

1972

Report of

Chemists' Salaries

Based on the 1972 Comprehensive Survey of ACS Members' Economic Status

1972 Report of Chemists' Salaries

David A. H. Roethel, Manager
Office of Professional Relations. American Chemical Society
In an era of economic retrenchment, emphasized by President Nixon's New Economic Program, trends in chemists' salaries become a matter of national as well as professional concern. Hence, the fact that their 1972 salaries are 4.6% higher on the average than a year ago, according to this year's ACS comprehensive salary survey, can be viewed with mixed emotions. Mixed, first, because this improvement betters the 3.5% growth for the year ending March 1, 1972 of the frequently misunderstood Consumer Price Index. Second, because it is less than the allowable maxima of Phase II of the NEP, 5.5%.

Comparison with other data, underscores the second of these observations, namely that salary improvements reported by chemists this year are not as attractive as they might be under other conditions. For example, the 4.6% increase is less than the annual average of salary gains for all chemists during 1960-70, viz., 5.3% (C\&EN, March 20, 1972, pp. 43-44). Moreover, it is considerably less than the average improvement recorded at any of the principal degree levels during the ten-year period 1962-72 (Fig. A).

As the accompanying graph shows, bachelors recorded an average annual improvement of 7.3% during that era, masters 6.3%, and doctors 6.0%. The comparable improvement rates and the actual 1971 and 1972 median salaries are as follows: bachelors, up 4.0% from $\$ 15,000$ to $\$ 15,600$; masters, up 4.5% from $\$ 15,600$ to $\$ 16,300$; and doctors, up 4.9% from $\$ 18,300$ to $\$ 19,200$. It should be emphasized that these rates include all chemists regardless of employer, work activity, field of chemistry, geography or gender.

When viewed in detail, particularly as a function of work experience at the usual five percentiles, the accompanying salary and income data for chemists with up to a year of experience (Table 1) reflect the 7% general decline in 1971 starting salaries reported by the Society (C\&EN, Nov. 1, 1971, pp. 28-31). Interestingly, though, not only beginning chemists encountered lower salaries this year. Figures reported at the 90 th percentile for highly experienced respondents also were lower by $\$ 500-1,000$ per year for masters and Ph.D.'s, although some observers may argue that this is a more tolerable situation for such individuals than for relative newcomers.

Otherwise, most salaries for 1972 follow general trends of the past. Some plateauing again is observable after 25-30 years of experience, although the pattern this year seems to be more spotty with regular salary improvements noted right up to the 40 -year plus experience level in some cases. Oddly, though, this year, B.S. chemists seem to have experienced less plateauing than did masters and doctors. And for true degree equivalency, consider the situation of the 90th percentile group after 40 years of experience where bachelors and masters reported the same median salary, $\$ 30,000$, and where Ph.D.'s were only slightly higher at $\$ 33,000$. Quite obviously, there is some cross-over point both in experience and competency beyond which the chemist's degree is of considerably less importance in determining his economic worth.

Chemists sometimes overlook the fact that salary is but one component, although the major one, in their total compensation. Fringe benefits (especially the pension plan) are also compensatory devices whose value likewise is determined by employers. Other types of remuneration also help swell the chemist's earning power. Such income includes bonuses, royalties, consulting fees, honoraria and the like. Depending primarily on the type of work in which the chemist is engaged, these can furnish him with an increment averaging 3.7% in 1972 (Table 2). Not unexpectedly, chemists who teach or who have administrative responsibilities seem to do better in this respect than others. In 1972, teachers reported total income figures that were 9% higher than their corresponding salaries. Those in management did nearly as well with an 8.1% salary/income differential. Doing least well were chemists engaged in research and development, where the difference between salary and income averaged only 2.5%.

Employer and Work Activity

Reinforcing findings such as these is an array of other salary data accumulated from the Society's comprehensive salary survey which show that, aside from his degree, employer classification and job function are probably most pivotal in determining the chemist's economic status. In fact, general salary figures such as those shown in Table 1 furnish only a broad indicator of economic trends in the profession, rather than offering specific information to help the individual chemist evaluate his own situation. While there is reason to question the statistical validity of salary lumping such as this, there is merit to such an approach if only in terms of understanding how the profession as a whole is faring economically.

More specific guidance comes from examination of groups of chemists who work for the same type of employer or who generally are engaged in a uniform type of work activity (Table 3). In this case, sharp differences in earning power evidence themselves. Most noticeable this year is the top rung position occupied by chemists in government employ, most of them likely with the federal Civil Service. As in 1971, these respondents to the Society's survey reported the highest overall median salaries, a ranking held in previous years either by self-employed chemists or by those working in industry. This position of economic superiority by government-employed chemists was not restricted to any one degree level, either. To illustrate, at the three degree levels in increasing order their overall median salaries this year were $\$ 16,900, \$ 17,800$, and $\$ 21,900$, respectively. In contrast, their industrial counterparts received $\$ 15,700, \$ 17,200$, and $\$ 21,000$,
 a Salary before deductions for income tax．Social Security，retirement．and the like，

$\vec{o} \vec{N} \vec{N}$	$\begin{array}{cc} \vec{\rightharpoonup} \\ \stackrel{\rightharpoonup}{\mathrm{i}} & \overrightarrow{0} \\ \hline \end{array}$	$\begin{gathered} \vec{\rightharpoonup} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\circ}{\circ} \\ \infty \\ \infty \end{gathered}$	\cdots	
$\stackrel{\rightharpoonup}{\mathrm{V}} \stackrel{\rightharpoonup}{\omega} \underset{\sim}{\omega}$	$\begin{gathered} \overrightarrow{\mathrm{N}} \\ \underset{\sigma}{\mathrm{~N}} \\ 0 \end{gathered}$	$\begin{gathered} \vec{N} \\ \underset{0}{\circ} \\ \hline \end{gathered}$	$\bigcirc 0$	
$\begin{gathered} \vec{\infty} \\ \dot{\theta} \\ \stackrel{f}{f} \end{gathered} \vec{N}$	$\begin{gathered} \vec{N} \\ \stackrel{\omega}{\omega} \\ 0 \end{gathered} \vec{N}$		$\vec{\rightharpoonup}$	
$\vec{\varphi} \stackrel{\rightharpoonup}{0} \underset{\sim}{\omega}$	$\begin{aligned} & \vec{\rightharpoonup} \vec{N} \\ & \text { ir } \end{aligned}$	$\stackrel{\vec{N}}{\stackrel{\rightharpoonup}{\mathrm{~N}}} \overrightarrow{\mathrm{\rightharpoonup}}$	$\stackrel{\rightharpoonup}{\infty} \stackrel{\rightharpoonup}{\sim} \underset{\sim}{c}$	$\begin{array}{rrr} & \oplus \\ \infty & \infty \\ + & \infty \\ \infty & \infty \\ \hline \end{array}$
$\begin{array}{lll} \stackrel{N}{\sim} & \vec{o} \\ \stackrel{\rightharpoonup}{\omega} & 0 \\ 0 \end{array}$	$\begin{aligned} & \vec{\rightharpoonup} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}} \\ & i \sim \end{aligned}$	$\underset{\omega}{\stackrel{\rightharpoonup}{\omega}} \underset{\sim}{\sim} \underset{\sim}{\sim}$		$\overrightarrow{\vec{\omega}} \varphi_{0} \stackrel{\oplus}{0}$
$\begin{array}{cc} N \\ \underset{\sim}{N} & \vec{\sim} \\ \hline \end{array}$	$\begin{array}{cc} N \\ \hline 0 & \vec{A} \\ 0 & \stackrel{\rightharpoonup}{\circ} \end{array}$	$$		$\vec{N} \stackrel{\rightharpoonup}{\circ} \stackrel{\oplus}{0}$
$\begin{array}{lll} N & N \\ \\ 0 & 0 \\ O \end{array}$	$\begin{array}{lll} N \\ \underset{N}{N} & \vec{j} & \vec{N} \\ \hline \end{array}$		$\begin{array}{ccc} \vec{\omega} & \vec{\omega} & \vec{\omega} \\ 0 & 0 & 0 \end{array}$	$\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}} \stackrel{\oplus}{\stackrel{\oplus}{\vec{v}}}$
$\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N}$		$\stackrel{N}{\circ} \stackrel{\rightharpoonup}{0}$	$\begin{array}{cc} \vec{\rightharpoonup} & \vec{\omega} \\ \dot{0} & \stackrel{\rightharpoonup}{\omega} \\ \underset{\omega}{\omega} \end{array}$	$\stackrel{\rightharpoonup}{\perp} \stackrel{\oplus}{\stackrel{~}{\rightharpoonup}} \stackrel{\ominus}{N}$

0
0
0
0N

$\vec{~}$	$\vec{\omega}$
$\dot{\circ}$	

$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\rightharpoonup}} \stackrel{A}{\sim}$
$\stackrel{\omega}{\omega} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$
$\stackrel{\omega}{\sim}$
N
N
N
N
0

N
0

N
$\stackrel{\rightharpoonup}{\infty}$

$\underset{\sim}{\omega}$
ω
0
0
$\stackrel{\omega}{0}$
$\stackrel{\omega}{\circ}$ ： $\begin{array}{lll} & N & N \\ O & N \\ \text { NO }\end{array}$
$\stackrel{N}{N} \stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{\infty}$
N

资

$\stackrel{1 \wedge}{ }$
o－z L．olqel

$\begin{array}{ccc}\underset{\sim}{\omega} & \underset{\sim}{\omega} \\ 0 & \underset{\omega}{\omega}\end{array}$ | ω | N | N |
| :--- | :---: | :---: |
| 0 | | |
| 0 | | 0 | $\begin{array}{ccc}N & N \\ O & N \\ O & O \\ O\end{array}$ N

岗 ：しّ N $\begin{array}{lll} \\ 0 & N \\ 0 & N \\ 0 & \hat{O} \\ 0\end{array}$

$\overrightarrow{0} \stackrel{\vec{\omega}}{0} \stackrel{\vec{\omega}}{0}$

ω
\vdots
0
0
ω
0

 ${ }_{0}^{\omega} \stackrel{\omega}{\circ}$ $\stackrel{\omega}{N}$ ○ $\stackrel{\sim}{0} \quad \stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{\overrightarrow{0}} \quad \stackrel{\rightharpoonup}{\dot{\omega}} \stackrel{\rightharpoonup}{\omega} \stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\leftrightarrow}{N}}$ neies

$\begin{aligned} & \omega \\ & \hline \\ & 0 \\ & \underset{\sim}{\omega} \end{aligned} \stackrel{\omega}{\stackrel{\omega}{0}}$	W N		$\stackrel{\rightharpoonup}{\infty} \underset{0}{\omega} \underset{\sim}{\sim}$	$\vec{\omega} \underset{0}{\stackrel{\rightharpoonup}{i}} \stackrel{\stackrel{\theta}{N}}{\stackrel{\theta}{0}}$	产
					告
$\begin{aligned} & \omega \\ & 0 \\ & 0 \\ & 0 \end{aligned} \underset{0}{0} \underset{0}{N}$	No No	N	$\begin{array}{ccc} \vec{\sigma} & \vec{\omega} \\ \dot{0} & \vec{\omega} & 0 \\ 0 \end{array}$		颜

respectively. Salaries for self-employed chemists were slightly lower still. Least well off, as usual, were chemists employed full time in educational institutions where the median salary for B.S. chemists was $\$ 8,800$, only about half of the government figure. Chemists working for nonprofit employers were generally intermediate on the salary scale.

Table 2
Salary-Income Differentials Compared

Even more telling, is the observation that government chemists' salaries in 1972 improved 5.5% over 1971 on the average, whereas salaries in industry went up by only 4.9%. So in addition to the usual perquisites of attractive fringes (notably generous leave schedules and an immediately vesting pension plan) and a certain assumed tenure, government employees now can boast not only higher salaries than those in industry, but also salaries whose rate of progression is better than in the private sector.

Table 3
Chemists' Median Salaries by Employer

Overall distribution. na $=$ not available

An examination of industrial chemists' salaries (Table 4) shows a generally uniform improvement over 1971 levels. Bachelors' medians were up 4.7%, masters 4.6%, and Ph.D.'s 5.0%, relatively uniform gains which typify the kind of homogeneity that might be expected from this group. In general, too, salary patterns for industrial chemists were reflective of those for the profession as a whole. However, since some 60% of all respondents this year were from industry, their data naturally tend to dominate the more generalized array of salary findings.

Teachers, in contrast, while accounting for only one fourth of respondents this year, earned salaries several thousands of dollars less than did industrial chemists, or anyone else for that matter. In fact, whether looked at either by work activity or by type of employer, teachers invariably achieved this unenviable economic position. Hence, the 9% income add-on that they reported probably is well appreciated and useful in making up for this salary deficiency.

Somewhat encouraging, though, is the observation that salaries for chemists in educational institutions were higher than a year ago, at least for masters and doctors. Such was not the case for self-employed chemists, who, for the second year running, suffered a serious decline (8.9%) in their earnings. Bachelors' and masters' salaries were $11-12 \%$ lower than in 1971 , while those

Table 4
Industrial Chemists' Salaries by Percentiles and Experience

for doctors dropped 5%. As much as anything, this is still likely due to a general deterioration in the national economy and the ultimate impact on small businesses, such as chemist consultantships.

Among the many kinds of activities in which chemists are apt to engage, management continues to be the most rewarding (Table 5). With overall medians ranging between $\$ 20,000$ and $\$ 26,000$, it's no small wonder that so many chemists aspire to move from the bench to a desk. Even more illustrative of this situation is the observation that the average $\mathrm{Ph} . \mathrm{D}$. manager reported a 1972 salary in the $\$ 20,000$ bracket after only 5-9 years of experience. Elsewhere, it takes the R\&D chemist about 10 to 14 years to move this far up the salary ladder. Chemists in marketing, production, quality control, and technical services require $15-19$ years, and teachers take 35-39 years to achieve this level. But while managers may enjoy a higher economic position overall, it is interesting to observe that this year research and development chemists posted larger salary gains, 5.7%, than did chemist administrators, 3.6%. So some hope for a better economic future for research chemists may exist.

Field of Chemistry

Among chemists working in identifiable chemistry specialties, polymer chemists were apparently being best paid in 1972 at $\$ 17,000$ for bachelors, $\$ 17,800$ for masters, and $\$ 21,000$ a year for doctors (Table 6). Polymer chemistry was segregated by ACS as a distinct salary specialty

Table 5

a Proportion of respondents in each category. na $=$ not available
only within the past three years, a step which, in retrospect, would seem to be more than justified in view of the resulting salary data for this group.

In 1972, physical chemists were next best remunerated at $\$ 16,100, \$ 17,000$, and $\$ 19,000$ for the three degree levels, respectively. Biochemists present a mixed picture. Like analytical chemists, bachelors in this specialty are not very well paid at about $\$ 14,000$ annually. Nor were M.S. biochemists particularly well remunerated at $\$ 15,000$. But Ph.D.'s do very well at $\$ 19,400$, besting all other specialty categories except polymer chemistry. As much as anything, this may be due in large part to the increasing national emphasis on health care and the migration of many doctoral level biological chemists into higher paying clinically related functions.

Geography

There were insufficient data from this year's survey to calculate an acceptable number of salary medians for all experience and degree levels in each of the nine U.S. census divisions normally employed for these reports. However, the overall medians in each region do tell a story (Fig. B). Apparently, the best salaried chemists are to be found along the lower Eastern Seaboard, with figures in the Middle and South Atlantic States essentially the same for each of the three degree levels, namely, bachelors, $\$ 16,500$; masters, $\$ 17,000$; and doctors, $\$ 20,000$. Trying to identify the next highest paying geographic area is hard because of a mix of findings. Thus, while Ph.D.'s in the East North Central States do well at about $\$ 19,000$, bachelors in the same area reported only $\$ 15,100$ and thereby trailed the national median of $\$ 15,600$ as well as their

Table 6
 Chemists' Salaries by Field

YEARS OF EXPERIENCE											
	THOUSANDS OF DOLLARS										
Analytical Chemistry (20.0\%) ${ }^{\text {a }}$											
Bachelors	\$ 8.9	\$10.8	\$12.6	\$15.0	\$15.8	\$16.0	\$16.0	\$18.1	\$18.2	na	\$14.4
Masters	na	12.0	13.1	15.5	17.0	18.5	18.4	18.3	16.8	na	15.9
Doctors	11.1	15.4	16.9	18.4	20.1	21.8	22.5	23.0	20.3	na	18.0
Biochemistry (12.6\%)											
Bachelors	na	8.8	11.0	13.5	16.5	16.2	na	18.2	na	na	14.0
Masters	na	10.8	12.2	15.0	15.9	17.9	17.1	na	na	na	15.0
Doctors	11.5	12.5	17.0	19.2	21.9	23.6	25.0	25.0	24.4	25.0	19.4
Inorganic Chemistry (8.7\%)											
Bachelors	na	8.8	12.0	14.7	16.3	18.9	17.3	21.2	20.2	na	16.0
Masters	na	9.1	11.0	13.2	16.0	17.0	16.2	16.0	na	na	14.2
Doctors	10.2	11.5	14.5	16.0	20.0	21.6	23.0	22.0	na	na	16.2
Organic Chemistry (23.3\%)											
Bachelors	na	11.3	13.0	14.5	16.8	18.1	20.0	20.0	21.0	na	16.3
Masters	na	12.0	13.3	15.5	17.0	19.0	20.0	21.0	24.2	na	16.6
Doctors	10.6	15.6	17.5	19.4	21.0	22.5	24.0	25.0	22.9	\$22.0	18.7
Physical Chemistry (11.3\%)											
Bachelors	na	na	12.9	15.3	18.3	17.9	na	na	na	na	16.1
Masters	na	- na	13.5	15.0	18.5	20.2	23.8	na	na	na	17.0
Doctors	10.7	13.9	15.0	19.0	21.4	23.1	22.2	25.0	24.9	22.7	19.0
Polymer Chemistry (12.9\%)											
Bachelors	na	11.9	13.1	15.6	18.7	19.0	20.0	20.1	21.0	na	17.0
Masters	na	na	14.2	17.5	18.0	19.5	21.6	19.8	na	na	17.8
Doctors	na	17.4	19.0	21.0	22.4	24.0	24.9	25.0	26.0	na	21.0
Other Specialties (11.2\%)											
Bachelors	na	10.8	12.8	15.1	16.0	18.0	20.0	19.6	20.0	na	16.6
Masters	na	11.4	14.2	15.4	18.0	19.4	20.8	20.2	20.0	na	17.7
Doctors	na	16.0	18.9	21.0	22.9	23.0	25.5	24.2	24.9	na	21.0

a Proportion of respondents in category. na $=$ not available
counterparts on the Pacific Coast $(\$ 15,300)$ and in New England $(\$ 16,000)$. And while West North Central States bachelors reported the lowest salaries of all, $\$ 14,500$, Ph.D.'s in this area, with $\$ 17,900$, did better than doctors in the Mountain States or in the East South Central States, even though all three areas were well below the national figure of $\$ 19,200$.

If anything, such findings probably begin to show that there are factors other than geographic location of employment (e.g., employer and work activity) which are more apt to affect the chemist's salary in the long run. At this point, though, it can probably still be safely said that salaries on the East Coast are better than those in the West by a thousand dollars a year or more. But these differences and those elsewhere may be more a reflection of the types of employers to be found in these locales than anything else. A good illustration of this is the Mountain States area in which there is a notable paucity of major industrial employment. Hence, the somewhat lower medians reported in this region are more reflective of academic and small business employment than anything else.

Chemists' overall median salaries by geographic regiona

How to read: Using New England as an example, 6.5% of responding chemists work in this U.S. census division; 5.9% of all B.S. chemists work there and they reported an overall median salary of $\$ 16,000$ in 1972.
a Thousands of dollars.

Women Chemists' Salaries

The surge of interest in women's liberation, precipitated in part by Constitutional amendments calling for equality of the sexes, focuses increasing attention on the Society's reports of salary differentials between men and women chemists. The 1972 findings again show that such differentials exist almost anywhere one wants to look for them (Table 7). On an overall basis, male bachelors this year reported a median salary of $\$ 16,000$ vs. only $\$ 12,500$ for women, a 28.0% differential. At the M.S. level, the comparable figures were $\$ 17,000$ vs. $\$ 12,500$, a 36.0% margin. Rounding out the picture, for Ph.D.'s the respective salaries for men and women chemists were $\$ 19,400$ and $\$ 14,500$, accounting for a 33.8% difference. Overall, 6.8% of responses to the survey this year were from women chemists.

In part, such differences can be ascribed to a disproportionately high population of females in activities and in jobs that generally are regarded as being relatively low paying or, contrariwise, to a low population of women in higher paying situations (Table 8). Thus, while only 24.3%
of men reported this year that they worked for educational institutions where salaries are lowest, 37.5% of females worked in colleges or universities. Similarly, more than twice as many females as male respondents worked for non-profit institutions where salaries were lower than in industry or in government. For comparison, more than 60% of reporting males were to be found in industry this year, as against fewer than 40% of females.

The only anomaly in this general situation is in government, where more women chemists (14.5%) were to be found than were men (9.9%). Among these respondents, there was some semblance of salary equivalency, at least at the $\mathrm{Ph} . \mathrm{D}$. level where male chemists reported an overall median salary of $\$ 21,900$ and females $\$ 21,300$. However, this is about the only instance in the entire array of 1972 data in which the salaries of the two sexes are somewhat alike. Elsewhere major differences exist, suggesting that the doctrine of salary equivalency for men and women chemists, which now manifests itself in ACS's annual starting salaries, will be a long time extending to more experienced practitioners, perhaps as long as 20 years.

Table 7
Chemists' Salaries by Sex : 1972

B.S.			m.s.		Ph.D.		Distribution	
Years	Men	Women	Men	Women	Men	Women	Men	Women
thousands of dollars								
≤ 1	\$ 9.1	na	na	na	\$11.2	na	90.2\%	9.8\%
2-4	10.9	\$10.0	\$12.0	\$10.4	15.0	\$10.0	90.6	9.4
5-9	13.0	11.7	13.5	12.0	17.5	13.0	90.9	9.1
10-14	15.0	13.1	15.8	12.6	19.6	15.0	91.6	8.4
15-19	16.6	14.0	17.6	13.5	21.5	15.8	92.2	7.8
20-24	17.8	14.8	19.0	15.9	23.2	16.3	92.7	7.3
25-29	19.0	14.9	20.0	14.2	24.0	20.0	92.8	7.2
30-34	19.6	na	19.6	na	25.0	18.4	93.0	7.0
35-39	20.0	na	19.6	na	24.0	na	93.1	6.9
$40+$	17.3	na	17.4	na	23.0	na	93.2	6.8
Overall	16.0	12.5	17.0	12.5	19.4	14.5	93.2	6.8

Salary Characteristics

Normal salary reporting practice is to fix major parameters, such as degree, experience, employer, work activity, field of chemistry, geography and sex, and to rotate salaries about them. It is also interesting,' though, to apply the converse process, namely to fix salaries at discrete levels and to examine the characteristics of chemists who populate these groupings. For the first time, ACS performed such an analysis this year using salary classes of under $\$ 10,000, \$ 10,000-$ $14,999, \$ 15,000-19,999, \$ 20,000-24,999$, and over $\$ 25,000$.

Not many surprises were found as a consequence of this exercise, however (Table 9). In the under $\$ 10,000$ grouping were to be found a disproportionately high number of females $(20.5 \%$ vs. 6.8% for all respondents) a larger number of chemists employed in educational institutions $(54.8 \%$ vs. 25.3%), fewer managers (5.5% vs. 16.7%), more inorganic chemists (13.5% vs. 8.7%), more biochemists (17.6% vs. 12.6%) and comparatively few of the better renumerated polymer chemists (3.3% vs. 12.9%).
位
$\vec{o} \vec{o} \vec{\sim}$
$\stackrel{\rightharpoonup}{\sim} \stackrel{\rightharpoonup}{+}$
20.2
$\stackrel{\rightharpoonup}{+} \stackrel{\rightharpoonup}{\square} \stackrel{\theta}{\sigma}$

W0
等

$\stackrel{\rightharpoonup}{N} \stackrel{\rightharpoonup}{\omega} \underset{\sim}{\circ} \underset{\sim}{\sim} \underset{\sim}{\omega} \underset{\omega}{\omega}$ | $\stackrel{\rightharpoonup}{N}$ | \vec{N} | $\stackrel{\rightharpoonup}{\circ}$ | $\stackrel{\oplus}{\omega}$ |
| :--- | :--- | :--- | :--- |
| \dot{O} | ∞ | ∞ | |

 $\stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{\sim} \stackrel{\rightharpoonup}{\omega}$
$\begin{array}{llll}N \\ v & \vec{A} & \overrightarrow{0} & \vec{o} \\ 0 & \hat{\omega}\end{array}$

\&o
0
0
0
0
0

$$
8 \text { ө|qe\& }
$$

Percent in category. na $=$ not available

Table 9
 Chemists' Salary Level Characteristics*

	$\begin{gathered} \$ 10.000 \\ (6.0 \%)^{0} \end{gathered}$	$\begin{gathered} \$ 10-14.999 \\ (23.1 \%) \end{gathered}$	$\begin{gathered} \text { \$15-19,999 } \\ (32.5 \%) \end{gathered}$	$\begin{gathered} \$ 20-24.999 \\ (21.7 \%) \end{gathered}$	$\underset{(16.7 \%)}{\geq \$ 25.000}$
Sex					
Men	79.4\%	87.2\%	95.4\%	98.0\%	98.9\%
Women	20.5	12.6	4.4	1.8	1.1
Degree					
<B.S.	0.4	1.0	0.7	0.4	0.3
B.S.	36.9	39.8	30.4	22.6	20.8
M.S.	18.9	22.8	21.1	17.3	14.7
Ph.D.	43.6	36.2	47.5	59.4	63.9
Employer					
Industry	24.9	49.4	67.2	71.1	69.7
Self employed	2.7	0.6	0.6	0.6	1.6
Educational Institution	54.8	38.1	17.7	12.6	13.1
Government	7.2	6.7	10.0	11.5	11.6
Nonprofit	6.6	3.3	2.9	3.0	3.1
Military, Peace Corps	2.9	1.1	0.6	0.5	0.5
Other	0.6	0.6	0.8	0.5	0.3
Activity					
Management	5.5	5.1	11.4	24.2	54.0
Research \& Development	47.0	37.2	55.2	54.3	31.3
Teaching	22.3	33.5	14.4	8.9	6.6
Marketing \& Production	14.2	19.6	14.8	9.4	5.2
Other	9.2	4.1	4.0	3.0	2.8
Field					
Analytical	22.6	28.1	21.4	13.5	9.7
Biochemistry	17.6	10.3	10.4	12.6	16.3
Inorganic	13.5	11.4	7.8	5.8	5.7
Organic	20.7	21.2	23.1	22.9	24.9
Physical	10.0	9.7	10.1	12.9	12.7
Polymer	3.3	7.4	13.7	17.7	14.7
Other	7.0	9.1	11.4	12.1	12.7

These categories and characteristics tended to change consistently, either in increasing or decreasing order, as higher salary groupings were examined. To illustrate: at the top $\$ 25,000$-plus bracket, the proportion of male chemists was almost 100%. This grouping also found that the number of Ph.D.'s reporting had grown significantly, as had also chemists in industry. Conversely, chemists in educational institutions dropped to only 13% of the total; whereas the proportion of managers grew to more than 50%. Also, the R\&D category dropped to about 30%. Teaching declined significantly, as did also marketing and production as work activities. Conversely, polymer chemistry more than quadrupled to nearly 15% while inorganic chemistry dropped to less than 6%.

Overall, categories that seem relatively unaffected population-wise by any grouping of salaries included government chemists, non-profit employed chemists, organic and physical chemists and, to a lesser extent, biochemists.

The Survey

The American Chemical Society's salary reporting program was initiated in 1941 under the auspices of the Committee on Economic Status (C\&EN, 20, Nos. 20, 22, 23, 24; 1942). In subsequent years, responsibility for this undertaking was assumed by the Committee on Professional Relations and Status, and recently reverted to the ad hoc Committee on Economic Status.

Data for the 1972 comprehensive salary survey were solicited from about half the Society's U.S. members, exclusive of those with student or emeritus status. In late February, questionnaires were distributed to 44,188 members, and by mid-April, 25,322 forms had been returned, a 57.3% response. Of these, 19,327 valid returns from chemist members were analyzed for this report. An additional 2,905 replies from chemical engineer members were not considered at this time because it was felt this sampling was too small to be statistically valid. These data are being coordinated with the American Institute of Chemical Engineers as part of an exploratory program to coordinate the salary survey and reporting activities of AIChE and ACS for the respective disciplines of chemical engineering and chemistry.

The remaining 3,090 replies could not be used, principally because pertinent items (i.e., field degree, salary, and employment status) were not completed. Also, only chemist members reporting full-time employed status were included in this report. Those signifying they were part-time employed, retired, or unemployed were omitted.

Acknowledgment

Appreciation is extended to Charles R. Counts who was responsible for supervising the 1972 Comprehensive Salary Survey, for consolidating data, and for making many helpful suggestions concerning organization and analysis of findings. Appreciation also is extended to Suzanne A. Woods for manuscript typing and preparation.

Please check or otherwise supply information for the one classification in each of the major categories below which most aptly describes your present position and status as a practicing chemist or chemical engineer in 1972.
A. Sex: (1) ___ Male
(2) \qquad Female
B. Highest degree earned:
(1) ___Bachelors
(2)___Masters
(3) ___ Doctors
(4) ____Less than bachelors
C. Geographic location of employment:

Zip Code:

8.

D. Employment Status: (1) ____Full-time (2)___ Part-time (3)___ Unemployed (4)___Retired
E. Please check the one category which is most applicable to your present principal employer:
(1) ___ Private industry or business
(5)___ Non-profit institution, including hospitals
(2) __ Self-employed
(\varnothing ___ Military, Peace Corps, Public Health Service
(3) ___ Educational institution
(6) ___Other
(4) ___ Federal, state, or local government
F. Please check the one category below which most closely approximates your present position:
(1) ___ Management or administration
(4)___ Marketing, production, quality control, and technical services
(2) ___ Research and/or development
(5)___Other
(3) ___Teaching
G. Please designate the one scientific specialty from the list below which is most closely related to your present principal employment:
(1) ___Analytical chemistry
(5)___ Biochemistry
(2) ___Inorganic chemistry
(6)___ Other chemical specialties
(3) ___Organic chemistry
(7)___ Chemical engineering
(4) ___ Physical chemistry
(8)___ Polymer Chemistry
H. 1972 Basic Annual Salary associated with your principal professional employment to the nearest $\$ 100$. \qquad
(Basic annual salary is your annual salary before deductions for income tax, social security, retirement, etc., but does not include bonuses, overtime, summer teaching, or other payment for professional work. Do not include rental or subsistence allowances.)
I. Estimated Gross Annual Professional Income (Jan. 1 to Dec. 31, 1972) from all professional activities. \$. \qquad
(Income is ALL payment for professional activities including basic salary before deductions, plus bonuses, royalties, fees, honoraria, etc.)
J. How many years of professional work experience, including teaching, have you had?

What is your opinion? Assuming acceptance of a suitable program by the governing bodies of the ACS, would you be willing to pay a onetime $\$ 10$ assessment levied against all fully employed ACS members (excluding unemployed, students, emeritus, etc.) this year with the understanding that such funds would be used solely to assist unemployed members in finding jobs, for creating new jobs, and otherwise improving the professional and economic welfare of the chemist and chemical engineer? \qquad (1) Yes
(2) No

