1978 SURVEY REPORT

STARTING SALARIES AND EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

H I G H L I G H T S

- Chemists' starting salaries rose at all degree levels but failed to keep pace with prices (which rose 7.9%, according to the official consumer price index). Median starting salaries were:

$$
\begin{aligned}
& \$ 12,700 \text { for the } B S: \text { up } 5.8 \% \text {; in constant dollars, }-1.9 \% \\
& \$ 15,000 \text { for the } M S \text { : up 6.4\%; in constant dollars, -1.4\% } \\
& \$ 21,000 \text { for the PhD : up } 7.7 \% \text {; in constant dollars, - } 0.2 \%
\end{aligned}
$$

- Chemical engineers' starting salaries rose at all degree levels, but only the BS salaries kept up with prices. Median starting salaries were:
$\$ 18,200$ for the $\mathrm{BS}:$ up 8.3%; in constant dollars, $+0.4 \%$
$\$ 19,200$ for the MS : up 6.7%; in constant dollars, -1.1%
$\$ 23,100$ for the $\mathrm{PhD}:$ up 4.1%; in constant dollars, -3.6%
- Postdoctoral fellowships went to 33% of PhD chemistry graduates--last year the figure was 43\%.
- Full-time employment among BS chemistry graduates increased to 34\%, from 30% in 1977.
- Medicine and chemistry are the most popular subjects among BS graduates planning full-time study this fall. Among graduates who completed chemistry majors approved by the ACS Committee on Professional Training, 49\% have entered graduate school in chemistry. Among graduates whose undergraduate training has not been certified as having met ACS standards, 50% have entered medical school.
- A striking uniformity characterizes chemical engineers' starting salaries. For both bachelor's and master's degree chemical engineers entering private industry the standard deviation of starting salary was only about 0.06 times the mean; in chemistry the comparable figure was 0.17.
- Women's salaries appear to have acheived parity with men's. For example, in private industry the ratio of women's median salaries to men's was 1.06 for BS chemists and 1.01 for BS chemical engineers.

1978 SURVEY REPORT
 STARTING SALARIES AND EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

This report was prepared by the ACS Office of Manpower Studies.

American Chemical Society 1155 sixteenth Street, N.W. Washington, D. C. 20036

CONTENTS
Page
List of Tables iv
Acknowledgements vii
Summary 1
Tables
Employment 7
Salary 26
Characteristics 37
Appendix
Scope and Method of Survey 45
Geographic Regions 47
Survey Questionnaire 48

LIST OF TABLES

page
SUMMARY
TABLE 1 Postgraduation Status of Chemistry and Chemical Engineering Graduates: 1977 and 1978 2
TABLE 2 Starting Yearly Salaries of Inexperienced Full-time Employed Chemistry Graduates by Degree: 1977 and 1978... 4 Employed Chemical Engineering Graduates by Degree: 1977 and 1978 5
TABLE 4 Plans for Advanced Further Studies of B.S. Chemsitry and Chemical Engineering Graduates: Fall, 1978. 6
TABLE 5 Field of Advanced Further Studies of B.S. Chemistry and Chemical Engineering Graduates Who Plan Further Studies: Fall, 1978 6
EMPLOYMENT AND PLANS FOR FURTHER STUDIES
TABLE A-1 Postgraduation Status of Chemists by Highest Degree Earned and Sex 7
TABLE A-2 Plans for Further Studies of Unemployed Chemists by Highest Degree Earned and Sex 8
TABLE A-3 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Sex 9
TABLE A-4 Plans for Further Studies of Unemployed Chemical Engineers by Highest Degree Earned. 10
TABLE A-5 Postgraduation Status of Chemists by Highest Degree Earned and Citizenship 11
TABLE A-6 Postgraduation Status of Chemical Engineers by Highest Degree Earned and Citizenship 12
TABLE A-7 Postgraduation Status of Minority Chemists by Highest Degree Earned 13
TABLE A-8 Postgraduation Status of Minority Chemical Engineers by Highest Degree Earned 14
TABLE A-9 Postgraduation Status of B.S. Chemists by Certification Status 15
TABLE A-10 Postgraduation Status of M.S. and Ph.D. Chemists by Field of Highest Degree 16
TABLE A-1l Field of Advanced Further Studies of Chemists Who Plan Further Studies (Full-time or Part-time) in Fall, 1978 by Highest Degree Earned and Sex 17
TABLE A-12 Field of Advanced Further Studies of Chemists Who Plan Further Studies (Full-time) in Fall, 1978 by Highest Degree Earned and Sex 18
TABLE A-13 Field of Advanced Further Studies of Chemical Engineers Who Plan Further Studies (Full-time or Part-time) in Fall, 1978 by Highest Degree Earned and Sex 19
TABLE A-14 Field of Advanced Further Studies of Chemical Engineers Who Plan Further Studies (Full-time) in Fall, 1978 by Highest Degree Earned and Sex 20
Page
TABLE A-15 Field of Advanced Further Studies of B.S. Chemists 21
Who Plan Further Studies (Full-time or Part-time) in Fall, 1978 by Certification Status 21
TABLE A-16 Field of Advanced Further Studies of B.S. Chemists Who Plan Further Studies (Full-time) in Fall, 1978 by Certification Status 22
TABLE A-17 Number of Firm Job Offers to Full-time Employed Chemists by Highest Degree Earned and Sex. 23
TABLE A-18 Number of Firm Job Offers to Full-time Employed Chemical Engineers by Highest Degree Earned and Sex... 24
TABLE A-19 Average Number of Firm Job Offers to Full-time Employed Minority Chemists and Chemical Engineers by Highest Degree Earned and Sex. 25
STARTING SALARIES
TABLE B-1 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Highest Degree Earned and Sex 26
TABLE B-2 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer 27
TABLE B-3 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer - Men.. 28
TABLE B-4 Starting Yearly Salaries of Inexperienced Full-time Chemists by Highest Degree Earned and Employer - Women 29
TABLE B-5 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer 30
TABLE B-6 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer - Men 31
TABLE B-7 Starting Yearly Salaries of Inexperienced Full-time Chemical Engineers by Highest Degree Earned and Employer - Women 32
TABLE B-8 Starting Yearly Salaries of Inexperienced Full-time Chemists and Chemical Engineers by Highest Degree Earned and Geographic Region. 33
TABLE B-9 Starting Yearly Salaries of Inexperienced Full-time B.S. Chemists by Employer and Certification Status 34
TABLE B-10 Starting Yearly Salaries of Inexperienced Full-time M.S. and Ph.D. Chemists by Field of Highest Degree. 35
TABLE B-ll Starting Yearly Salaries of Inexperienced Full-time Minority Chemists and Chemical Engineers by Highest Degree Earned 36
TABLE B-12 Yearly Salaries of Postdoctoral Chemists and Chemical Engineers by Employer 36
DEMOGRAPHIC CHARACTERISTICS OF RESPONDENTS
TABLE C-1 Age Distribution of B.S. Chemists and Chemical Engineers by Sex 37
TABLE C-2 Age Distribution of M.S. Chemists and ChemicalEngineers by Sex..38
TABLE C-3 Age Distribution of Ph.D. Chemists and Chemical Engineers by Sex 39
TABLE C-4 Age Distribution of Postdoctoral Chemists and Chemical Engineers by Sex 40
TABLE C-5 Minority Classification of Chemists and Chemical Engineers by Highest Degree Earned and Sex 41
TABLE C-6 Citizenship or Visa Status of Chemists and Chemical Engineers by Highest Degree Earned and Sex 42
TABLE C-7 Minority Classification and Citizenship or Visa Status of Chemists by Highest Degree Earned........ 43TABLE C-8 Minority Classification and Citizenship or VisaStatus of Chemical Engineers by Highest DegreeEarned44

Chemistry and chemical engineering graduates are surveyed each year by the Office of Manpower Studies, Department of Professional Relations and Manpower Studies, American Chemical Society. The purpose of this survey, carried out under the aegis of the Society's Committee on Economic Status, is to observe trends in starting salaries and employment status.

A commentary on behalf of the Committee has been prepared by a Committee member, Dr. Alan L. McClelland of E. I. du Pont de Nemours, Inc. It appears in this report as the Summary of findings. Mr. J. Robert Jones, Manager of the ACS Office of Manpower Studies and Ms. Joanna K. Chin, Program Assistant, conducted the survey, edited the returns, and assembled the report. Mr. Daryl S. Watson of Chemical Abstracts Service did the computer porgramming and Ms. Chin typed the manuscript.

Robert K. Neuman, Head Department of Professional Relations and Manpower Studies

Information on the employment status of new chemistry graduates from the annual ACS Starting Salary Survey provides encouraging indications that the job situation is coming into better balance. For example, 33% of new Ph.D.'s accepted postdoctoral positions immediately on graduation compared to 43% last year and 49% the year before. At this year's level, the majority are probably taking postdoctoral positions because they truly desire the additional academic experience rather than because of the lack of suitable permanent positions. At the B.S. level the news is also good: 25\% found jobs in chemistry, compared to 22% in 1977 and 20\% in 1976.

Chemical engineers continued the traditional pattern of a high level of entry into technical jobs at the B.S. level, 69\% this year, 72% last year. The percentage unable to find full-time employment rose to 4.9% from 2.6%. Whether this reflects the beginning of a trend resulting from increasing numbers of graduating chemical engineers remains to be seen in future years.

Further breakdown of the post-graduation status of new graduates is given in Table 1.

While starting salaries increased at all degree levels for chemists and chemical engineers, the 7.9% increase in the BLS consumer price index from August 1977 to August 1978 shows that inflation more than wiped out the gains for most groups. The most straight-forward salary comparison is for inexperienced new employees going into industry. (See table below.) In this category B.S. chemical engineers had

STARTING MEDIAN YEARLY SALARIES
Of Inexperienced Chemists and Chemical Engineers in Industry by Degree: Summer of 1977 and Summer 1978

Degree Level	1977	1978	Percent Increase
Chemists			
Bachelor's	$\$ 12,600$	13,500	7.1
Master's	15,200	15,600	2.6
Ph.D.	20,000	21,500	7.5
Chemical Engineers			
Bachelor's	16,800	18,300	8.9
Master's	18,000	19,200	6.7
Ph.D.	22,500	23,700	5.3

POSTGRADUATION STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATE
an increase over last year in median starting salary of 8.9% but M.S. (6.7\%) and Ph.D. (5.3\%) chemical engineers, and B.S. (7.1\%), M.S. (2.6\%) and Ph.D. (7.5\%) chemists lost ground to inflation.

Detailed distributions of starting salary figures for chemists and chemical engineers are given in Tables 2 and 3.

One interesting item stands out in the salary figures. At the B.S. level for both chemists and chemical engineers going to industrial jobs, the median starting salaries were higher for women than men (chemists, $\$ 14,000$ vs. $\$ 13,200$; chemical engineers, $\$ 18,300$ vs. $\$ 18,200$). The pattern is not significantly different at other degree levels, because the numbers of women are too small to give statistically meaningful figures. All the results, however, strongly suggest there is no salary discrimination against women in industrial starting salaries.

Continuing education plans for chemistry and chemical engineering B.S. graduates are detailed in Tables 4 and 5. Differences in such plans for the two groups continue to be evident. A high proportion (58\%) of the chemists plan to go to full-time further study, while only 20 percent of the chemical engineers will do so. The chemists continuing full-time split nearly equally between medicine/ dentistry and chemistry, while the great bulk of full-time continuing engineers will stay in chemical engineering. Nearly half of the engineers will continue part-time study, with the majority choosing business studies. Business studies attract only a small number of chemists on either a full- or part-time basis.

Alan L. McClelland, Chairman Subcommittee on the Annual Report and Surveys
Table 2
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMISTRY GRADUATES
and summer

Salaries	DEGREE L E V E L					
	Bachelor's		Master's		Ph.D.	
	1977	1978	1977	1978	1977	1978
90th Percentile	\$14,640	\$15,660	\$17,600	\$18,300	\$21,600	\$23,500
75th Percentile	13,500	14,595	16,000	16,600	20,700	22,200
50th Percentile	12,000	12,700	14,100	15,000	19,500	21,000
25th Percentile	10,000	10,600	11,500	12,000	16,800	18,000
l0th Percentile	8,400	9,360	9,722	10,000	12,000	12,000
Mean	11,670	12,651	13,812	14,560	18,163	19,345
Count	398	517	106	76	173	158
Std. Dev.	2,363	2,574	3,029	3,149	3,596	4,335

Table 3
STARTING YEARLY SALARIES OF INEXPERJENCED FULL-TIME EMPLOYED CHEMICAL ENGINEERING GRADUATES
Summer of

Salaries	D E G R E E L E VEL					
	Bachelor's		Master's		Ph.D.	
	1977	1978	1977	1978	1977	1978
90 th Percentile	\$17,400	\$18,900	\$19,000	\$21,000	\$24,000	\$ \$ 25,800
75th Percentile	17,100	18,600	18,300	20,000	23,000	24,960
50th Percentile	16,800	18,200	18,000	19,200	22,200	23,100
25th Percentile	16,200	17,800	17,100	18,500	21,500	20,000
l0th Percentile	15,300	16,800	15,500	17,500	17,000	17,000
Mean	16;563	18,023	17,552	19,228	21,764	22,127
Count	664	589	91	78	40	38
Std. Dev.	1,167	1,165	1,090	1,249	2,420	3,727

TABLE 4

PLANS FOR ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES: Fall 1978

	Chemists	Chemical Engineers
Plan further studies	73.7%	45.3%
Full-time	(58.3)	(20.0)
Part-time	(15.4)	(25.3)
Have no plans or no response	26.3	54.7
Total	100.0	100.0
Number of responses	2,692	1,049

TABLE 5

> FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES WHO PLAN FURTHER STUDIES: Fall 1978

Field of Study	Chemists	Chemical Engineers
Full-time		
Chemistry or Biochemistry	38.1%	2.9%
Chemical Engineering	2.7	70.0
Medicine or Dentistry	43.7	11.4
Business or Management	2.6	7.6
All Others	12.9	8.1
Total	100.0	100.0
Number of responses	1,569	210
Part-time		
Chemistry or Biochemistry	51.2%	1.9%
Chemical Engineering	6.5	29.0
Business or Management	16.9	14.1
All Others	25.4	100.0
Total	100.0	265
Number of responses	414	

POSTGRADUATION STATUS OF CHEMISTS
by highest degree earned and sex

PLANS FOR FURTHER STUDIES
OF UNEMPLOYED CHEMISTS
By HIGHEST DEGREE EARNED AND SEX

OF UNEMPLOYED CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED

 BACHLORS

EMPLOYMENT STATUS IU SO RESIDENT OTHER

PLANS FOR FURTHER STUDIES THIS FALL
FULL-TIME
n
2
a
인
응
table A-7
POSTGRADUATION STATUS
OF MINORITY CHEMISTS
BY HIGHEST DEGREE EARNED

PLANS FOR FURTHER STUDIES THIS FALL

POSTGRADUATION STATUS
OF MINORITY CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED

PLANS FOR FURTHER STUDIES THIS FALL

TABLE A-9

```
POSTGRADUATION STATUS OF B.S. CHEMISTS
By CERTIFICATION STATUS
```


PLANS FOR FURTHER STUDIES THIS FALL

FULL-TIME
PART-TIME
NO PLANS
NO

l_{A} "certified bachelor" is one who has been certified by the chemistry department chairman to the American Chemical Society, as having successfully completed the curriculum in chemistry as approved by the ACS Committee on Professional Training, and is, therefore, eligible to become a member of ACS.

TABLE A-12
FIELD OF ADVANCED FURTHER STUDIES OF CHEMISTS
WHO PLAN FURTHER STUDIES (FULL-TIME) IN FALL, 1978
BY HIGHEST DEGREE EARNED AND SEX

TABLE A-13
FIELD OF ADVANCED FURTHER STUDIES OF CHEMICAL ENGINEERS
WHO PLAN FURTHER STUDIES (FULL-TIME OR PART-Time) in FALL, 1978
by highest degree earned and sex

 FIELD OF ADVANCED

FIELD OF ADVANCED FURTHER STUDIES OF CHEMICAL ENGINEERS
1978 BY HIGHEST DEGREE EARNED AND SEX

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS
WHO PLAN FURTHER STUDIES (FULL-TIME OR PART-TIME) IN FALL, 1978 BY CERTIFICATION STATUS

1 See note on table A-9.

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS WHO PLAN FURTHER STUDIES (FULL-TIME) IN FALL, 1978 BY CERTIFICATION STATUS

1 See note on table A-9.

TABLE A-18

NUMBER OF OFFERS IMEN
BACHLORS

\%

STARTING YEARLY SALARIES

OF INEXPERIENCED FULL-TIME CHEMISTS AND CHEMICAL ENGINEER
BY HIGHEST DEGREE EARNED AND SEX

TABLE B-2
STARTING YEARLY SALARIES
of inexperienced full-time chemists
by highest degree earned and employer

STARTING YEARLY SALARIES
of inexperienced full-time chemists
by highest degree earned and employer - women

TABLE B-5
of inexperienced full-time chemical engineers
by highest degree earned and employer

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMICAL ENGINEERS
BY HIGHEST DEGREE EARNED AND EMPLOYER - WOMEN

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME CHEMISTS AND CHEMICAL ENGINEERS
By Highest degree earned and geographic region

Note: See page 47 for list of states by geographic regions.

STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME B.S. CHEMISTS
BY EMPLOYER AND CERTIFICATION STATUS

[^0]STARTING YEARLY SALARIES
OF INEXPERIENCED FULL-TIME M.S. AND PH.D. CHEMISTS
BY FIELD OF HIGHEST DEGREE

\begin{tabular}{|c|c|c|c|}
\hline \& MASTERS \& PHD \& TOTAL

\hline \qquad \& 12500 \& \&

\hline $$
\begin{array}{r}
\text { MEDIANI } \\
\text { CHEMSTRY, } \begin{array}{c}
\text { MEAN I } \\
\text { GENERAL, } \\
\text { STDUNT I }
\end{array}
\end{array}
$$ \& $$
\begin{array}{r}
12500 \\
13193 \\
13 . \\
3258 .
\end{array}
$$ \& \& $$
\begin{gathered}
13822 \\
3914
\end{gathered}
$$

\hline \& \& \&

\hline \multirow[t]{2}{*}{BIOCHEMISTRY I} \& $$
\begin{array}{r}
11200 \\
13875 \\
\hline
\end{array}
$$ \& $$
\begin{array}{r}
12000 . \\
14594^{\circ} \\
8
\end{array}
$$ \& $$
14258
$$

\hline \& \& \& 5355.

\hline \multirow[t]{2}{*}{ANALYT ICAL} \& 15000
15320
2271 \& 21000
19811
3716. \& $$
\begin{array}{r}
18689 \\
3916 .
\end{array}
$$

\hline \& \& \&

\hline \multirow[t]{2}{*}{INORGANIC} \& 15000. \& 20500
18219

53 \& $$
17582
$$

\hline \& 1582 \& 534 \& 5046.

\hline \multirow[t]{2}{*}{ORG ANI C} \& 13500.
14034
20.

3 \& 21000
20001

61 \& $$
\begin{array}{r}
18473 \cdot \\
82
\end{array}
$$

\hline \& 3305 \& 3306 \& 4202.

\hline \multirow[t]{2}{*}{PHARMA, MED, CLN} \& 15000
15000
0 \& 18000
18000

1 \& $$
\begin{array}{r}
16500 . \\
21,21
\end{array}
$$

\hline \& \& \& 2121.

\hline \multirow[t]{2}{*}{PHYSICAL, THECRĖT} \& 15200.
15403

177 \& 21300
19681

26 \& $$
18773 \cdot
$$

\hline \& 1773. \& 491 \& 4757.

\hline \multirow[t]{2}{*}{POLYMER,MACRCMOL I} \& 15600. \& 17500
17500

1 \& 14925.

\hline \& 283 \& \& 79

\hline \multirow[t]{2}{*}{CHEMSTRY, OTHER} \& 15600. \& 21000 \&

\hline \& \& $$
3394
$$ \& \[

$$
\begin{array}{r}
182680 \\
3491
\end{array}
$$
\]

\hline \& \& \& ,

\hline \multirow[t]{2}{*}{ALL FIELDS} \& 15000. \& 21000 \&

\hline \& $$
3149^{\circ}
$$ \& \[

$$
\begin{array}{r}
19345 \\
158 \\
4335 .
\end{array}
$$
\] \&

\hline
\end{tabular}

TABLE B-12
YEARLY SALARIES
OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS
BY EMPLOYER

TABLE C-1

AGE DISTRIBUTION

OF B.S. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-2

AGE DISTRIBUTION

OF M.S. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-3

AGE DISTRIBUTION

OF PH.D. CHEMISTS AND CHEMICAL ENGINEERS
BY SEX

TABLE C-4

AGE DISTRIBUTION

OF POSTDOCTORAL CHEMISTS AND CHEMICAL ENGINEERS BY SEX

by Highest degree earned and sex

BACHLURS

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMISTS by HIGHEST DEGREE EARNED

		MINORITY CL	SIFICATIO		
CITIZENSHIP OR VISA STATUS	${ }_{\text {I }}^{\text {I }}$ BLACK	AMERICAN ASIAN INDIAN	HISPANIC	NON- MINCRITY	TOTAL
U.S. CITIZEN\%	89.6	$100.00^{3} \frac{1}{1}$	84.6	$\begin{array}{r} 2450 \\ 98.9 \end{array}$	2583 98.0
RESIDENT VISA	4.2	0 $\frac{1}{1}$ 15 0.0 18	11.5	$\begin{array}{r} i 3 \\ 0.5 \end{array}$	33 1.3
OTHER VISA	$6 .{ }^{3}$	$0.0 \begin{array}{ll} 0 \\ 0 & \frac{1}{1} \\ \hline \end{array}$	3.8	$\begin{array}{r} 13 \\ 0.5 \end{array}$	20 0.8
OTHER	48 1.8	$\begin{array}{lr}0.1 & 83 \\ 0.1\end{array}$	1.26	$\begin{array}{r} 2476 \\ 93.9 \end{array}$	$\begin{array}{r} 2636 \\ 100.0 \end{array}$
U. S. CITIZEN	$\begin{array}{r} 11 \\ \frac{1}{1} \\ \hline \end{array}$	$1000^{1} \frac{1}{1} 14 \cdot 3$	$\frac{1}{1} 50.0$	254 93.7	887.4
RESIDENT VISA	$7 . \frac{1}{7}$	$0.0 \quad 1 \quad 23.8$	25.0	1.8	12 3.9
OTHER VISA	$7 . \frac{1}{7}$	00 1 1 613	25.0^{1}	4.4	88.7
OTHER	4.13	0.31	1.3	8781	$\begin{array}{r} 310 \\ 100.0 \end{array}$

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMICAL ENGINEERS BY HIGHEST DEGREE EARNED

CITIZENSHIPOR VISA STATUS	MINORITY CLASSIFICATION				
	IBLACK	ASIAN	HI SPANIC	NONMINCRI	RCW
U. S. CITIZEN	\#I 6 I 813 1.3	6927	70.0	$\begin{array}{r}949 \\ 98.5 \\ \hline\end{array}$	996 96.9
RESIDENT VISA	- $\frac{1}{1}$	17.9 ${ }^{7}$	20.0	0.7	1.7
OTHER VISA	I 12.5	12.8	10.1	0.7	15 1.5
OTHER	$\begin{array}{r} 16 \\ 1.6 \end{array}$	$\begin{array}{r} 39 \\ 3.8 \end{array}$	10 1.0	$\begin{array}{r} 963 \\ 93.7 \end{array}$	$\begin{aligned} & 1028 \\ & 100.0 \end{aligned}$
U. S. CITIZEN	\#I 000	16.7	40.0	126 91.3	131 80.9
RESIDENT VISA	1 0.0	33.	1	1.4	5.9 ${ }_{6}$
OTHER	$\frac{1}{1} 100 .{ }^{1}$	50. ${ }^{5}$	40.2	$\begin{array}{r}10 \\ 7 \\ \hline\end{array}$	13.6
	0.6	$\begin{aligned} & 18 \\ & 11.1 \end{aligned}$	3.15	138 85.2	100
U. S. CITIZEN.	${ }_{1}^{1} 100 . \frac{1}{0}$	11	0. 0	43	71.45
RESIDENT VISA	$\begin{array}{r} 0 \\ 0.0 \end{array}$	7	J	3	15.9
OTHER VISA		11	0	$13 . \frac{7}{2}$	12.8
OTHER	$1 . \frac{1}{6}$	14.3	0.0	84.1	100.0

APPENDIX

SCOPE AND METHOD OF SURVEY

OBJECTIVES OF SURVEY

The 1978 survey is the twenty-seventh in the series of starting salary surveys conducted by the American Chemical Society. A summary of the results appears in the October 23, 1978 issue of Chemical and Engineering News.

The primary objective of the survey is to determine the salaries and occupational status of the students who majored in chemistry and chemical engineering and who graduated during the 1977-1978 academic year. The survey covers the three degree levels: bachelor's, master's, and Ph.D. In addition, the survey provides information on minority participation, and citizenship status.

METHOD OF COLLECTION AND TIMING OF SURVEY

Chemistry and chemical engineering departments provided lists of names and addresses of graduates. The cooperating departments were the chemistry departments approved by the ACS, and the chemical engineering departments accredited by the American Institute of Chemical Engineers and the Engineer's Council for Professional Development.

During the summer of 1978, the Office of Manpower Studies mailed questionnaires to graduates who had U.S. addresses and graduation dates from September 1977 through June 1978. Summer graduates were excluded because most of them had twelve months experience by the time the survey was conducted.

EXTENT OF COVERAGE

Approximately 13,583 questionnaires were mailed to graduates of 533 chemistry and 105 chemical engineering departments. Most of the questionnaires were sent by bulk mail, but several hundred were sent first class. About 10% of those sent by first class mail were returned. Thus about 10% of the questionnaires apparently were undeliverable because the addresses were inadequate. By the mid-September cutoff date, the Office of Manpower Studies had received 4,746 responses, 4743 of them usable.

The Office of Manpower Studies estimates that U.S. colleges and universities granted about 21,000 chemistry and chemical engineering degrees during the year ending June 1978. No effort was made to examine the characteristics of the graduates from departments that did not participate in the survey or of those graduates who did not mail back completed questionnaires.

DEFINITIONS
The questionnaire appears in the appendix. Question H on postgraduation status was edited to eliminate multiple check marks and to reflect as accurately as possible the employment status of the respondent.

The term "inexperienced" as used in the tables refers to those who have 12 months or less of prior professional work experience. Salary tables are based only on salaries of those who found fulltime employment in chemistry or chemical engineering. Postdoctoral salaries are analyzed separately. The discrepancies in the numbers of respondents in various tables reflect the use of incomplete questionnaires.
PACIFICWASHINGTON
OREGON
CALIFORNIA
ALASKA
HAWAII
MOUNTAIN
Montana
IDAHO
WYOMING
Nevada
UTAH
Colorado
ARI ZONA
New Mexico
WEST NORTH CENTRAL
North Dakota
MinNesota
SOUTH DAKOTA
IowA
Nebraska
KANSAS
Missouri
WEST SOUTH CENTRAL
Oklahoma
ARKANSAS
TEXAS
LOUISIANA
EAST NORTH CENTRAL
Wisconsin
MICHIGAN
Illinois
INDIANA
OHIO

EAST SOUTH CENTRAL
Kentucky Tennessee MISSISSIPPI Alabama

MIDDLE ATLANTIC
New York
Pennsylvania
New Jersey

SOUTH ATLANTIC
DELAWARE
MARYLAND
West Virginia
District of Columbia
VIRGINIA
North Carolina
South Carolina
Georg I A
Florida

NEW ENGLAND
Maine
New Hampshire
VERMONT
MASSACHUSETTS
CONNECTICUT
Rhode IsLand

AMERICAN CHEMICAL SOCIETY

Starting Salary and Employment Status of 1978 Chemistry and Chemical Engineering Graduates
A. Sex:
(1) \qquad Male
(2) \qquad Female
B. Year of birth \qquad
C. Highest degree received in 1977-78 academic year: (1) \qquad Bachelors
(2) \qquad Masters
(3) \qquad Ph.D.
D. Field of highest degree:
(01)__Chemical engineering
(02)_Chemistry, general
(03)_Biochemistry
(04)_Agricultural/food chemistry
(05)_Analytical chemistry
(06)_Inorganic chemistry
(07)_Organic chemistry
(08)_Pharmaceutical/medicinal/clinical chemistry
(09)_Physical/theoretical chemistry
(10)_Polymer/macromolecular chemistry
(14)_Chemistry, other (specify)
(15)_Non-chemical (specify)
E. Citizenship or visa status: \qquad)__U.S. citizen
(2) U.S. permanent resident visa
\qquad (specify)
F. Are you a member of any of the minority groups recognized by the Equal Employment Opportunity Commission listed below? \qquad Yes \qquad No

If "Yes," please check those which apply to you:
(1)__Black (not of Hispanic origin)
(3)___Asian or Pacific Islander (those of
(2) American Indian or Alaskan Native
(4) \qquad American Indian or Alaskan Native
Hispanic (those of Mexican, Puerto Rican, Cuban, or Spanish origin)
G. Post-graduation employment status:

Accepted or continued full-time employment (excluding summer employment):
(1) \qquad in a field of chemistry or chemical engineering
(2) \qquad in a field other than chemistry or chemical engineering
(3)

Accepted a graduate assistantship or a postdoctoral or other fellowship
(4) \qquad Entered military service, Peace Corps, VISTA, PHS, or other similar service

Not employed (or employed part-time or for the summer):
(5) \qquad and seeking full-time employment
(6) \qquad and not seeking full-time employment
H. Do you plan further advanced studies in fall 1978?
(1) \qquad Yes, full-time
(2) \qquad es, part-time
a. If "Yes," please specify field:
(01)_Chemistry
(02)_Other physical science, math.
(03)_Chemical engineering
(04)_Other engineering
(05)_Biochemistry
(06)_Other life science
(07)_Medicine
(08)_Dentistry
(09)_Pharmacy, pharmacology
(10)_Business, management
(11)_Law
(12)_Social science, humanities
$(13) \quad$ _Other (specify)

IF yOu have full-time employment or a postooctoral position, please answer the remaining questions
I. Annual starting salary: \qquad
J. Technical work experience prior to graduation:
(1)
_ less than 12 months (2) _ 12 months
K. Employer classification (check the one category which best describes your employer):

Private industry or business:

L. Geographic location of employment: State
M. How many firm offers of employment did you receive in a field of chemistry or chemical engineering? Specify number \qquad

Please return within 10 days to the American Chemical Society
1155 Sixteenth St. N.W., washington, D.C. 20036
Thank you

1978 Report of Chemists' Salaries and Employment Status

Survey report covering salaries and incomes; employment status and length of unemployment; characteristics of respondents including minority and postdoctoral information. Detailed tables contain salaries and incomes of chemists and chemical engineers by sex, employer, work function, specialty, number of subordinates, and geographic region; salaries of industrially employed chemists and chemists in academia.

$$
141 \text { pages. (1978) \$10.00 }
$$

Professionals in Chemistry 1977

A comprehensive statistical report containing a wealth of employment and educational data. Covers the profession --characteristics, minorities, postdoctoral fellows; employment; salaries; education; supply and demand. Of particular interest to industrial managers and personnel specialists, academic administrators and faculty members, career counselors, and young men and women contemplating --or preparing for--a career in chemistry.

108 pages. (1978) \$20.00

Professionals in Chemistry 1974-77
A complete set of Professionals in Chemistry. includes four issues:

Professionals in Chemistry 1977 as described above.
Professionals in Chemistry 1976 containing a special detailed report of employment in the chemical industry.
Professionals in Chemistry 1975 containing a special report on salaries of women chemists and chemists' salaries compared with those of other professions.
Professionals in Chemistry 1974 containing a detailed study of the growth of the profession.
(1978, 1977, 1976, 1975) \$40.00/set

[^0]: 1
 See note on table A-9.

