

www.acs.org/acswebinars

A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

https://chemidp.acs.org

Career Consultant Directory

- ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
- Consultants provide personalized career advice to ACS Members.
- Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting

7

ACS Bridge Program

Are you thinking of Grad School?

If you are a student from a group underrepresented in the chemical sciences, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

- A FREE common application that will highlight your achievements to participating Bridge Departments
- Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

ACS Scholar Adunoluwa Obisesan

BS, Massachusetts Institute of Technology, June 2021 (Chemical-biological Engineering, Computer Science & Molecular Biology)

"The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!"

GIVE TO THE

Donate today at www.donate.acs.org/scholars

https://www.youtube.com/c/ACSReactions/videos

Looking for a new science podcast to listen to?

Check out Tiny Matters, from the American Chemical Society.

Sam Jones, PhD Science Writer & Exec Producer

Deboki Chakravarti, PhD Science Writer & Co-Host

TO SUBSCRIBE

visit http://www.acs.org/tinymatters or scan this QR code

11

c&en's STEREO CHEMISTRY

Carolyn Bertozzi and K. Barr Sharpless chat about sharin the 2022 Nobel Prize in Chemistry

Bioorthogonal, click chemistry clinch the Nobel Prize October 5, 2022

Lithium mining's water use sparks bitter conflicts and novel chemistry

For John Goodenough's 100th birthday, Stereo Chemistry revisits a fan-favorite interview with the renowned scientist

TINY
MATTERS

Wastinana

The sticky science of why we

The helium shortage wasn't supposed to March 24, 2022

VOICES AND STORIES FROM THE WORLD OF CHEMISTRY

Subscribe now to C&EN's podcast

cen.acs.org/sections/stereo-chemistry-podcast.html

ACS on Campus is the American Chemical Society's initiative dedicated to helping students advance their education and careers.

ACS Career Resources

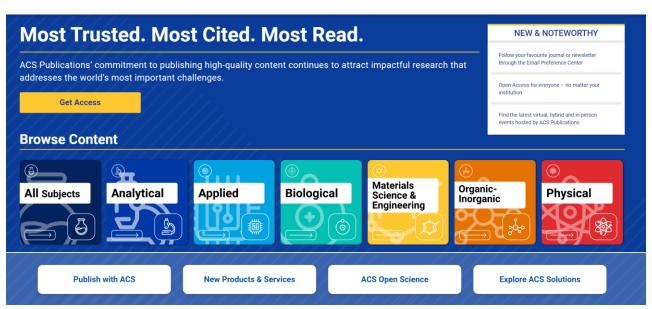
Virtual Office Hours

https://www.acs.org/careerconsulting.html

Personal Career Consultations

https://www.acs.org/careerconsulting.html

Linked in Learning



https://www.acs.org/linkedInlearning

15

15

https://pubs.acs.org

The impact and results of ACS member advocacy outreach and efforts by the numbers!

39+
participated Chemistry

ACS Advocacy Workshops participants or enrollees

49 Years of Public Policy Fellows

Get Involved

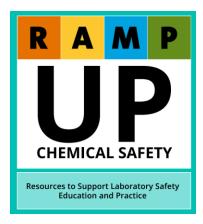
Enroll in a workshop

Become a Fellow

Take Action

American Chemical Society

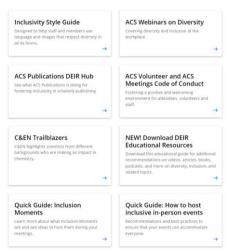
https://www.acs.org/policy


117

17

A complete listing of ACS Safety Programs and Resources

Download it for free in the "Projects & Announcements" Section! www.acs.org/ccs



American Chemical Socie

ACS OFFICE OF DEIR

Advancing ACS' Core Value of Diversity, Equity, Inclusion and Respect

Resources

https://www.acs.org/diversity

19

www.acs.org/membership

Have a Different Question?Contact Membership Services

Toll Free in the US: 1-800-333-9511

International: +1-614-447-3776

service@acs.org

Premium Access to all benefits. The best option for students, professionals, or retired, now at a better price.			ard on featuring a slimmed-down set at half the price.	Basic Introductory set of complimentary benefits		
\$160	Regular Members & Society	\$80	Regular Members	\$0	Community Associate	
\$ 80	Affiliates Recent Graduates*	\$40	Recent Graduates* 1			
\$55	Graduate Students					
\$25	Undergraduate Students					
\$80	Retired					
\$ 0	Emeritus					


www.acs.org/acswebinars

Thursday, March 7, 2024 2-3pm ET
The Art of Self-Reinvention

Co-produced with the ACS Women Chemists Committee

Wednesday, March 13, 2024 | 11am-12:30pm ET Fungal Foes: Understanding the Challenges and Exploring New Treatment Options

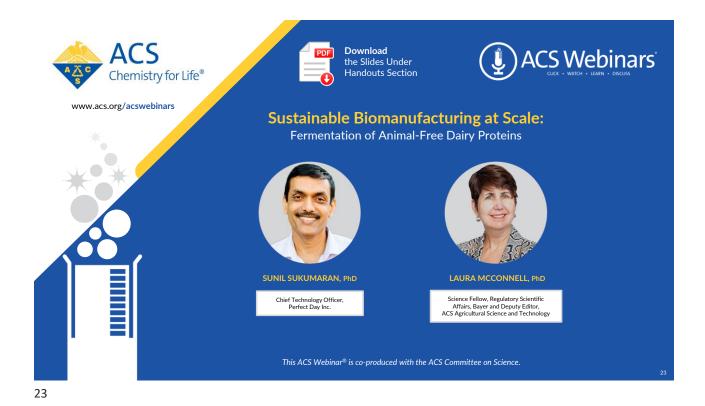
Co-produced with the ACS Publications

Thursday, March 14, 2024 | 1pm-2:15pm ET

Powering the Future: The Latest

Battery Technologies

Co-produced with the Science History Institute


Register for Free

Browse the Upcoming Schedule at www.acs.org/acswebinars

2:

21


ACS Committee on Science (COMSCI)

ACS Chemistry for Life®

Mission:

- Identify and promote new frontiers of chemistry
- Examine scientific basis & formulate public policies related to chemical sciences

Recognize outstanding chemical scientists

https://www.acs.org/content/acs/en/about/governance/committees/science.html

ACS Committee on Science (COMSCI)

Webinars

Frontier Fridays: Sorbent-based Direct Air Capture of CO₂ at Scale

Watch Now -

Policy Statements

- ✓ Energy
- ✓ Sustainability
- ✓ Hydraulic Fracturing
- √ Forensic Science

Symposia at Fall ACS Meeting

Scaling New Heights of Chemistry Education with Artificial Intelligence Tools

Organized by: Robert Pribush, Judith Benham, Tom Holme, Mary Carroll

Elevating Atmospheric Chemistry Measurements and Modeling with Artificial Intelligence

Organized by: Carl Picconatto, Jeff Arnold, and Mary Carroll

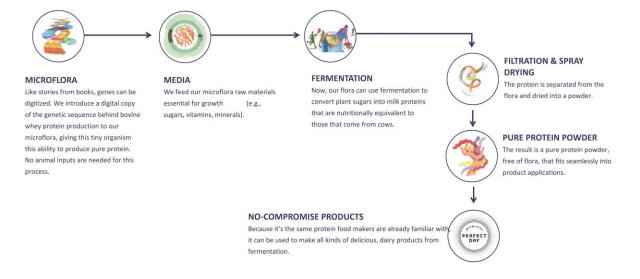
<u>Awards</u>

- > National Medal of Science
- > National Medal of Technology and Innovation
- > Dreyfus Award in the Chemical Sciences

https://www.acs.org/content/acs/en/about/governance/committees/science.html

25

25


Sustainable Biomanufacturing at Scale: Fermentation of Animal-Free Dairy Proteins

All information and images are confidential and proprietary

*Compared to whey protein found in traditional milk. Data from ISO-certified, third-party-validated report.

All information and images are confidential and proprietary.

We're bringing higher quality, sustainable protein to the category.

Protein Source	BCAA (g/100g powder)	Function	Animal Free	Lactose Free	Soy Free	GHG Emission: (per 100g protein)
Dairy (WPI)	20	***	×	8	Ø	9.50
Pea	11	★☆☆				0.44
Oat	7	★★☆				2.70
Almond	N/A	★益益				0.26
Soy	9	***			×	1.98
Perfect Day	23	***	Ø	Ø	Ø	0.29

Acronyms: WPI (whey protein isolate), BCAA (branched-chain amino acids), GHG (greenhouse gas)

31

The below brands, and many more, are now in over 5K grocery stores around the globe

BEL GROUP Cream Cheese

Ice Cream

NICK'S Ice Cream

RENEWAL MILL **Bakery Mix**

BORED COW Milk

Milk

MYPROTEIN **Sports Nutrition**

Natreve Sports Nutrition

Partners in **Testing**

Barista Milk + Ice Cream

MARS Chocolate

Sca (g/100g powder): Gorissen et al., 2008, "Protein content and amino acid composition of commercially available plant-based protein isolates", https://doi.org/10.100782F500726-018-2640-5
2. GHG Emissions per 100g Protein (Poore & Nemecek, 2018), "Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function," Hertzler, Lieblein-Boff, Weller, Allgeler, Gras Notice for Partilly Defatted Almond Protein Flour, Blue Glimmod.

Partilly Defatted Almond Protein Flour, Blue Glimmod.

Global Footprint

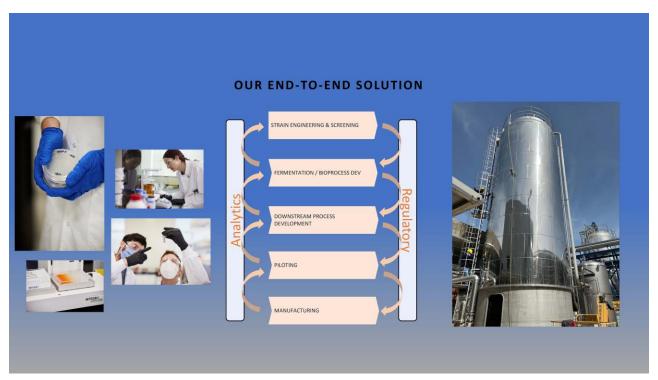
33

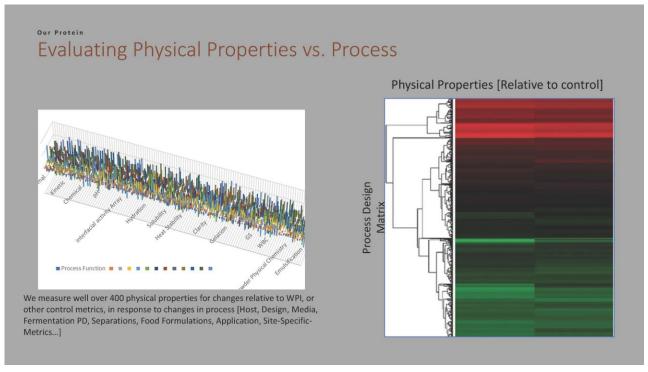
The State of Our Industry **Opportunities** Challenges High consumer demand for Scale required to meet demand sustainable products outpacing available infrastructure Global market for products and Geographic expansion requires varied cross-border appeal regulatory approval processes Requires proactive policy engagement by Government interest is high and potential funding available existing leaders Path to price parity is proven Largely price intolerant during and achievable period of scale-up Common sustainability goal Requires pushback against narrative drives deep collaboration of disruption as success

Growing Consumer Demand

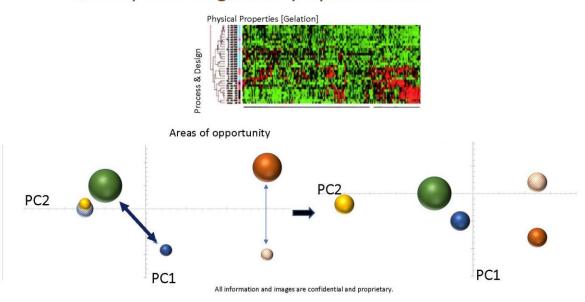
Research shows 90 million consumers will be interested in precision fermentation food and beverages when they understand its benefits

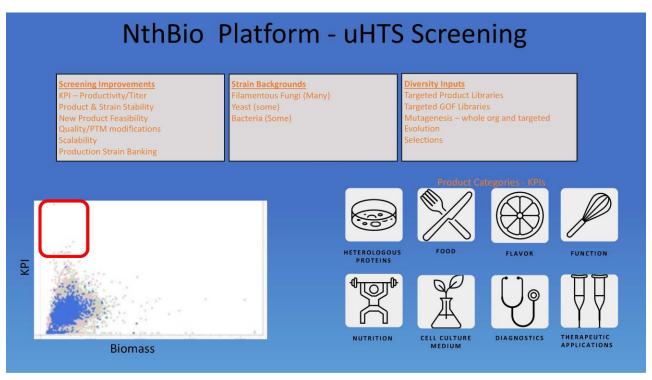
	F	Ready	Easily			nced with enefits	Unco	nvinced	Curren	tly out of reach	Total across groups in eacl age cohort
Gen Z (18-25)	14%	4,440,553	19%	6,379,001	14%	4,439,579	39%	12,625,547	15%	4,896,658	100%
Millennials (26-41)	27%	18,911,267	15%	10,050,526	13%	8,887,815	27%	18,672,987	18%	12,331,595	100%
Gen X (42-57)	16%	10,074,889	8%	4,830,936	14%	9,015,227	37%	23,099,536	25%	15,697,681	100%
Boomers (58-73)	3%	1,899,418	6%	3,698,010	14%	7,919,066	45%	25,960,005	32%	18,299,525	100%
Total in each segment	35.326.127		24,958,473		30,261,687		80,358,074		51,225,459		
Total addressable market today			willi	546,287 ng to buy ODAY							
•				~							


Data from The Hartman Group for Perfect Day & Cargill

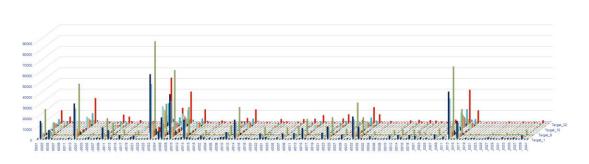

35

We've built our business to meet demand and scale our



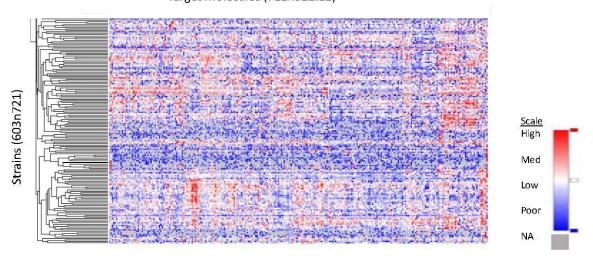


Identifying the Process Functions that matter for Quality and Regulatory Specification

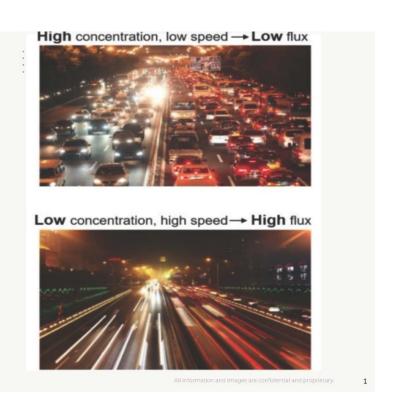


41

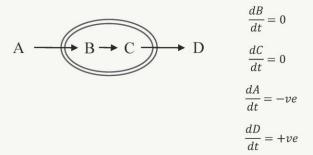
Analysis of Hits



43

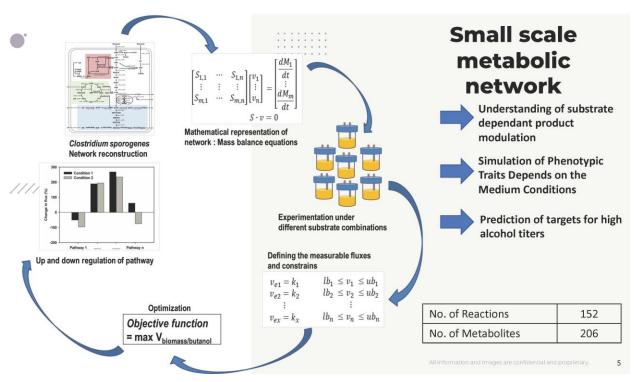

Large Scale Analysis - Strains vs. Product Expression

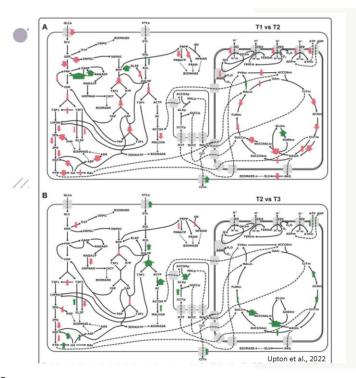
Target Molecules (711n321.11)



Why should we carry out metabolic flux analysis

- · To quantify the carbon flux distribution
- · To understand the complex interplay between energy metabolism, carbon fixation, and assimilation pathways
- · Connects genomics with metabolism

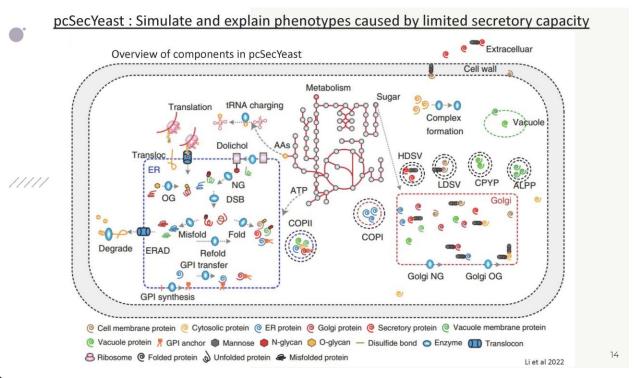

Input Carbon source Nitrogen source Biomass H2 CO2


Theory: Pseudo steady state Approximation

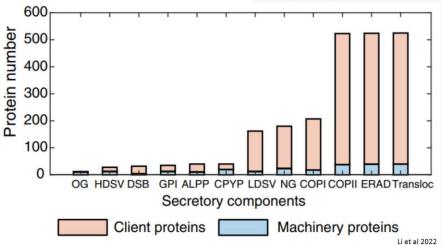
 $v = flux (rate \ of \ reaction) = \frac{mmole \ of \ substrate \ consumed \ or \ Product \ formed}{g \ biomass \ * hour}$

All information and images are confidential and proprietary.

Integration of A. niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate

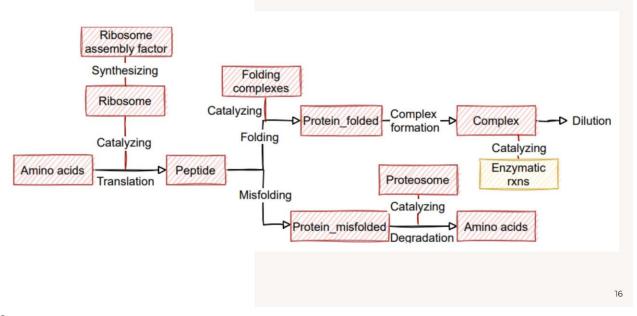

Prediction of targets for higher citric acid titers

T1: Glucose consumption phase before the onset of citric acid production and phosphate-limited growth.


T2: Glucose consumption phase, citric acid producing, phosphate-limited growth.

T3: Xylose consumption phase after glucose was fully consumed. Citric acid producing and phosphate-limited growth.

49


Subsystems in the secretory pathway and the protein number in each subsystem

- 1. OG: O-glycosylation
- 2. HDSV : high-density secretory vesicles
- 3. DSB: disulfide bond formation
- 4. GPI: glycosylphosphatidylinositol
- 5. ALPP: alkaline phosphatase pathway
- 6. CPYP: carboxypeptidase Y pathway
- 7. LDSV: low-density secretory vesicles
- 8. NG: N-glycosylation
- 9. COPI: Coat Protein Complex I
- 10. COPII: Coat Protein Complex II
- 11. ERAD: ER-associated degradation
- 12. Transloc: translocation

51

Flowchart of the protein related process in the pcSecYeast.

- \checkmark Reactions for production of post-translational modification precursors
- ✓ Reactions catalyzed by isozymes were also split into multiple identical reactions with various isozymes. This step was performed to facilitate later kcat match and enzyme constraining step
- ✓ Translation initiation, elongation, and termination reactions added for each protein (total 1639)
- Protein translocation pathways added: co-translational translocation, post-translational translocation, and post-translational translocation-tail-targeting

Co-translational translocation

- 1. signal peptide recognition
- 2. ER receptor biding to peptide-SRPC
- 3. binding of peptide -SRPC-SRC to the translocator (Sec61C) $\,$
- 4. binding of peptide -SRPC-SRC to the translocator (Ssh1C)
- 5. signal peptidase
- 6. export the signal peptide out of ER for degradation

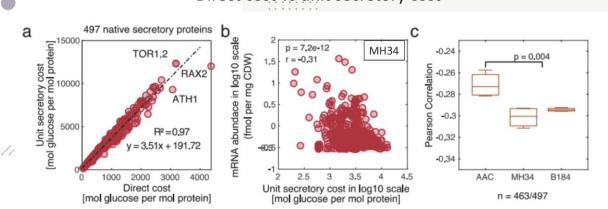
Post-translational translocation

- 1. exit the ribosome
- 2. bind to the cytosolic chaperone
- 3. Translocation
- 4. pulling of nascent protein

*The coefficient of ATP in step 4 was set as length/40, since the ATP molecule bound to the chaperone Kar2, is assumed to be hydrolyzed to ADP for every 40 amino acids that pass through the translocon pore

Post-translational translocationtail targeting

- 1. load the TA proteins
- 2. bind to Get3
- 3. bind to ER receptor

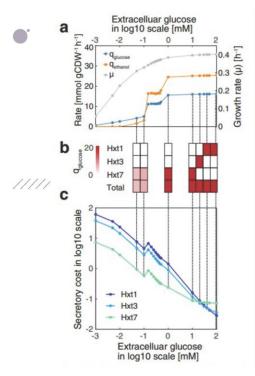

Reactions for complex formation for enzymes used in either of these pathways are added to the model.

Li et al 2022

7

53

Direct cost vs unit secretory cost


Direct cost: Includes the energetic cost for synthesis, modification and secretion of this protein **Unit secretory cost:** Direct cost + cost for the corresponding increased fraction of the catalytic machineries in these processes caused by the increase of this protein

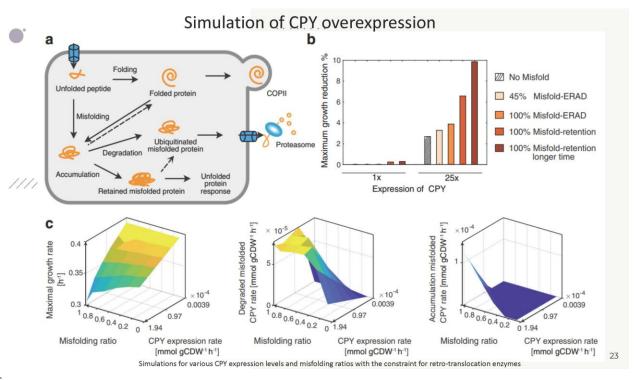
Total no of proteins: 1639 Metabolic proteins: 1156 Secretory proteins: 483 Secretory $cost_i = unit secretory <math>cost_i \cdot [E_i] = unit secretory cost_i \cdot \frac{V_{glc.total}}{k_{cat.i}} \frac{|S|}{|S|+K_{u.t.}}$

AAC: low yield $\alpha\text{-amylase}$ strain MH34 and B184: high yield $\alpha\text{-amylase}$ strain

Li et al 2022

20

Simulated physiological response of *S. cerevisiae* as a function of the extracellular glucose concentration


Hxt 1 and Hxt 3: Low affinity transporters : Low unit secretory cost

Hxt 7: High affinity transporters : High unit secretory cost

Li et al 2022 21

55

-	_							Overview of protein
	a Protein	abbr.	DSB	NG	OG	GPI	Length	features for eight
	Insulin precursor	IP	3	0	0	0	53	recombinant proteins
	Human granulocyte colony stimulating factor	hGCSF	2	0	1	0	174	produced by S. cerevisiae
	Hemoglobin	Hemoglobin	0	0	0	0	299	
	β-glucosidase	BGL	0	0	0	0	421	
	α-amylase	a-amylase	4	1	0	0	478	
	Acid phosphatase	PHO	8	9	0	0	435	
	Human serum albumin	HSA	17	1	0	0	585	
111,	Human transferin	HTF	19	0	1	0	679	
* * * *	b 4×10 ⁻³	с	×1e-5					
	Protein production rate [mmol gCDW** h*] Output Specific growth rate [mmol gCDW** h*]	0.3 0.4 te [h·1]	8 · 6 · 4 · 2 · 50 · 50 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 ·	n≅x≷n	-04¤		ative impact	

Need of the hour?

- o Scale down models ?
- ////o In-depth appreciation of stage specific Physiology
 - o A relevant mathematical model with relevant constraints put in place
 - Alternate feed-stock
 - Recycling resources

58

www.acs.org/acswebinars

Thursday, March 7, 2024 2-3pm ET
The Art of Self-Reinvention

Co-produced with the ACS Women Chemists Committee

Wednesday, March 13, 2024 | 11am-12:30pm ET Fungal Foes: Understanding the Challenges and Exploring New Treatment Options

Co-produced with the ACS Publications

Thursday, March 14, 2024 | 1pm-2:15pm ET

Powering the Future: The Latest

Battery Technologies

Co-produced with the Science History Institute

Register for Free

Browse the Upcoming Schedule at www.acs.org/acswebinars

61

61

www.acs.org/membership

Have a Different Question?

Contact Membership Services

Toll Free in the US: <u>1-800-333-9511</u>

International: <u>+1-614-447-3776</u>

service@acs.org

Premium Access to all benefits. The best option for students, professionals, or retired, now at a			ard on featuring a slimmed-down set at half the price.	Basic Introductory set of complimentary benefits		
\$160	Regular Members & Society	\$80	Regular Members	\$0	Community Associate	
	Affiliates	s 40	Recent Graduates* 1			
\$80	Recent Graduates* 1					
\$55	Graduate Students					
\$25	Undergraduate Students					
\$80	Retired					
\$0	Emeritus					

Learn from the best and brightest minds in chemistry!

Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings

are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars

Live Broadcasts

of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

*Requires FREE ACS ID

63

