

1977 SURVEY REPORT

STARTING SALARIES AND EMPLOYMENT STATUS OF
CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

Office of Manpower Studies
American Chemical Society
Washington, D.C.

STARTING SALARIES AND EMPLOYMENT STATUS OF

 CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

This report was prepared by the ACS Office of Manpower Studies.

American Chemical Society 1155 sixteenth Street, N.W. Washington, D. C. 20036

October, 1977

CONTENTS

List of Tables iv
Acknowledgements vii
Summary 1
Tables
Employment 7
Salary 26
Characteristics 37
Appendix
Scope and Method of Survey 45
Geographic Regions 47
Survey Questionnaire 48

SUMMARY

TABLE 1 Starting Median Yearly Salaries of InexperiencedChemists and Chemical Engineers in Industryby Degree: 1976 and 19771
TABLE 2 Starting Yearly Salaries of Inexperienced Full-timeEmployed Chemistry Graduates by Degree: 1976 and 19773
TABLE 3 Starting Yearly Salaries of Inexperienced Full-time Employed Chemical Engineering Graduates by Degree: 1976 and 1977 4
TABLE 4 Postgraduation Status of Chemistry and Chemical Engineering Graduates: 1976 and 1977. 5
TABLE 5 Plans for Advanced Further Studies of B.S. Chemistry and Chemical Engineering Graduates: Fall, 1977 6
TABLE 6 Field of Advanced Further Studies of B.S. Chemistry and Chemical Engineering Graduates Who Plan Further Studies: Fall, 1977 6
EMPLOYMENT AND PLANS FOR FURTHER STUDIES
TABLE A-1 Postgraduation Status of Chemists by Highest Degree Earned and Sex. 7
TABLE A-2 Plans for Further Studies of Unemployed Chemists by Highest Degree Earned and Sex 8
TABLE A-3 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Sex 9
TABLE A-4 Plans for Further Studies of Unemployed Chemical Engineers by Highest Degree Earned 10
TABLE A-5 Postgraduation Status of Chemists by Highest Degree Earned and Citizenship 11
TABLE A-6 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Citizenship 12
TABLE A-7 Postgraduation Status of Minority Chemists by Highest Degree Earned 13
TABLE A-8 Postgraduation Status of Minority Chemical Engineers by Highest Degree Earned 14
TABLE A-9 Postgraduation Status of B.S. Chemists by Certification Status. 15
TABLE A-10 Postgraduation Status of M.S. and Ph.D. Chemists by Field of Highest Degree. 16
TABLE A-ll Field of Advanced Further Studies of Chemists Who Plan Further Studies (Full-time or Part-time) in Fall, 1977 by Highest Degree Earned and Sex 17
TABLE A-12 Field of Advanced Further Studies of Chemists Who Plan Further Studies (Full-time) in Fall, 1977 by Highest Degree Earned and Sex 18
TABLE A-13 Field of Advanced Further Studies of Chemical Engineers Who Plan Further Studies (Full-time or Part-time) in Fall, 1977 by Highest Degree Earned and Sex 19
TABLE A-14 Field of Advanced Further Studies of Chemical Engineers Who Plan Further Studies (Full-time) in Fall, 1977 by Highest Degree Earned and Sex 20

Page

TABLE A-15 Field of Advanced Further Studies of B.S. Chemists 21Who Plan Further Studies (Full-time or Part-time)in Fall, 1977 by Certification Status21
TABLE A-16 Field of Advanced Further Studies of B.S. Chemists Who Plan Further Studies (Full-time) in Fall, 1977 by Certification Status 22
TABLE A-17 Number of Firm Job Offers to Full-time Employed Chemists by Highest Degree Earned and Sex 23
TABLE A-18 Number of Firm Job Offers to Full-time Employed Chemical Engineers by Highest Degree Earned and Sex 24
TABLE A-19 Average Number of Firm Job Offers to Full-time Employed Minority Chemists and Chemical Engineers by Highest Degree Earned and Sex 25
STARTING SALARIES
TABLE B-1 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Highest Degree Earned and Sex 26
TABLE B-2 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer 27
TABLE B-3 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer - Men. 28
TABLE B-4 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer - Women 29
TABLE B-5 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer 30
TABLE B-6 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer - Men 31
TABLE B-7 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer - Women 32
TABLE B-8 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Highest Degree Earned and Geographic Region 33
TABLE B-9 Starting Yearly Salaries of Inexperienced Full-time B.S. Chemists by Employer and Certification Status 34
TABLE B-10 Starting Yearly Salaries of Inexperienced Full-time M.S. and Ph.D. Chemists by Field of Highest Degree 35
TABLE B-ll Starting Yearly Salaries of Inexperienced Full-time Monority Chemists and Chemical Engineers by Highest Degree Earned 36
TABLE B-12 Yearly Salaries of Postdoctoral Chemists and Chemical Engineers by Employer 36

DEMOGRAPHIC CHARACTERISTICS OF RESPONDENTS

TABLE C-1 Age Distribution of B.S. Chemists and Chemical Engineers by Sex 37
TABLE C-2 Age Distribution of M.S. Chemists and Chemical Engineers by Sex 38
TABLE C-3 Age Distribution of Ph.D. Chemists and Chemical Engineers by Sex 39
TABLE C-4 Age Distribution of Postdoctoral Chemists and Chemical Engineers by Sex 40
TABLE C-5 Minority Classification of Chemists and Chemical Engineers by Highest Degree Earned and Sex 41
TABLE C-6 Citizenship or Visa Status of Chemists and Chemical Engineers by Highest Degree Earned and Sex 42
TABLE C-7 Minority Classification and Citizenship or Visa Status of Chemists by Highest Degree Earned. 43
TABLE C-8 Minority Classification and Citizenship or Visa Status of Chemical Engineers by Highest Degree Earned 44

ACKNOWLEDGEMENTS

Annual surveys among chemistry and chemical engineering graduates are conducted in the Office of Manpower Studies, Department of Professional Relations and Manpower Studies, American Chemical Society, in order to observe trends in starting salaries and employment status. This work is carried out under the aegis of the Society's Committee on Economic Status.

This year, for the first time, the Committee presents a commentary on the survey findings, which appears as the Summary of Findings, prepared by Dr. Alan L. McClelland of E. I. du Pont de Nemours, Inc. and Dr. Madelleine M. Joullie of the University of Pennsylvania. Mr. J. Robert Jones, ACS Manager of Manpower Studies, and Ms. Maria D. Frizat, Assistant to the Manager, conducted the survey, edited the returns, and assembled the report. Mr. Daryle S. Watson of Chemical Abstracts Service did the computer programming, and Ms. Joanna K. Chin typed the manuscript.

Robert K. Neuman, Head Department of Professional Relations and Manpower Studies

SUMMARY OF FINDINGS

This survey shows a continuation of the rather poor job market for chemists that has persisted throughout the 1970's, though a few positive notes are evident. Data from the annual survey of 1976-1977 chemistry and chemical engineering graduates show that median starting salaries increased more than the cost of living index, that the number of Ph.D. chemists finding full-time chemical employment instead of postdoctoral positions increased, and that the job market for chemical engineers at all levels continues very strong. Chemists continue to have a difficult time finding chemical employment, though there is some slight indication that the demand for M.S. chemists is increasing in addition to the previously mentioned improvement for Ph.D.'s.

Starting salaries, in general, went up more than the 6.6% increase in the official cost of living index from August 1976 to August 1977. Significant comparisons of industrial starting salaries appear below in summary Table 1. Since 65% or more of all chemists and chemical engineers go into industry, the industrial starting salaries provide the most reliable year-to-year comparisons. Summary Tables 2 and 3 provide overall figures for all chemists and chemical engineers.

TABLE 1
STARTING MEDIAN YEARLY SALARIES
Of Inexperienced Chemists and Chemical Engineers in Industry by Degree: Summer of 1976 and Summer 1977

Degree Level	1976	1977	Percent Increase
Chemists			
Bachelor's	$\$ 11,700$	$\$ 12,600$	7.7
Master's	14,000	15,200	8.6
Ph.D.	18,780	20,000	6.5
Chemical Engineers			
Bachelor's	15,480	16,800	8.5
Master's	16,800	18,000	7.1
Ph.D.	21,000	22,500	7.1

The academic salary picturel is much less favorable; for the third year in a row, academic median starting salaries for Ph.D. chemists

[^0]are unchanged at $\$ 12,000$. Of the Ph.D. chemists accepting fulltime employment (51\%, excluding postdoctorals), 21% accepted academic positions and 69\% went to industry. Thus the academic job market is still a significant one for Ph.D. chemists but the salary situation is discouraging. Postdoctoral salaries ${ }^{2}$ also showed no change from last year; the median is $\$ 10,000$. However, the encouraging factor about the postdoctoral situation is that only 43\% of new Ph.D. chemists, compared with 49% last year, took postdoctoral positions. This can be presumed to represent an improved availability of non-temporary employment opportunities. The 51% accepting employment, mentioned above, is significantly above the 44\% last year.

The disparity between engineering and chemistry salaries continues a twenty-year trend of diverging numbers. As Table 1 shows, only at the M.S. level did the chemists exceed the percentage increase of the engineers, though the actual dollar increase was the same.

Table 4 shows that the number of B.S. chemists finding jobs in chemistry on graduation increased by 2.6 percentage points to 22.3%, but since that percentage has ranged between 17.5% and 25.8% through the l970's, this does not seem to hold much promise of any real change in the B.S. job market. Likewise, the percentage (29.9\%) accepting graduate assistantships or fellowships for full-time study seems consistent with the pattern of the previous three years (28.1%, 31.2%, and 31.6% for 1974, 1975, and 1976, respectively). As usual, a high percentage (72.1%) of $\mathrm{B} . \mathrm{S}$. chemical engineers went directly into engineering employment.

Tables 5 and 6 reveal some interesting patterns of further education plans. About 75% of all B.S. chemistry graduates plan immediate further study; 61\% will continue full-time and 14\% part-time. Of those continuing full-time, 42% are going to medical or dental school and 41% continuing in chemistry or biochemistry. In contrast, only 20% of B.S. Chemical engineers are going on to fuil-time study; of these, 73% are going on in chemical engineering and 10% to medical or dental school. However, another 24% are planning part-time study, and of these 49% will take business courses and 38% will continue in chemical engineering. Thus there is a marked difference in the further education pattern of engineers and chemists.

Madeleine M. Joullie, Chairman Committee on Economic Status

Alan L. McClelland, Chairman Subcommittee on the Annual Report and Surveys

table 2
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMISTR_ GRADUATES

by Degree: Summer of 1976 and Summer of 1977

Salaries	DEGREE LEVEL					
	Bachelor's		Master's		Ph.D.	
	1976	1977	1976	1977	1976	1977
90th Percentile	\$13,620	\$14,640	\$15,300	\$17,600	\$20,100	\$21,600
75th Percentile	12,500	13,500	14,300	16,000	19,200	20,700
50th Percentile	10,800	12,000	12,400	14,100	18,300	19,500
25th Percentile	9,280	10,000	10,000	11,500	15,600	16,800
10th Percentile	8,200	8,400	9,000	9,722	11,600	12,000
Mean	10,860	11,670	12,320	13,812	17,119	18,163
Count	436	398	90	106	150	173
Std. Dev.	2,205	2,363	2,602	3,029	3,250	3,596

TABLE 3
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMICAL ENGINEERING GRADUATES

Salaries	DEGREE LEVEL					
	Bachelor's		Master's		Ph.D.	
	1976	1977	1976	1977	1976	1977
90th Percentile	\$16,200	\$17,400	\$17,500	\$19,000	\$21,600	\$24,000
75th Percentile	15,700	17,100	17,040	18,300	21,000	23,000
50th Percentile	15,420	16,800	16,620	18,000	20,700	22,200
25th Percentile	15,000	16,200	16,000	17,100	19,800	21,500
10th Percentile	14,000	15,300	15,600	15,500	16,800	17,000
Mean	15,225	16,563	16,426	17,552	19,931	21,764
Count	524	664	90	91	42	40
Std. Dev.	1,025	1,167	1,250	1,490	2,084	2,420

TABLE 4
POSTGRADUATION STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATE Summer of 1976 and Summer of 1977

Major and Employment Status	DEGREELEVEL					
	Bachelor's		Master's		Ph.D.	
	1976	1977	1976	1977	1976	1977
CHEMISTRY						
Full-time employed:						
In chemistry or chemical engineering	19.7\%	22.3\%	42.9\%	45.1\%	43.7\%	50.5\%
Outside chemistry or chemical engineering	7.9	7.9	5.7	3.2	2.4	3.1
Postdoctoral/grad. asst./other fellowship	31.6	29.9	34.1	37.1	48.7	42.7
Military/peace Corps, etc.	1.6	1.4	1.0	0.5	0.4	0.6
Unable to obtain full-time employment	7.3	7.5	5.4	4.5	3.4	2.3
(and planning further studies)	(1.5)	(2.3)	(1.3)	(0.8)	(0.2)	(0.2)
(not planning further studies)	(5.6)	(5.0)	(3.9)	(3.7)	(3.2)	(2.1)
Not seeking full-time employment	31.8	31.0	10.9	9.5)	1.4	0.8
(and planning further studies)	(29.5)	(29.0)	(9.6)	(7.2)	(1.0)	(0.0)
(not planning further studies)	(2.3)	(2.0)	(1.0)	(2.4)	(0.4)	(0.8)
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of responses	2,970	2,345	387	377	503	487
CHEMICAL ENGINEERING						
Full-time employed:						
In chemistry or chemical engineering	71.4\%	72.1\%	64.1\%	72.2\%	85.9\%	83.9\%
Outside chemistry or chemical engineering	4.1	4.4	3.2	0.9	0.0	5.7
Postdoctoral/grad. asst./other fellowship	15.4	15.6	25.5	20.2	12.9	9.2
Military/Peace Corps, etc.	1.4	0.7	0.9	1.8	0.0	0.0
Unable to obtain full-time employment	3.2	2.6	1.4	1.3	1.2	1.1
(and planning further studies)	(0.2)	(0.4)	(0.5)	(0.4)	(0.0)	(0.0)
(not planning further studies)	(2.7)	(2.2)	(0.9)	(0.9)	(1.2)	(1.1)
Not seeking full-time employment	4.5	4.5	5.0	3.6	0.0	0.0
(and planning further studies)	(4.2)	(4.2)	(4.1)	(3.6)	(0.0)	(0.0)
(not planning further studies)	(0.3)	(0.3)	(0.9)	(0.0)	(0.0)	(0.0)
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of responses	910	1,082	220	223	85	87

Note: For categories "unable to obtain full-time employment" and "not seeking full-time employment," a further breakdown is given: "planning further studies" and "not planning further studies." please note that detail may not add up to total because of no responses to second question.

PLANS FOR ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES: Fall 1977

	Chemists	Chemical Engineers
Plan further studies	74.4%	43.9%
Full-time	(60.5)	(20.0)
Part-time	(13.9)	(23.9)
Have no plans or no response	25.6	56.1
Total	100.0	100.0
Number of responses	2,345	1,082

TABLE 6

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES WHO PLAN FURTHER STUDIES: Fall 1977

Field of Study	Chemists	Chemical Engineers
Full-time		
Chemistry or Biochemistry	40.5%	1.9%
Chemical Engineering	3.2	72.7
Medicine or Dentistry	42.2	9.7
Business or Management	1.2	6.5
All Others	12.9	9.2
Total	100.0	100.0
\quad		216
Number of responses	1,418	
Part-time		
Chemistry or Biochemistry	49.5%	37.5%
Chemical Engineering	3.4	48.6
Business or Management	17.7	12.4
All Others	29.4	100.0
Total	100.0	259
Number of responses	327	

PLANS FOR FURTHER STUCIES THIS FALL

PLANS FOR FURTHER STUDIES

OF UNEMPLOYED CHEMISTS
BY HIGHEST DEGREE EARNED AND SEX

POSTGRADUATION STATUS OF CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND SEX

$$
\left|\begin{array}{l}
\text { min } \\
\min
\end{array}\right|
$$

-

[^1]$$
\frac{I}{I} M E N
$$
$$
\operatorname{man}_{\rightarrow-1} \cos \mid \text { oo }
$$

BACHELORS

$$
\frac{I}{\frac{I}{I}} \frac{\text { MEN }}{\frac{I}{I}}
$$

\[

\]

$$
\frac{24-\frac{51}{I}}{\frac{I}{I}} \frac{0}{I}
$$

TABLE A-4
PLANS FOR FURTHER STUDIES
OF UNEMPLOYED CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED

TABLE A-6
POSTGRADUATION STATUS OF CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND CITIZENSHIP

PLANS FCR FURTHER STUCIES THIS FALL

POSTGRADUATION STATUS

```
OF MINORITY CHEMISTS
BY HIGHEST DEGREE EARNED
```

EMPLCYMENT STATUS

FULLTIME IN CHEM ${ }^{*}$ \%

60.0
$1 \in .5$
23.5

RGW
TOTAL

$$
\begin{array}{r}
64 \\
24.6
\end{array}
$$

$$
9.24
$$

$$
7 . \frac{7}{3}
$$

$$
37.3
$$

$$
0 . \frac{1}{4}
$$

20
7.7 54
20.8 260
00.0

NCT SEEKING EMPL
COLUMN
.

PLANS FOR FURTHER STUCIES THIS FALL

table A-8

POSTGRADUATION STATUS
OF MINORITY CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED

EMPLOYMENT STATUS

PLANS FCR FURTHER STULIES THIS FALL

TABLE A-9

POSTGRADUATION STATUS OF B.S. CHEMISTS
BY CERTIFICATION STATUS

PLANS FCR FURTHER STUDIES THIS FALL

FULL-TIME
PART-TIME

NC PLANS

NC

${ }^{1}$ A "certified bachelor" is one who has been certified by the chemistry department chairman to the American Chemical Society, as having successfully completed the curriculum in chemistry as approved by the ACS Committee on Professional Training, and is, therefore, eligible to become a member of ACS.
FIELD OF HIGHEST DEGREE
ROH $\underset{\sim}{\infty}$ 12
3.2
140
37.0
0.5
177
4.5
37
9.8
378
100.0 $\stackrel{O}{0}$ $n-1$
m om
ON
No mo $\underset{N}{m}$ $+\infty$
0
0 $\begin{array}{r}\infty 0 \\ \infty \\ +0 \\ 0 \\ \hline-\end{array}$
 CHEMSTRY
OTHER

 $0.0-1$ SN！ 1001 1
0
0
0
n
n

 GENERAL ISTRY I FCCE ICAL EMPLOYMENT STATUS MASTERS－
SUILT
FULLTIME IN CHEM\％$\frac{1}{1} 62.5$
FULLTIME NONCHEM $\frac{I}{I}$ 1．$\frac{1}{8}$
PCSTECC，ERADASST $\frac{1}{I} 23 . \frac{13}{2}$
－－I－ー－ーーー
MILITARY，VISTA
SEEKING EMPLOYMT $\frac{1}{1} 5 . \frac{2}{4}$ $-\frac{1}{\frac{I}{I}}-\frac{1}{4}-\frac{1}{\frac{1}{1}}$

TABLE A-12

$$
\begin{aligned}
& \text { FIELD OF ADVANCED FURTHER STUDIES OF CHEMISTS } \\
& \text { WHO PLAN FURTHER STUDIES (FULL-TIME) IN FALL, } 1977 \\
& \text { BY HIGHEST DEGREE EARNED AND SEX }
\end{aligned}
$$

FIELD OF ADVANCED FURTHER STUDIES OF CHEMICAL ENGINEERS
WHO PLAN FURTHER STUDIES (FULL-TIME OR PART-TIME) IN FALL, 1977
BY HIGHEST DEGREE EARNED AND SEX

TABLE A-14
FIELD OF ADVANCED FURTHER STUDIES OF CHEMICAL ENGINEERS
WHO PLAN FURTHER STUDIES (FULL-TIME) IN FALL, 1977
BY HIGHEST DEGREE EARNED AND SEX

FIELC CF ADVANCED
FURTHER STUCIES
CHEMISTRY
HIVN'IJS AYd HIO
CHEMICAL ENGRING
OTHER ENGRING
OTH LIFE SCIENCE
MECICINE
CENTISTAY
BUSINESS,MGMT
LAW

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS
WHO PLAN FURTHER STUDIES (FULL-TIME OR PART-TIME) IN FALL, 1977 BY CERTIFICATION STATUS

[^2]FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS WHO PLAN FURTHER STUDIES (FULL-TIME) IN FALL, 1977 iAY CERTIFICATION STATUS

[^3]
NUMBER OF FIRM JOB OFFERS TO FULL-TIME EMPLOYED CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND SEX

TABLE A-19
TO FULL-TIME EMPLOYED MINORITY CHEMISTS AND CHEMICAL ENGINEERS
bY HIGHEST DEGREE EARNED AND SEX

BACHLCRS		$100-\frac{I}{1}$ 0.0 0. 0	2.7 0.7 0.6
MASTERS	I I I	1.7 0.6 0.6	1.7 0.6
PHC	I	$2.3{ }^{2} \frac{1}{1}$	1.5 1.6
CClum	MEAN CCUNT STE LEV	107 106	10 10 0.9

TABLE B-1

STARTING YEARLY SALARIES

INEXPERIENCED FULL-TIME CHEMISTS AND CHEMICAL ENGINEERS

BY HIGHEST DEGREE EARNED AND SEX

CHEM ENGINEERS----
BACHLCRS

MASTERS

PHC

CCLUMN

$$
\begin{array}{r}
16800 \\
16562 \\
663 \\
1170 . \\
18000 \\
17552 \\
1490 \\
1490 \\
22200 \\
21764 \\
40 \\
2420 . \\
16938 . \\
794 \\
1738 .
\end{array}
$$

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMISTS
BY HIGHEST DEGREE EARNED AND EMPLOYER

TABLE B-3
STARTING YEARLY SALARIES
of inexperienced full-time chemists
by highest degree earned and employer - Men

TABLE B-4

$$
\begin{aligned}
& \text { STARTING YEARLY SALARIES } \\
& \text { OF INEXPERIENCED FULL-TIME CHEMISTS } \\
& \text { BY HIGHEST DEGREE EARNED AND EMPLOYER - WOMEN }
\end{aligned}
$$

TABLE B-5

$$
\begin{aligned}
& \text { STARTING YEARLY SALARIES } \\
& \text { OF INEXPERIENCED FULL-TIME CHEMICAL ENGINEERS } \\
& \text { BY HIGHEST DEGREE EARNED AND EMPLOYER }
\end{aligned}
$$

TABLE B-6
STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND EMPLOYER - MEN

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND EMPLOYER - WOMEN
BY HIGHEST DEGREE EARNED AND GEOGRAPHIC REGION

TABLE B-9

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME B.S. CHEMISTS
BY EMPLOYER AND CERTIFICATION STATUS

1 See note on table a-9.

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME M.S. AND PH.D. CHEMISTS

```
BY FIELD OF HIGHEST DEGREE
```

FIELC OF HIGHEST CEGREE

$$
\begin{aligned}
& \text { CHEMSTRY, } \\
& \text { GENERAL }
\end{aligned}
$$

BICCHEMISTRY

AGRICULT, FCOC

ANALYTICAL

INCRGANIC

ORGANIC

PHAFMA, MEE, CLN

PHYSICAL, THECRET

POLYMER,MACRCMOL

CHEMSTRY,CTHER

ALL
FIELCS

TCTAL

13664
22
3626
15110
4733
17000
1
0.
$17 C 12$
3523.
14895.
$51 \frac{28}{37}$.
17377°
3638°
3t38.
12800
0
0
17281.
3436
16290.

16204
3816
16510.
3993.

BY HIGHEST DEGREE EARNED

TABLE B-12
YEARLY SALARIES
OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS BY EMPLOYER


```
TABLE C-1
```


AGE DISTRIBUTION

OF B.S. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-2

AGE DISTRIBUTION
OF M.S. CHEMISTS AND CHEMICAL ENGINEERS
by SEX

table C-3

AGE DISTRIBUTION

OF PH.D. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-4

AGE DISTRIBUTION
OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS
By SEX

MASTERS

BY HIGHEST DEGREE EARNED AND SEX

TABLE C-6

TABLE C-7

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMISTS BY HIGHEST DEGREE EARNED


```
TABLE C-8
```

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMICAL ENGINEERS BY HIGHEST DEGREE EARNED

	MINORITY CLASSIFICATION					
CITIZENSHIP OR VISA STA	I BLACK	AMERICAN ASIAN		HISPANIC NON-		TOOW
U. S. CITIZEN	\% 1	100.0	67.27	14	9878	1025
RESIDENT VISA	25.0	0.8	$17 .$	$6 . \frac{1}{3}$	$0.9{ }^{9} \frac{1}{1}$	19 1.8
OTHER VISA	$12 . \frac{1}{5}$	0.0	15	$6 . \frac{1}{3}$	0. $4 \frac{1}{1}$	112
$\begin{aligned} & \text { CCLUMN } \\ & \text { TOTAL } \end{aligned}$	0.8	C. 1	$\begin{array}{r} 40 \\ 3.8 \end{array}$	16 1.5	$\begin{array}{r} 991 \\ 93.8 \end{array}$	1056 100.0

MASTERS
U. S. CITIZEN

RESICENT VISA
OTHER VISA CGLUMAN

 177 80.8 14.31 219
00.0

PHC
U. S.

CITIZEN
RESIDENT VISA
OTHER
vISA
CCLUMN TOTAL

 63.1 17.9 19.0

SCOPE AND METHOD OF SURVEY

OBJECTIVES OF SURVEY

The 1977 survey is the twenty-sixth in the series of starting salary surveys conducted by the American Chemical Society. A summary of the results appears in the October 24, 1977 issue of Chemical and Engineering News.

The primary objective of the survey is to determine the salaries and occupational status of the students who majored in chemistry and chemical engineering and who graduated during the 1976-1977 academic year. The survey covers the three degree levels: bachelor's, master's, and Ph.D. In addition, the survey provides information on major employer categories, on graduate study plans, on women and minority participation, and citizenship status.

METHOD OF COLLECTION AND TIMING OF SURVEY

Chemistry and chemical engineering departments provided lists of names and addresses of graduates. The cooperating departments were the chemistry departments approved by the ACS, and the chemical engineering departments accredited by the American Institute of Chemical Engineers and the Engineer's Council for Professional Development.

During the summer of 1977, the Office of Manpower Studies sent questionnaires to graduates who had U.S. addresses and graduation dates from September 1976 thi:ough June 1977. Summer graduates were excluded because most of them had twelve months experience by the time the survey was conducted.

EXTENT OF COVERAGE

Approximately 13,336 questionnaires were mailed to graduates of 535 chemistry and 126 chemical engineering departments. Most of the questionnaires were sent by bulk mail, but several hundred were sent first class. Since about 10% of those sent first class mail were returned, apparently about thirteen hundred questionnaires failed to reach the graduates. By the mid-September cutoff date, the Office of Manpower Studies had received 4,642 responses, 4,629 of them usable.

The Office of Manpower Studies estimates that U.S. colleges and universities granted about 21,000 chemistry and chemical engineering degrees during the year ending June 1977. No effort was made to examine the characteristics of the graduates from departments that did not participate in the survey or of those graduates who did not mail back completed questionnaires.

DEFINITIONS

The questionnaire appears in the appendix. Question H on postgraduation status was edited to eliminate multiple check marks and to reflect as accurately as possible the employment status of the respondent.

The term "inexperienced" as used in the tables refers to those who have 12 months or less of prior professional work experience. Salary tables are based only on salaries of those who found fulltime employment in chemistry or chemical engineering. Postdoctoral salaries are analyzed separately. The discrepancies in the numbers of respondents in various tables reflect the use of incomplete questionnaires.

PACIFIC
WASHINGTON
Oregon
CALIFORNIA
Alaska
hawail.

MOUNTA IN
Montana
IDAHO
Wyoming
Nevada
UTAH
Colorado
ARI ZONA
New Mexico

WEST NORTH CENTRAL
NORTH DAKOTA
MINNESOTA
South dakota
IOWA
Nebraska
Kansas
Missouri

WEST SOUTH CENTRAL
Oklahoma
Arkansas
TEXAS
Louisiana

EAST NORTH CENTRAL
Wisconsin
MICHIGAN
ILLINOIS
INDIANA
OHIO

EAST SOUTH CENTRAL
Kentucky
Tennessee
MISSISSIPPI
Alabama

MIDDLE ATLANTIC
NEW YORK
Pennsylvania
New Jersey

SOUTH ATLANTIC
Delaware
MARYLAND
West Virginia
District of Columbia
Virginia
North Carolina
South Carolina
Georg ia
Florida

NEW ENGLAND
Maine
New Hampshire VERMONT
Massachusetts
Connecticut
Rhode Island

AMERICAN CHEMICAL SOCIETY

Starting Salary and Employment Status of 1977 Chemistry and Chemical Engineering Graduates
A. Sex:
(1) \qquad (2) \qquad Female
B. Year of birth \qquad
C. Highest degree received in 1976-77 academic year: \qquad Bachelors \qquad
\qquad Masters
(3) Ph.D.
D. Field of highest degree:
(01)_Chemical engineering
(02)_Chemistry, general
(03) Biochemistry
(04) Agricultural/food chemistry
(05) Analytical chemistry
(06)_Inorganic chemistry
(07)_Organic chemistry
(08)_Pharmaceutical/medicinal/clinical chemistry
(09)_Physical/theoretical chemistry
(10)_Polymer/macromolecular chemistry
(14)_Chemistry, other (specify)
(15)_Non-chemical (specify)
E. Citizenship or visa status:
(1) \qquad U.S. citizen
(2) __U.S. permanent
(3) Other visa: (specify) \qquad
F. Are you a member of any of the minority groups recognized by the Equal Employment Opportunity Commission listed below? Yes (5)_No

If "Yes," please check those which apply to you:
(1) Black (not of Hispanic origin)
(3)_Asian or Pacific Islander (those of Chinese, Japanese, Korean, Filipino, or subcontinental Indian origin)
(2) \qquad American Indian or Alaskan Native
(4) Hispanic (those of Mexican, Puerto Rican, Cuban, or Spanish origin)
G. Post-graduation employment status:
(1) Accepted (or continued) full-time employment in a field of chemistry or chemical engineering.
(2)__Accepted (or continued) full-time employment in a field other than chemistry or chemical engineering.
(3) Accepted graduate assistantship or postdoctoral or other fellowship.
(4) ___Entered military service, Peace Corps, VISTA, PHS, or other similar service.
(5) __ Was unable to obtain full-time employment.
(6) __ Was not seeking full-time employment.
H. Do you plan further advanced studies in fall 1977 ?
a. If "Yes," please specify field:
(01) Chemistry
(02) _Other physical science, math.
(03) Chemical engineering
(04)__Other engineering
(05) Biochemistry
(06) \qquad Other life science

(07) Medicine
(08) _Dentistry
(09) _Pharmacy
(10) Business, management
(11) Law
(12) Social science, humanities
(13) _Other (specify)

PLEASE DO NOT WRITE IN THIS SPACE

$F \cdot \frac{}{8}$
G. $\frac{}{9}$
H.

Ha.

[^0]: $l_{\text {See }}$ Table B-2, p. 27.

[^1]:

[^2]: ${ }^{1}$ See note on table a-9.

[^3]: isee note on table a-9.

