Questions or Comments?
Type them into the questions box!

"Why am I muted?"
Don't worry. Everyone is muted except the Presenter and the Host. Thank you and enjoy the show.

Chat
Announcements and hyperlinks from our team

Handouts
Download the PDF of today's slide deck
Let’s Get Social!

Follow the American Chemical Society on Twitter, Facebook, Instagram, and LinkedIn for the latest news, events, and connect with your colleagues across the Society.

@AmerChemSociety @AmericanChemicalSociety @amerchemsociety

linkedin.com/company/american-chemical-society

Contact ACS Webinars® at acswебinars@acs.org

Where is the Webinar Recording?

All Registrants
Watch the unedited recording linked in the Thank You Email for 24 hours.

ACS Members w/Premium Package
Visit the ACS Webinars® Library to watch the edited and captioned recording.
Explore the new and improved ACS Webinars® Library!

Familiar search, sort, and filtering tools have been added to help find the recording you are looking for.

Accurate captions for accessibility

Improved granular topics and collections

Exclusive for ACS Members with the Premium Package

Visit www.acs.org/acswebinars to discover hundreds of recordings!

Create a roadmap to help you achieve your professional goals!

Questions, comments, or you would like a workshop?

Contact us!

ChemIDP@acs.org
chemidp.acs.org/my-vitae

NEWEST FEATURE!

A Better Way to Track and Update Your Career Progress

My Vitae is a comprehensive curriculum vitae (CV) for all your personal and professional achievements, experiences, and competencies. Easily organize and select components of your vitae to begin drafting a resume, CV, cover letter, and much more!

Get started on yours with ChemIDP.org

Career Consultant Directory

• ACS Member-exclusive program that allows you to arrange a one-on-one appointment with a certified ACS Career Consultant.
• Consultants provide personalized career advice to ACS Members.
• Browse our Career Consultant roster and request your one-on-one appointment today!

www.acs.org/careerconsulting
Being a part of the ACS Bridge program has benefited me in several ways. I was able to pursue fully independent, fascinating research at a top institution, but even more importantly, I was exposed to a number of opportunities (such as conferences, career events, etc.) I never would have known about otherwise. The best thing about Bridge in my opinion, are the people at ACS who have worked to make it happen. Their dedication to helping me develop professionally and supporting me in good or bad times I will forever be grateful for.

Hanin Sarhan, Bridge Fellow at Indiana University

Group picture from 2022 CKS at ACS HQ in Washington, DC

ACS Scholar Adunoluwa Obisesan
BS, Massachusetts Institute of Technology, June 2021 (Chemical-biological Engineering, Computer Science & Molecular Biology)

“The ACS Scholars Program provided me with monetary support as well as a valuable network of peers and mentors who have transformed my life and will help me in my future endeavors. The program enabled me to achieve more than I could have ever dreamed. Thank you so much!”

Donate today at www.donate.acs.org/scholars
ACS video series spotlighting new and interesting chemistry research.

Find us:
youtube.com/@AmerChemSociety
acs.org/headlinescience

Contact us:
ACS_video@acs.org

ACS on Campus is the American Chemical Society's initiative dedicated to helping students advance their education and careers.
ACS Career Resources

Virtual Office Hours

Personal Career Consultations

Linkedin Learning

https://www.acs.org/careerconsulting.html

https://www.acs.org/careerconsulting.html

https://www.acs.org/linkedInlearning

ACS Advocacy

See your influence in action!

The impact and results of **ACS member advocacy** outreach and efforts by the numbers!

- **2439+** Members participated in Act4Chemistry
- **1739+** ACS Advocacy Workshops participants or enrollees
- **49** Years of Public Policy Fellows
- **2000** Letters sent to Congress

Get Involved

Enroll in a workshop

Become a Fellow

Take Action

https://www.acs.org/policy
A complete listing of ACS Safety Programs and Resources

Download it for free in the “Projects & Announcements” Section! www.acs.org/ccs

ACS OFFICE OF DEIR
Advancing ACS’ Core Value of Diversity, Equity, Inclusion and Respect

Resources

- Inclusivity Style Guide
- ACS Webinars on Diversity
- ACS Volunteer and ACS Meetings Code of Conduct
- ACS Publications DEIR Hub
- NEW! Download DEIR Educational Resources
- C&EN Trailblazers
- Quick Guide: Inclusion Moments
- Quick Guide: How to host inclusive in-person events

Diversity, Equity, Inclusion, and Respect

Equity**
The representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, religion, age, social-economic status, thinking and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

Diversity**
The representation of varied identities and differences (race, ethnicity, gender, disability, sexual orientation, gender identity, national origin, religion, age, social-economic status, thinking and communication styles, etc.) collectively and as individuals. ACS seeks to proactively engage, understand, and draw on a variety of perspectives.

Inclusion**
A culture of belonging by actively inviting the contribution and participation of all people. Every person’s value adds value, and ACS strives to ensure balance in the face of power differences. In addition, no one person can or should be relied upon to represent an entire community.

Respect
Ensures that each person is treated with professionalism, integrity, and ethics underlying all interpersonal interactions.

https://www.acs.org/diversity
#ACSPIB is Back!

Featuring the chemistry of photography and imaging as part of National Chemistry Week

- A free and easy event during the week of Oct. 20-26 for your students and early career chemists
- Sign up below to be notified when registration begins in August 2024

Go to www.acs.org/pib to pre-register for the event

ACS Publications
Most Trusted. Most Cited. Most Read.

ACS Publications' commitment to publishing high-quality content continues to attract impactful research that addresses the world's most important challenges.

Get Access

Browse Content

NEW & NOTEWORTHY
Follow your favourite journal or newsletter through the Email Preference Center
Open Access for everyone — no matter your institution
Find the latest virtual, hybrid and in-person events hosted by ACS Publications

https://pubs.acs.org
BECAUSE PEOPLE LIKE YOU CREATE GREAT CHEMISTRY
You belong here

Have a Different Question?
Contact Membership Services

Toll Free in the US: 1-800-333-9511
International: +1-614-447-3776
service@acs.org
Thursday, July 10, 2024 | 2-3:15pm ET
Crafting a Standout Grant Proposal: Tips and Success Stories
Co-produced with the ACS Office of Research Grants

Wednesday, July 17, 2024 | 2-3pm ET
How can ACS support your career as a Chemical Technical Professional?
Co-produced with the ACS Committee on Technician Affairs

Thursday, July 18, 2024 | 2-3pm ET
A Different Way of Thinking: How People Who are Neurodivergent can Flourish in Science
Co-produced with the ACS Office of Diversity, Equity, Inclusion & Respect

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswebinars

THIS ACS WEBINAR® WILL BEGIN SHORTLY...
Say hello in the questions window!
A synthetic microbiota designed through meta-analysis provides insight to community function in *Clostridioides difficile* resistance
Challenges in translating microbiome science

1. What defines a healthy microbial community?
2. Does a singular healthy microbiota exist?
3. What are the mechanisms that drive health?
4. How can we design functional microbial communities?

Proposed solution: meta-analysis

Microbiome meta-analysis

• >10 years of high throughput microbiome data in public repositories
• Not all of it is useful, but it allows for studying the human microbiome across populations and disease states
• MAGs have become an incredibly powerful tool for microbiome research
• Is there more we can learn from this data in aggregate?
Clostridioides difficile

- Opportunistic pathogen causing spectrum of disease
- Normally suppressed by healthy gut microbiome and triggered by antibiotics
- Treatment frequently followed by recurrent infection
- ~½ million annual infections in US and on the rise costing billions
- Fecal transplant has proven effective but has limitations

Fecal transplant alternatives

- Fecal transplants are highly efficacious but:
 - May carry MDR pathogens
 - May have undesirable off-target effects
 - Rely on human donors -> intrinsically irreproducible composition
 - Can we rationally design a synthetic fecal microbiome transplant (sFMT) alternative?
 - But what organism(s) should we put in it?
I. Design of Synthetic Communities

C. difficile meta-analysis

Goal: Identify the organisms most robustly anti-correlated with *C. difficile* colonization
Altered community composition with *C. difficile*

- Schubert 2014 (n=278)
- PRJNA379979 (n=124)
- Seekatz 2016 (n=98)
- Ling 2014 (n=80)
- Schneider 2017 (n=73)
- Zuo 2018 (n=50)
- Song 2013 (n=36)
- Weingarden 2015 (n=24)
- Seekatz 2018 (n=21)
- PRJNA259188 (n=14)
- Rojo 2015 (n=13)

Combined

<table>
<thead>
<tr>
<th>C. difficile</th>
<th>Shannon's log2(fold-change)</th>
<th>Faith's PD</th>
<th>Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Cd.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Decreased Cd.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P < 0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P > 0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Random Forest model training

- Accurate predictions of *C. difficile* colonization in external validation studies (AUROC=0.81±0.2)
- ~200 features (organisms) with predictive ability
Predictive taxa

- Predictive taxa are enriched for negative predictors
- Predictive taxa cover a broad phylogenetic range
- *Clostridium scindens*, a known inhibitor of *C. difficile* is not predictive of *C. difficile* colonization *in vivo*

Identifying taxa for synthetic community

- Features anti-correlated with *C. difficile* are correlated with each other:
 - Evidence that they will form a stable community?
- We constructed:
 - sFMT1: 37 pure culture strains anti correlated with *C. difficile*
 - sFMT1+Cs: sFMT1 with *C. scindens*
 - ProCd: 25 pure culture strains positively associated with *C. difficile*
II. Characterizing Community Assembly and Function

Characterization in serial culture

- sFMT forms a stable community in vitro
Composition *in vivo*

- sFMT colonization kinetics mimic a human fecal transplant

In vivo vs in vitro

- There are “waves” of succession during colonization similar to humans
- *In vivo* community composition and temporal dynamics are distinct from *in vitro*
• Metagenomic methods needed to differentiate strains for higher sensitivity and specificity
• Developed StrainR2: normalization based on effective unique genome size
• FPKM (Fragments per kilobase per million reads mapped)
• FUKM (Fragments per unique thousand hashed k-mers per million reads mapped)

Intraspecies competition

• What are the determinants of competitive exclusion in vivo?
sFMT metabolism *in vivo*

- SCFAs are derived from bacterial metabolism of non-digestible carbohydrates among other sources
- sFMT1 replicates metabolism of human-derived fecal transplant (hFMT)

sFMT bile acid transformation

- sFMT1 replicates many biotransformations observed in a complex human sample and addition of *C. scindens* leads to 7α-dehydroxylation
An unexpected observation

- 3-oxoLCA is a potent anti-inflammatory molecule acting on Th17 cells
- 3-oxoLCA is also an inhibitor of *C. difficile*
- How could 3-oxoLCA be produced in the absence of *C. scindens*

III. Measuring resistance to *C. difficile* infection
C. difficile exclusion *in vitro*

- **sFMT1 and hFMT** reduce **C. difficile** abundance by orders of magnitude
- **ProCD** (organisms positively correlated with **C. difficile**) has no significant effect

Gnotobiotic infection model

- Colonization reduces disease severity and virulence factor expression
IV. Determining sFMT Mechanism(s) of Action

Stickland fermentation

• Proline fermentation is an important pathway for *C. difficile in vivo*, could sFMT1 members be competing for proline?
Designing ΔStickland functional knockout

- Stickland fermenting strains predicted on basis of possessing proline reductase homologs (Nstrains=8)
- Verified *in vitro* using NMR

Testing ΔStickland functional knockout

- Compared 3 groups:
 - original sFMT1 (N=37 strains)
 - sStickland1 (N=8 strains predicted to reduce proline)
 - sFMT1ΔStickland1 (N=29 strains [37-8])
- NMR confirms functional knockout *in vivo*
ΔStickland loses colonization resistance

But can we refine further?
Reducing sStickland1 complexity

- Validated Stickland fermentation within sStickland1 members in vitro
- 2 strains of *Dorea longicatena* and *Peptostreptococcus anaerobius* demonstrate most convincing activity
- Contrasted:
 - Germ-free
 - sFMT1 (37 strains)
 - sStickland2 = JEB00029 + JEB000254
 - sFMT1ΔStickland2 = sFMT1 - sStickland 2
Translational targets

- Predictive power not driven by differential abundance, but differential presence
- These two species are found in ~20% of individuals without *C. difficile* while largely absent in carriers
- Could these be key predictors of susceptibility and/or potential therapeutic targets?

Conclusions

- Meta-analysis allowed the design of a functional synthetic community
- *C. scindens* may be dispensable for *C. difficile* resistance in a complex community, but strains which conduct Stickland fermentation of proline are necessary and sufficient
- Limitation of proline availability may be key to microbial suppression of *C. difficile*
Conclusions

- Synthetic microbiomes are tractable tools for mechanistic study coupling big data with experimental opportunities

- Synthetic fecal transplants and derivatives thereof (sFMT) may have potential for clinical translation

Acknowledgements

- Bisanz Lab @PSU
 - Susan Tian
 - Min Soo Kim
 - Ben Anderson
 - Daniella Betancurt Anzola
 - Shane Connolly
 - Jingcheng Zhao PhD
 - Kerim Heber
 - Patterson Lab @PSU
 - Andrew Patterson
 - Fuhua Hao
 - Stephanie Collins
 - Yuan Tian
- David Koslicki (PSU)
- Vishal Singh (PSU)
Microbiome Mechanics: Building a Healthier Gut

Peptidoglycan’s Role in Gut Homeostasis

The Gut Microbiome

- The human digestive tract is populated with bacteria (~95% of the human microbiome is located here)

- Essentially a microbial organ within a host organism

- Commensal relationship
The Gut Microbiome

- Gut homeostasis affects our day-to-day functioning
- Two way relationship in terms of exchange of signaling molecules
- We only know of a few biologically active molecules being produced by gut microbiota

A major molecule that is now entering this small list is MDP, which happens to be a fragment of bacterial cell walls

Bacterial cell wall: Peptidoglycan

- Peptidoglycan (also known as sacculi) is a single LARGE molecule that surrounds the entire bacterial cell
- All bacteria are protected by this ‘jacket’ like structure
- Peptidoglycan is uniquely bacteria in nature (humans do not have any molecules similar to it)

MDP Released by Gut Microbiota

- Fragments (or ‘bricks’) from the cell wall are released by muramidases (e.g., lysozyme)

Sensing of NOD2

- MDP is a fingerprint of bacterial presence
- It gets detected by NOD2 inside mammalian cells
- This process was thought to be defensive in nature
 - signifying an infection
 - but this concept may not capture all that MDP does....
Alternative role for NOD2?

Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy

Potentiation of Immunity

- Could NOD2 activation from microbiome peptidoglycan lead to better immunological state?
- Can this improved state potentiate checkpoint cancer immunotherapy?
Potentiation of Immunity

- Gut bacterial enzyme was responsible for depolymerizing peptidoglycan into NOD2 agonists

- In mice devoid of gut bacteria, the supplementation of MDP was sufficient to replicate the anti-cancer phenotype
 - Has implications for drug design and better cancer immunotherapies
Alternative role for NOD2?

Regulation of appetite

• Could NOD2 operate in the brain?
 • If so, what physiology could it control?
• NOD2 expression in neurons could impact feeding and temperature in female mice

• Supplementation of MDP (peptidoglycan fragment) can modulate neuronal activity
Alternative role for NOD2?

Peptidoglycan Can Promote Growth

- What is the impact of directly feeding peptidoglycan?
 - Peptidoglycan can be readily isolated from bacteria, including those that harbor our guts
• Probiotic with *Lactobacillus plantarum* improves intestinal NOD2 stimulation and linear growth
Open Questions - NOD2 in Host Health

- Can we visualize peptidoglycan of gut bacteria in live animals?

- Can we isolate peptidoglycan from stool samples to analyze its composition and NOD2 activation level?

Goal #1 – Live Animal Imaging

We metabolically tagged the peptidoglycan of gut bacteria in live mice with near IR fluorophores.
Goal # 2 – Non-invasive Sacculi Isolation

We set out to isolate peptidoglycan from fecal samples to readily interrogate NOD2 signaling

• But how?

 • Fecal samples are very complex and it is not trivial to isolate bacteria/sacculi

 • We took advantage of a special property of sacculi: its resistance to SDS/heat/DNAase/RNAase/protease

Isolation of Sacculi

- Sacculi imaging
- Peptidoglycan analysis
- Binding profile
- NOD2 activation
The Gut Microbiome

• Peptidoglycan from gut bacteria operates as a biologically active mediator of host health via NOD2 sensing.
Molecular interactions in the human microbiome

The American Obesity Epidemic

Obesity is defined as a BMI over 30
Map: Elijah Wolfson for TIME • Source: N Engl J Med 2019;381:2440-50 • Created with Datawrapper
Obesity Increases Propensity of All-Cause Mortality

Moderate Flavonoid Consumption is Negatively Associated With Mortality
Flavonoids are a large family of plant secondary metabolites

- **Flavones**
 - Apigenin

- **Flavonols**
 - Quercetin

- **Flavanones**
 - Naringenin

- **Isoflavones**
 - Daidzein

- **Anthocyanidins**
 - Cyanidin

Gut bacterial flavonoid catabolism & cardiometabolic disease

- Fruits & veggies
- Flavonoids
- Poor absorption
- Monophenolic acids
- PPARγ↑
- Who? How?
- Cardiometabolic diseases
Hypothesis: Monophenolic acids stemming from microbial flavonoid catabolism are responsible for the anti-obesogenic effect of flavonoid consumption.

Berry extracts attenuate HFD-induced obesity

Osborn et al. (2022) PNAS
Diet Informs Gut Microbial Composition

![Graph showing the effects of different diets on gut microbial composition. The graph includes NMDS1 and NMDS2 axes, with points representing different diet groups. The x-axis shows NMDS1 values ranging from -0.4 to 1.0, and the y-axis shows NMDS2 values ranging from -0.4 to 0.2. The points are color-coded to represent HFD, HFD + Aronia, HFD + Black Currant, and HFD + Black Elderberry. The graph highlights significant differences between groups.]

Beta-Dispersion

- HFD vs HFD + Aronia *
- HFD vs HFD + Black Currant **
- HFD vs HFD + Black Elderberry **
- HFD + Aronia vs HFD + Black Currant *
- HFD + Aronia vs HFD + Black Elderberry *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Osborn et al. (2022) PNAS

Berry Diets Promote Microbial Diversity

![Graph showing the relative percentage of different genera in the gut microbiome across different diet groups. The genera are color-coded to represent HFD Control, HFD + Black Currant, HFD + Black Elderberry, and HFD + Aronia. The Shannon diversity index is also shown, with bars indicating the diversity for each group.]

Osborn et al. (2022) PNAS
Targeted Mass Spec on Microbial Portal Blood Flavonoid Catabolites

4-Hydroxyphenylacetic acid is correlated with improved metabolic parameters

Hoyles et al. (2018) Nat Med
A Single Monophenolic Acid (4-HPAA) Reprograms Global Fat Storage

Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFLD is often a consequence of obesity and is a risk factor for cardiometabolic disease
The Non-Alcoholic Fatty Liver Disease (NAFLD) Spectrum

RISK FACTORS INCLUDE:
- OBESITY
- DIABETES
- ARTERIAL HYPERTENSION
- HYPERLIPEMIA
- INSULIN RESISTANCE
- GENETIC FACTORS

PRESENCE OF HEPATIC STEATOsis WITH NO EVIDENCE OF HEPATOCyTAL INJURY

PRESENCE OF HEPATIC STEATOsis PLUS INFLAMMATION AND SCARRING.

Liver transplant / Death

BY 2025, NASH IS PROJECTED TO OVERTAKE HEPATITIS C AS THE LEADING CAUSE OF LIVER TRANSPLANTS IN THE U.S.

4-HPAA Reverses High Fat Diet-Induced Steatosis

Osborn et al. (2022) PNAS
AMPK Regulates Liver Lipid Metabolism

4-HPAA Induced Hepatic Activation the AMPK Pathway

Osborn et al. (2022) PNAS
4-HPAA Downregulates Hepatic Fatty Acid Synthesis

4-HPAA Directly Activates AMPK in Primary Hepatocytes in a Dose Dependent Manner

BJ Massey

Osborn et al. (2022) PNAS

Osborn et al. (2022) PNAS
Identification of the initiating step in flavonol catabolism

Yang et al. (2021) Nat Commun

? = flavone reductase
CHI = chalcone isomerase
EnoR = enoate reductase
PHY = phloretin hydrolase

Homologs of F. plautii Catabolic Genes are Rare in Human Fecal Microbiomes

Naseer Sangwan

Osborn et al. (2022) PNAS
Conclusions

• Supplementing a HFD with flavonoid-rich elderberry extract significantly attenuated HFD-induced obesity. 4-HPAA was enriched in the portal plasma of these mice.

• Continuous subcutaneous delivery of 4-HPAA was sufficient to reverse HFD-induced hepatic steatosis.

• This anti-steatotic effect is associated with the activation of AMP-activated protein kinase α (AMPKα).

• In a large survey of healthy human gut metagenomes, about two percent contained homologues of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA.

Acknowledgements

@claesengroup
Sara Alqudah
Viharika Bobba
Emily Ghazarian
Layan Hamidi Nia
Ying Liu
Genevieve Mann
Rachel Markley
Sarah Preston
Tharika Thambidurai

Former:
Mario Alberto
Beckey DeLucia
Maggie Ginter-Frankovitch
Yaheya Idris
Isabel Johnston
Liz McManus
Shreyaa Nagajothi
Luke Osborn
Karlee Schultz

https://claesengroup.org/
THE LIVE Q&A IS ABOUT TO BEGIN!

Keep submitting your questions in the questions window!

www.acs.org/acswebinars

go.acs.org/microbiome24
Thursday, July 10, 2024 | 2-3:15pm ET
Crafting a Standout Grant Proposal: Tips and Success Stories

Wednesday, July 17, 2024 | 2-3pm ET
How can ACS support your career as a Chemical Technical Professional?

Thursday, July 18, 2024 | 2-3pm ET
A Different Way of Thinking: How People Who are Neurodivergent can Flourish in Science

Register for Free
Browse the Upcoming Schedule at www.acs.org/acswebinars

BECAUSE PEOPLE LIKE YOU CREATE GREAT CHEMISTRY
You belong here

Have a Different Question?
Contact Membership Services
Toll Free in the US: 1-800-333-9511
International: +1-614-447-3776
service@acs.org
Learn from the best and brightest minds in chemistry! Hundreds of webinars on a wide range of topics relevant to chemistry professionals at all stages of their careers, presented by top experts in the chemical sciences and enterprise.

Edited Recordings
are an exclusive benefit for ACS Members with the Premium Package and can be accessed in the ACS Webinars® Library at www.acs.org/acswebinars.

Live Broadcasts
of ACS Webinars® continue to be available free to the general public several times a week generally from 2-3pm ET. Visit www.acs.org/acswebinars to register* for upcoming webinars.

*Requires FREE ACS ID

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org