulus and equilibrium swelling ratio are coupled

independently varying gel modulus and equilibrium swelling ratio

ACS Central Sci. <u>8</u>, 845 (**2022**)

Architecturally tuning polymer relaxation

Single parameter: limited control

Multiple parameters: wider range

Effect of architecture on viscoelasticity and adhesion

The All-in-One Adhesives

Integrating multiple functions in one molecule without using additives

Distinct benefits

- No residues on skin (no leaching)
- Flexing with skin
- Sweat resistant
- Tunable adhesion for specific applications
- Adaptable for molding, film casting, and 3D printing

Moldable elastomers: Integrating tissue mechanics and adhesion into a biomedical device

ACS Appl. Mater. Interf. 15 (35) 41870 (2023)

105

Conclusion and Outlook: Artificial Intelligence in Soft Materials Design

Thank you!

Students and postdocs

Mohammad Vatankhah Foad Vashahi Erfan Dashtimoghadam Farah Fahimipour Mitchel Maw Benjamin Morgan Andrew Keith Daixuan Zhang Joseph Collins Jessica Garcia Jing-Jing Wang

Cooperation

Krzysztof Matyjaszewski (CMU) Andrey Dobrynin (UNC) Dimitri Ivanov (CNRS, Mulhouse) Michael Rubinstein (Duke) Frank Leibfarth (UNC) Wei You (UNC) Harm-Anton Klok (EPFL) Ekaterina Zhulina (St. Petersburg) Oleg Borisov (UPau)

THE BENEFITS OF PMSE MEMBERSHIP

- Be part of a community of highly motivated experts in polymer science and engineering with convenient opportunities for networking
- Enjoy the technical programming at ACS National Meetings and support for regional meetings in polymer science and engineering
- Be eligible to be nominated and to nominate others for PMSE awards
- Take advantage of volunteer and leadership opportunities for both students and professionals (committees, governance, and award panels)
- Obtain support and networking for early career scientists through the local PMSE chapters
- Make use of educational, professional development resources, and polymer-specific techniques through the MACRO initiative
- * Participate in expert-led technical webinars focusing on techniques and methods relevant to polymer materials
- Take part in professional development at a range of levels, from undergraduate students through early career independent scientists and engineers

www.acs.org/acswebinars

Learn from the best and brightest minds in chemistry!

Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

LIVE

Edited Recordings

are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars[®] Library at <u>www.acs.org/acswebinars</u>

Live Broadcasts

of ACS Webinars[®] continue to be available free to the general public several times a week generally from 2-3pm ET. Visit <u>www.acs.org/acswebinars</u> to register* for upcoming webinars.

*Requires FREE ACS ID

111

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org

