1976 SURVEY REPORT

STARTING SALARIES AND EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

Office of Manpower Studies
American Chemical Society
Washington, D.C.

STARTING SALARIES AND EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

This report was prepared by the ACS Office of Manpower Studies.

American Chemical Society
1155 Sixteenth Street, N.W. Washington, D. C. 20036

November, 1976

Available from Special Issues Sales, ACS. Price: \$3.00.

CONTENTS

Page
List of Tables. iv
Summary 1
Tables
Employment 5
Salary 21
Characteristics 29
Appendix
Scope and Method of Survey 37
Geographic Regions 39
Survey Questionnaire 40

LIST OF TABLES

Page
EMPLOYMENT AND PLANS FOR FURTHER STUDIES
TABLE A-1 Postgraduation Status of Chemists by Highest Degree Earned and Sex. 5
TABLE A-2 Plans for Further Studies of Unemployed Chemists by Highest Degree Earned and Sex 6
TABLE A-3 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Sex 7
TABLE A-4 Plans for Further Studies of Unemployed Chemical Engineers by Highest Degree Earned. 8
TABLE A-5 Postgraduation Status of Chemists by Highest Degree Earned and Citizenship 9
TABLE A-6 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Citizenship 10
TABLE A-7 Postgraduation Status of Minority Chemists by Highest Degree Earned 11
TABLE A-8 Postgraduation Status of Minority Chemical Engineers by Highest Degree Earned 12
TABLE A-9 Postgraduation Status of B.S. Chemists by Certification Status 13
TABLE A-10 Postgraduation Status of M.S. and Ph.D. Chemists by Field of Highest Degree 14
TABLE A-ll Field of Advanced Further Studies of Chemists Who Plan Further Studies in Fall, 1976 by Highest Degree Earned and Sex 15
TABLE A-12 Field of Advanced Further Studies of Chemical Engineers Who Plan Further Studies in Fall, 1976 by Highest Degree Earned and Sex 16
TABLE A-13 Field of Advanced Further Studies of B.S. Chemists Who plan Further Studies in Fall, 1976 by Certification Status 17
TABLE A-14 Number of Firm Job Offers to Full-time Employed Chemists by Highest Degree Earned and Sex 18
TABLE A-15 Number of Firm Job Offers to Full-time Employed Chemical Engineers by Highest Degree Earned and Sex 19
TABLE A-16 Average Number of Firm Job Offers to Full-time Employed Minority Chemists and Chemical Engineers by Highest Degree Earned and Sex 20

STARTING SALARIES
TABLE B-l Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Highest Degree Earned and Sex. 21
TABLE B-2 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Employer and Highest Degree Earned 22
Page
TABLE B-3 Starting Yearly Salaries of Inexperienced Full-time Chemists by Employer, Highest Degree Earned, and Sex 23
TABLE B-4 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Employer, Highest Degree Earned, and Sex 24
TABLE B-5 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Geographic Region and Highest Degree Earned 25
TABLE B-6 Starting Yearly Salaries of Inexperienced Full-time B.S. Chemists by Employer and Certification Status 26
TABLE B-7 Starting Yearly Salaries of Inexperienced Full-time M.S. and Ph.D. Chemists by Field of Highest Degree 27
TABLE B-8 Starting Yearly Salaries of Inexperienced Full-time Minority Chemists and Chemical Engineers by Highest Degree Earned 28
TABLE B-9 Yearly Salaries of Postdoctoral Chemists and Chemical Engineers by Employer 28
DEMOGRAPHIC CHARACTERISTICS OF RESPONDENTS
TABLE C-1 Age Distribution of B.S. Chemists and Chemical Engineers by Sex 29
TABLE C-2 Age Distribution of M.S. Chemists and Chemical Engineers by Sex 30
TABLE C-3 Age Distribution of Ph.D. Chemists and Chemical Engineers by Sex 31
TABLE C-4 Age Distribution of Postdoctoral Chemists and Chemical Engineers by Sex 32
TABLE C-5 Minority Classification of Chemists and Chemical Engineers by Highest Degree Earned and Sex 33
TABLE C-6 Citizenship Classification of Chemists and Chemical Engineers by Highest Degree Earned and Sex 34
TABLE C-7 Minority and Citizenship Classification of Chemists by Highest Degree Earned 35
TABLE C-8 Minority and Citizenship Classification of Chemical Engineers by Highest Degree Earned 36

SUMMARY OF FINDINGS

SALARIES

Mean starting salaries for chemists have gone up from 1975 at all three degree levels, but only the bachelor's level salaries have increased by more than the consumer price index, which went up by 5.6\% from August 1975 to August 1976. Table 1 indicates that the increases were:
for the B.S., 9.6%, or in constant dollars 4.0\%,
for the M.S., 5.2%, or in constant dollars -0.4%,
for the Ph.D., 5.1\%, or in constant dollars -0.5%.
Chemical engineers enjoy much higher salaries than do chemists, but this year the percent gains and even the absolute gains were smaller for chemical engineers than for chemists at the bachelor's and Ph.D. levels. Table 2 shows that increases in starting salaries for chemical engineers were:

```
for the B.S., 6.3%, or in constant dollars 0.7%,
for the M.S., 7.1%, or in constant dollars 1.5%,
for the Ph.D., 0.3%, or in constant dollars -5.3%.
```

For master's and Ph.D. level chemists, the availability of information on specialties allows a comparison which is free of effects of year-to-year shifts in specialties of new graduates. This procedure gives an increase for M.S. chemists of 6.3\%, from \$11,589 to $\$ 12,320$. For Ph.D. chemists the increase was 5.2%, from $\$ 16,280$ to $\$ 17,119$.

EMPLOYMENT

The increases in starting salaries seem to indicate a relative improvement in the chemistry job market as compared with the one for chemical engineers. It may be surprising, therefore, to note that Table 3 shows an improvement in the employment rate for chemical engineers at the bachelor's and master's levels, and a deterioration in the employment rate for chemists at the master's and Ph.D. levels.
TABLE 1
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMISTRY GRADUATES

Salaries	D E G R E E L E V E L					
	Bachelor's		Master ${ }^{\text {² }}$,		Ph.D.	
	1975	1976	1975	1976	1975	1976
90th Percentile	\$12,000	\$13,620	\$14,000	\$15,300	\$19,500	\$20,100
75th Percentile	11,400	12,500	13,200	14,300	18,400	19,200
50th Percentile	10,000	10,800	12,000	12,400	17,000	18,300
25th Percentile	8,500	9,280	10,000	10,000	15,000	15,600
l0th Percentile	7,500	8,200	9,150	9,000	11,800	11,600
Mean	9,911	10,860	11,715	12,320	16,287	17,119
Count	399	436	84	90	148	150
Std. Dev.	1,843	2,205	2,099	2,602	2,809	3,250

TABLE 2

by Degree: Summer of 1975 and Summer of 1976

Salaries	D E G R E E L E V E L					
	1975	1976	1975	1976	1975	1976
90th Percentile	\$15,300	\$16,200	\$16,800	\$17,500	\$21,000	\$21,600
75th Percentile	15,000	15,700	16,200	17,040	21,000	21,000
50th Percentile	14,400	15,420	15,600	16,620	20,000	20,700
25th Percentile	13,900	15,000	14,500	16,000	19,000	19,800
10th Percentile	13,000	14,000	13,800	15,600	18,000	16,800
Mean	14,325	15,225	15,342	16,426	19,877	19,931
Count	405	524	83	90	48	42
Std. Dev.	1,039	1,025	1,417	1,250	1,633,	2,084

TABLE 3
EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES BY DEGREE

$$
\text { Summer of } 1975 \text { and Summer of } 1976
$$

Major and Employment Status
CHEMISTRY

Major and Employment Status	DEGREE LEVEL					
	Bachelor's		Master's		Ph.D.	
	1975	1976	1975	1976	1975	1976
CHEMISTRY						
Full-time employed:						
In chemistry or chemical engineering	22.6\%	19.7\%	40.8\%	42.9\%	46.0\%	43.7\%
Outside chemistry or chemical engineering	6.9	7.9	8.0	5.7	2.1	2.4
Postdoctoral/grad. asst./other fellowship	31.2	31.6	36.6	34.1	47.5	48.7
Military/Peace Corps, etc.	2.7	1.6	2.1	1.0	1.5	0.4
Unable to obtain full-time employment	8.5	7.3	4.5	5.4	2.1	3.4
Not seeking full-time employment	28.0	31.8	8.0	10.9	0.8	1.4
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of responses	2,249	2,970	377	387	474	503
CHEMICAL ENGINEERING						
Full-time employed:						
In chemistry or chemical engineering	65.4\%	71.4\%	73.8%	64.1\%	91.3\%	85.9\%
Outside chemistry or chemical engineering	5.7	4.1	3.6	3.2	2.2	0.0
Postdoctoral/grad. asst./other fellowship	17.0	15.4	13.7	25.5	5.4	12.9
Military/Peace Corps, etc.	1.1	1.4	0.6	0.9	0.0	0.0
Unable to obtain full-time employment	5.3	3.2	2.4	1.4	1.1	1.2
Not seeking full-time employment	5.7	4.5	6.0	5.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of responses	742	910	168	220	92	85

TABLE A-1
POSTGRADUATION STATUS OF CHEMISTS
by Highest degree earned and sex
BY HIGHEST DEGRE EARNE AND SEX

TABLE A-2
PLANS FOR FURTHER STUDIES
OF UNEMPLOYED CHEMISTS
BY HIGHEST DEGREE EARNED AND SEX

TABLE A-3

PLANS FOR FURTHER STUDIES
OF UNEMPLOYED CHEMICAL ENGINEERS
by highest degree earned

BY HIGHEST DEGREE EARNED AND CITIZENSHIP

PLANS FOR FURTHER STUDIES THIS EALL，

POSTGRADUATION STATUS OF CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND CITIZENSHIP

$$
S 807 \exists H \supset \forall 9
$$

> LWんOTdWコ JNIYラヨS
> 7dWミ ONIYヨヨS $10 N$
> $\begin{gathered}\text { COLUMN } \\ \text { TOTAL }\end{gathered}$
> $1 S S \forall O \forall \forall J^{6} 300 \perp S O \therefore$
PLANS FOR EURTHEP STUDIES THIS FALL

$$
--\frac{1}{0}
$$

TABLE A-7
POSTGRADUATION STATUS
OF MINORITY CHEMISTS
BY HIGHEST DEGREE EARNED

TABLE A-8
POSTGRADUATION STATUS
OF MINORITY CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED

EMPLOYMENT STATUS	IBACHLÓRS	MASTERS	PHO	$\begin{gathered} \text { RCW } \\ \text { TOTAL } \end{gathered}$
FULLTIME IN ChEM\% ${ }^{*}$	65.0	52.4	11	63.48
FUlltime nonchem	7.5	4.8	0.0	5.4
POSTDOC, GRACASST	12.5	42.9	20.0	22.4
NILITARY,VISTA	5.0	0.0	0.0	2.6
SEEKING EMPLOYMT	5.0	$\begin{array}{r} 0 \\ 0.0 \end{array}$		3.9
NCT SEEKING EMPL	5.0	0.0	$\begin{array}{r}0 \\ 0.0 \\ \hline\end{array}$	2.6
COLUMN	100.0	100.0	100.0	$100^{7 \epsilon} 0$

PLANS FOR FURTHER STUNIES THIS FALL

NO

HAVE PLANS

HAVE NO PLANS

$$
\begin{array}{lrrrr}
\text { COLUMN } & -10040 & 1001 & 21 & 100 \\
\text { TOTAL } & 100.0 & 100.0 & 100.0 & 100.0
\end{array}
$$

TABLE A-9
POSTGRADUATION STATUS OF B.S. CHEMISTS
BY CERTIFICATION STATUS

[^0]

$\begin{array}{ll}\text { ON NJ } \\ \text { NM } \\ \underset{N}{N} & \\ N\end{array}$ n
+
N N: m
m 1.4 503
100.0

BY HIGHEST DEGREE EARNED AND SEX

WHO PLAN FURTHER STUDIES IN FALL, 1976
BY HIGHEST DEGREE EARNED AND SEX

BACHELORS

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS WHO PLAN FURTHER STUDIES IN FALL; 1976

BY CERTIFICATION STATUS

$1_{\text {See }}$ note on Table A-9.

 BACHELORS WCMEN
1

$$
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
$$

NUMBER OF OFFERS

TABLE A-16

OF INEXPERIENCED FULL-TIME CHEMISTS
BY EMPLOYER, HIGHEST DEGREE EARNED, AND SEX

BY EMPLOYER, HIGHEST DEGREE EARNED, AND SEX

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMISTS AND CHEMICAL ENGINEERS
by geographic region and highest degree earned

Note: See page 39 for list of states by geographic regions.

TABLE B-6
STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME B.S. CHEMISTS
BY EMPLOYER AND CERTIFICATION STATUS

${ }^{1}$ See note on Table A-9.

OF INEXPERIENCED FULL-TIME M.S. AND PH.D. CHEMISTS
BY FIELD OF HIGHEST DEGREE

OF INEXPERIENCED FULL-TIME MINORITY CHEMISTS AND CHEMICAL ENGINEERS
By Highest degree earned

TABLE B-9
YEARLY SALARIES
OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS
BY EMPLOYER

TABLE C-1

AGE DISTRIBUTION

OF B.S. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-2
AGE DISTRIBUTION
OF M.S. CHEMISTS AND CHEMICAL ENGINEERS

BY SEX

TABLE C-3

AGE DISTRIBUTION

OF PH.D. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-4
AGE DISTRIBUTION
OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

BY HIGHEST DEGREE EARNED AND SEX

 BACHELORS

TABLE C-6
CITIZENSHIP CLASSIFICATION OF CHEMISTS AND CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND SEX
 $8_{0}^{\circ} \varepsilon^{2}$
$8^{\circ} I$
L
$7^{\circ} 06$
$8^{\circ} \varepsilon^{2}$
MASTERS
ROWW
TOTAL

$$
100.0
$$

100.0
-

TABLE C-7
MINORITY AND CITIZENSHIP CLASSIFICATION OF CHEMISTS
By HIGHEST DEGREE EARNED

TABLE C-8
MINORITY AND CITIZENSHIP CLASSIFICATION OF CHEMICAL ENGINEERS BY HIGHEST DEGREE EARNED

CITIZSNSHIP	MINORITY CLASSIFICATION					
	$\begin{aligned} & \text { IBLACK- } \\ & \text { INEGRO } \end{aligned}$	AMERICAN INDIAN	ORIENTAL	SPANISHSLRNAMED	NON- MINORITY	TOTAW
U. S. CITIZEN		- 0	62. 25	71.5	840 88.6	868 97
RESICENT VISA	11.1 1	0.0	16.7	28.6	0.6	12 1.3
OTHER YISA	0.0	0.0	20.8	0.0	0.8	1.12
$\begin{aligned} & \text { COLUMN } \\ & \text { TOTAL } \end{aligned}$	100.9	$\begin{array}{r}0 \\ 0.0\end{array}$	$100^{24} 0$	100.0	$\begin{array}{r} 852 \\ 100.0 \end{array}$	100.8

U. S.	CITIZEN	${ }_{6 I}^{\text {\# }}$ I 100.0^{1}	100.1	9.1	50.0	I 66.2 I	$\begin{array}{r} 49 \\ 59.0 \end{array}$
RESIDENT	VISA	$\begin{array}{rr}1 \\ -1 & 0.0\end{array}$	0.0	72.7	50.1	I 13.2	21.7
OTHER	VISA	1-0.00	0.0	18.2	0.0	20.6 14	19.3
	COLUMN	100.0	100.0	100.0	100.0	100.0	100.8

APPENDIX

SCOPE AND METHOD OF SURVEY

OBJECTIVES OF SURVEY

The 1976 survey is the twenty-fifth in the series of starting salary surveys conducted by the American Chemical Society. A summary of the results was published in the October 5, 1976 issue of Chemical and Engineering News.

The primary objective of the survey is to determine the salaries and occupational status of the students who majored in chemistry and chemical engineering and who graduated during the 1975-76 academic year. The survey covers the three degree levels: bachelor's, master's, and Ph.D. In addition, the survey provides information on major employer categories, on graduate study plans, on women and minority participation, and citizenship status.

METHOD OF COLLECTION AND TIMING OF SURVEY

Chemistry and chemical engineering departments provided lists of names and addresses of graduates. The cooperating departments were the chemistry departments approved by the ACS, and the chemical engineering departments accredited by the American Institute of Chemical Engineers and the Engineer's Council for Professional Development.

During the summer of 1976, the Office of Manpower Studies sent questionnaires to graduates who had U.S. addresses and graduation dates between September 1975 and June 1976. Summer graduates were excluded because most of them had twelve months experience by the time the survey was conducted.

EXTENT OF COVERAGE

Approximately 11,800 questionnaires were mailed to graduates of 531 chemistry and 123 chemical engineering departments. Most of the questionnaires were sent by bulk mail, but several hundred were sent first class. Since about 10% of those sent first class mail were returned, we infer that about 90% of the 11,800 questionnaires reached the graduates. By the mid-September cutoff date, the Office of Manpower Studies had received 5,142 responses, 5,084 of them usable.

The Office of Manpower Studies estimates that U.S. colleges and universities granted about 18,500 chemistry and chemical engineering degrees during the year ending June 1976. No effort was made to examine the characteristics of the graduates from departments that did not participate in the survey or of those graduates who did not mail back completed questionnaires.

DEFINITIONS

The questionnaire appears in the appendix. Question H on postgraduation status was edited in order to eliminate multiple check marks and to reflect as accurately as possible the employment status of the respondent.

The term "inexperienced" as used in the tables refers to those who have 12 months or less of prior professional work experience. Only the salaries of those who found full-time employment in chemistry or chemical engineering were analyzed. Postdoctoral salaries were analyzed separately. The discrepancies in the number of respondents in various tables reflect the use of incomplete questionnaires.
PACIFIC
WASHINGTON
OREGONCALIFORNIAALASKAHawal I
MOUNTAIN
MONTANA
IDAHO
WYoming
Nevada
UTAH
Colorado
ARI ZONA
New Mexico
WEST NORTH CENTRAL
NORTH DAKOTAMinNesotaSOUTH DAKOTA
IOWA
Nebraska
KANSAS
MISSQURI
WEST SOUTH CENTRAL
OKLAHOMA
ARKANSAS
TEXAS
LOUISIANA
EAST NORTH CENTRAL
WISCONSIN
MICHIGAN
ILLINOIS
INDIANA
EAST SOUTH CENTRAL
KENTUCKY
TENNESSEE
MISSISSIPPI
Alabama
MIDDLE ATLANTIC
NEW YORK
PENNSYLVANIA
NEW JERSEY
SOUTH ATLANTIC
DELAWARE
MARYLAND
WEST VIRGINIA
DISTRICT OF COLUMBIAVIRGINIA
North Carolina
SOUTH CAROLINA
GEORG I A
FLORIDA
NEW ENGLAND
MAINE
NEW Hampshire
VERMONT
MASSACHUSETTS
CONNECTICUT

AMERICAN CHEMICAL SOCIETY
Starting Salary and Employment Status of 1976 Chemistry and Chemical Engineering Graduates
A. Sex:
(1) \qquad (2) \qquad Female
B. Year of birth \qquad
C. Highest degree received in 1975-76 academic year:
(1) \qquad Bachelors
(2) \qquad Masters
(3) \qquad Ph.D.
D. Field of highest degree:
(01)_Chemical engineering
(02)_Chemistry, general
(03) Biochemistry
(04) Agricultural/food chemistry
(05) Analytical chemistry
$(06) \quad$ Inorganic chemistry
(07)_Organic chemistry
(08)_Pharmaceutical/medicinal/clinical chemistry
(09)_Physical/theoretical chemistry
(10)_Polymer/macromolecular chemistry
(14)_Chemistry, other (specify)
(15)__Non-chemical (specify)
E. Citizenship: (1)__U.S. citizen
(2)
_U.S. permanent
resident visa
(3) Other visa: (specify)
\qquad
F. Are you a member of any of the minority groups recognized by the Equal Employment

Opportunity Commission listed below? \qquad Yes
(5) \qquad No

If "Yes," please check those which apply to you:
(1) \qquad Black/Negro
(3) \qquad riental (those of Chinese, Japanese, Korean, or Filipino ancestry)
(2) \qquad American Indian
(4) \qquad Spanish-Surnamed (those of Mexican, Puerto Rican, Cuban, or Spanish ancestry)
G. Post-graduation employment status:
(1) Accepted (or continued) full-time employment in a field of chemistry or chemical engineering.
(2)__Accepted (or continued) full-time employment in a field other than chemistry or chemical engineering.
(3) Accepted graduate assistantship or postdoctoral or other fellowship.
(4)__Entered military service, Peace Corps, VISTA, PHS, or other similar service.
(5) __ Was unable to obtain full-time employment.
(6) _Was not seeking full-time employment.
H. Do you plan further advanced studies in fall 1976? \qquad Yes (14) \qquad No
If "Yes," please specify field:
(01) Chemistry
(02)_Other physical science
(03) Chemical engineering
(04) Other engineering
(05)_Biochemistry
(06) Other life science
(07)_Medicine
(08)_Dentistry
(09)_Pharmacy
(10)_Business administration
(11)_Law
(12)_Social science
(13)

IF YOU HAVE FULL-TIME EMPLOYMENT OR A POSTDOCTORAL POSITION, PLEASE ANSWER THE REMAINING QUESTIONS:
I. Annual starting salary: \$
J. Technical work experience prior to graduation: \square less than 12 months (or none)
(2)
\qquad 12 months or more
K. Employer classification (check the one category which best describes your employer):
Private industry or business:
(01) manufacturing
(05)_Federal government
(06)_State or local government
(08)_Hospital or independent laboratory
(09)_Other non-profit organization
(10)_Other (specify)
(03)__College or university (04)__High school or other school
(10)_O_Other (specify)
\qquad
L. Geographic location of employment: State
M. How many firm offers of employment did you receive in a field of chemistry or chemical engineering? Specify number \qquad

Please return within 10 days to the American Chemical Society 1155 Sixteenth St. N.W., Washington, D.C. 20036 Thank You

PLEASE DO NOT WRITE IN THIS SPACE

F.
G.
G. $\quad 9$
H. $\frac{}{10}$

J. $\frac{}{17}$
$\begin{array}{ll}\text { K. } & \\ 18 & \overline{19} \\ \text { L. } \\ \sqrt[20]{20} & \overline{21} \\ \text { M. } & = \\ 23 & \end{array}$
Certification
24

[^0]: 1_{A} "certified bachelor" is one who has been certified by the chemistry department chairman to the American Chemical Society, as having successfully completed the curriculum in chemistry as approved by the ACS Committee on Professional Training, and is, therefore, eligible to become a member of ACS.

