STATTHME SALABIJS 5978

Analysis of the
Anenican Chemical societys

Survey of Graduates in
Chemistry ond Chemicel Engineering

Manpower sandies
American Chemical society
Weshington Doco

RELATED ACS PUBLICATIONS

Probessionals in Chemistry 1978

A comprehensive statistical report containing a wealth of employment and educational data. Covers the profession-characteristics, minorities, unemployment, professional training, age; employment; salaries; education; supply and demand. Of particular interest to industrial managers and personnel specialists, academic administrators and faculty members, career counselors, and young men and women contemplating--or preparing for--a career in chemistry.

74 pages. (1979) \$22.00

Professionals in Chemistry 1974-78

A complete set of Professionals in Chemistry includes five issues:

Probessionals in Chemistry 1978 as described above
Probessionals in Chemistry 1977 containing a special report
on salaries and job switching in the chemical industry. Professionals in Chemistry 1976 containing a special detailed report of employment in the chemical industry.
Probessionals in Chemistry 1975 containing a special report on salaries of women chemists and chemists' salaries compared with those of other professions.
Professionals in Chemistry 1974 containing a detailed study of the growth of the profession.
(1979, 1978, 1977, 1976, 1975) \$44.00/set

Salaries 1979

A survey report covering salaries and incomes of chemists and chemical engineers; employment status and length of unemployment; characteristics of respondents including minority and postdoctoral information. Detailed tables contain salaries and incomes of chemists and chemical engineers by sex, employer, work function, specialty, and geographic region; salaries of industrially employed chemists and chemists in academia.

91 pages. (1979) \$25.00

1979 SURVEY REPORT
 STARTING SALARIES AND EMPLOYMENT STATUS OF CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES

This report was prepared by the ACS Office of Manpower Studies.

American Chemical Society 1155 Sixteenth Street, N.W. Washington, D. C. 20036

page

Acknowledgments v
Summary of Findings Salaries 1
Postdoctoral Fellowships 2
Advanced Study 2
Cooperative Education 2
Interpreting Survey Results 2
Scope and Method
Objectives 7
Method of Collection and Timing of Survey 7
Extent of Coverage 7
Definitions 8
Geographic Regions 9
Technical Notes
Discrepancies Among Tables 1.1
Estimates of Median Salaries 11
Comparing Salaries. 11
Estimating Sampling Error for Percents 12
List of Tables 13
Tables 16
Survey Questionnaire 61

ACKNOWLEDGMENTS

Chemistry and chemical engineering graduates are surveyed each year by the American Chemical Society's Office of Manpower Studies, which is part of the Department of Professional Relations and Manpower Studies. The survey is conducted annually under the aegis of the Society's Committee on Economic Status for the purpose of observing and reporting trends in starting salaries and employment status.

Bob Jones, Harry Foxwell, and Joanna Chin conducted the survey, edited the returns, and prepared the report. Carolyn Clausen of the Chemical Abstracts Service, Columbus, Ohio, helped with data processing.

Robert K. Neuman, Head Department of Professional Relations and Manpower Studies

SUMMARY OF FINDINGS

SALARIES

Mean starting salaries for chemists have gone up since 1978 at all three degree levels, but for doctoral graduates salaries increased by less than the consumer price index, which went up 11.9\% from August 1978 to August 1979. Table 1 indicates that 1979 mean starting salaries paid chemistry graduates were

$\$ 14,215$	for the BS, up 12.3%, or in constant dollars $+0.4 \%$
$\$ 16,396$	for the MS, up 12.6%, or in constant dollars $+0.6 \%$
$\$ 21,563$	for the PhD, up 11.5%, or in constant dollars -0.4%

Chemical engineers, especially bachelor's degree graduates, enjoy much higher starting salaries than do chemists with corresponding degrees. This year, though, at both the bachelor's and master's levels the percent gains and even the absolute gains were smaller for chemical engineers than for chemists. Mean starting salaries for chemical engineering graduates were
$\$ 19,480$ for the BS, up 8.1%, or in constant dollars -3.4%
$\$ 20,609$ for the MS, up 7.2%, or in constant dollars -4.2%
$\$ 25,327$ for the PhD, up 14.5%, or in constant dollars $+2.3 \%$
(See tables 1 and 2 for more detailed information regarding starting salaries.)

The foregoing rates slightly overstate the increase for some groups because a smaller fraction of this year's respondents than of last year's entered academic employment. Thus, relatively few of this year's graduates reported academic salaries, which are for the nine- or ten-month academic year and are less than non-academic salaries. The correction for this misleading effect is to employ a weighted average of the increases in the academic and the non-academic salaries. Such a correction would reduce the estimated increase for PhD chemical engineers by 2.6 percentage points. The only other increases that the correction would affect are those for BS and MS chemists, which would diminish by 0.6 and 0.3 percentage points. After the correction none of the starting salaries shows an increase in constant dollars.

POSTDOCTORAL FELLOWSHIPS

In 1975 and in 1976 more than 47% of PhD respondents to this survey entered postdoctoral positions. In 1977 the fraction entering postdoctoral positions decreased, and in 1978 the fraction diminished further. This year, however, a greater fraction of survey respondents accepted postdoctoral positions, and statisticaltests indicate that the increase does not result from any peculiarity of the sample but actually reflects an increase in the fraction among all PhDs regardless of whether they are in the sample. (See table 3.)

ADVANCED STUDY

Nearly 70% of the graduates who received bachelor's degrees in chemistry planned to be in school in the fall. Of the chemistry graduates studying full-time, about two-fifths are pursuing advanced degrees in chemistry. Another two fifths are studying medicine or dentistry.

Among those who received bachelor's degrees in chemical engineering and are studying full-time, 60\% study chemical engineering, and 16% study medicine or dentistry. (See tables 4 \& 5:)

COOPERATIVE EDUCATION

This report contains several tables concerning cooperative education, a subject that did not appear in reports of earlier surveys.

INTERPRETING SURVEY RESULTS

The numbers contained in these tables are estimates, derived from a sample rather than from a complete census. Thus, although they are the best estimates available, they are imperfect. Reasonable caution will prevent rash interpretations. An example of an estimate that demands caution is the difference between men's and women's salaries. Among respondents, women had greater mean salaries than did men, but the difference is small and is not enough to support a statement that the mean for all women, including those not in the sample, is greater than that for men. The technical notes of this report give some guidance as to the degree of precision associated with various statistics in this report.
Table 1
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMISTRY GRADUATES
by Degree: Summer of 1978 and Summer of 1979

Salaries	DEGREE LEVEL					
	Bachelor's		Master's		Ph. D.	
	1978	1979	1978	1979	1978	1979
90 th Percentile	\$15,660	\$17,500	\$18,300	\$20,000	\$23,500	\$25,300
75th Percentile	14,595	16,200	16,600	18,300	22,200	24,500
50th Percentile	12,700	14,500	15,000	17,000	21,000	23,000
25th Percentile	10,600	12,000	12,000	15,000	18,000	20,400
10th Percentile	9,360	10,400	10,000	12,000	12,000	14,400
Mean	12,651	14,215	14,560	16,396	19,345	21,563
Count	517	442	76	85	158	150
Standard Deviation	2,574	2,839	3,149	3,191	4,335	4,315

Table 2
STARTING YEARLY SALARIES OF INEXPERIENCED FULL-TIME EMPLOYED CHEMICAL ENGINEERING GRADUATES

DEGREE LEVEL
$\frac{\text { Ph.D. }}{1978}$
27,800
26,500
25,400
24,300
22,000
$\stackrel{N}{N}$

$\stackrel{n}{N}$
દદ
TES'乙
Table 3
CHEMICAL ENGINEERING GRADUATES: Summer 1979

PLANS FOR ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES: Fall 1979

	Chemistry	Chemical Engineering
Plan further studies full-time part-time	68.6% (54.7) (13.9)	40.8% (17.3) Have no plans or no response
Total	31.4	$59.5)$
$\quad 100.0$	100.0	
Number of responses	2,103	1,177

Table 5
FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTRY AND CHEMICAL ENGINEERING GRADUATES WHO PLAN FURTHER STUDIES: Fall 1979

Field of study	Chemistry	Chemical Engineering
Full-time		
Chemistry or biochemistry	39.6%	2.0
Chemical engineering	4.2	60.6
Medicine or Dentistry	41.6	16.3
Business or management	1.6	7.9
All others	13.0	13.2
Total	100.0	100.0
Number of responses	1,151	203
Part-time		
Chemistry or biochemistry	37.1	2.5
Chemical engineering	8.2	30.3
Business or management	23.7	54.5
All others	31.0	12.7
Total	100.0	100.0
Number of responses	291	277

OBJECTIVES

The 1979 Starting Salary Survey is the 28 th in the series of annual surveys now conducted by the Office of Manpower Studies of the American Chemical Society. Summaries of the results of these surveys appear annually in the "Chemical Careers" edition of Chemical and Engineering News, this year published on October 22.

The primary objective of the survey is to gather data on the starting salaries and occupational status of new chemists and chemical engineers who graduated during the 1978-79 academic year. This year's survey covers bachelors, masters, and doctoral degree recipients. In addition, the survey provides information on graduates' sex, citizenship, and minority classification.

METHOD OF COLLECTION AND TIMING OF SURVEY

Chemistry and chemical engineering departments provided names and addresses of students who graduated between July 1, 1978 and June 30, 1979. The cooperating departments were the chemistry departments approved by the ACS, and the chemical engineering departments accredited by the American Institute of Chemical Engineers and the Engineer's Council for Professional Development.

During the summer of 1979, the Office of Manpower Studies mailed questionnaires to those graduates who had U.S. addresses and graduation dates from September 1978 through June 1979. Summer graduates were excluded from the mailing because many of these had twelve months' experience by the time the survey was conducted.

EXTENT OF COVERAGE
Survey questionnaires were mailed to 11,283 graduates. Past experience has shown that approximately ten percent of the addresses provided are not adequate to assure delivery. The questionnaires were mailed between July 12 and August 3. By the cutoff date of September 18, the Office of Manpower Studies had received 4627 responses, 4570 of them usable.

The table below contains estimates of the numbers of chemistry and chemical engineering graduates in 1979, as reported in the ACS's publication Professionals in Chemistry: 1978, (page 41).

Projected Number of Degrees in Chemistry and Chemical Engineering

	Bachelors	Masters	Doctorates
Chemistry	11,800	1,840	1,520
Chemical Engineering	3,900	1,190	280

The survey respondents represent about 20 percent of all 1979 chemistry graduates and about 25 percent of all 1979 chemical engineering graduates. No effort was made to examine the characteristics of graduates from departments that did not participate in the survey or of those graduates who did not mail back completed questionnaires.

DEFINITIONS

The questionnaire appears in the appendix. Responses to question J on post-graduation status were edited to eliminate multiple responses and to reflect as accurately as possible the employment status of the respondent.

The term "inexperienced" as used in the tables refers to those who have 12 months or less of prior professional work experience. Salary tables are based only on salaries of those who found full-time employment in chemistry or chemical engineering. Postdoctoral salaries are analyzed separately.

Methods of estimating sampling errors and other statistics, and explanations of discrepancies in the numbers of respondents in various table appear in the Technical Notes on page ll.

PACIFIC

Alaska
California
Hawaii
Oregon
Washington

MOUNTAIN

Arizona
Colorado
Idaho
Montana
Nevada
New Mexico
Utah
Wyoming
WEST NORTH CENTRAL
Iowa
Kansas
Minnesota
Missouri
Nebraska
North Dakota
South Dakota
WEST SOUTH CENTRAL

Arkansas

Louisiana
Oklahoma
Texas
EAST NORTH CENTRAL
Illinois
Indiana
Michigan
Ohio
Wisconsin

EAST SOUTH CENTRAL
Alabama
Kentucky
Mississippi
Tennessee
MIDDLE ATLANTIC
New Jersey
New York Pennsylvania

SOUTH ATLANTIC
Delaware
District of Columbia Florida
Georgia
Maryland
North Carolina
South Carolina
Virginia
West Virginia

NEW ENGLAND
Connecticut
Maine
Massachusetts New Hampshire Rhode Island Vermont

DISCREPANCIES AMONG TABLES

Some pairs of tables contain totals that should be identical but are not. For example, two tables that present information about PhD respondents should show the same total number of PhDs. They might, however, show different totals. To illustrate, if one table groups the PhDs according to sex and the other groups them according to geographic region, the totals will differ unless the number who did not indicate their sex is the same as the number who did not indicate their geographic region.

ESTIMATES OF MEDIAN SALARIES

Median salaries displayed within the "cells" of the salary tables are sample medians and are therefore subject to sampling error. This error may be quite large, especially when the number of respondents in the corresponding cell is small. Therefore, median salaries in cells with fewer than 15 respondents should not be used to estimate their corresponding population medians.

COMPARING SALARIES

Often questions arise concerning women's salaries as compared with men's, or chemists' salaries as compared with chemical engineers'. These and similar comparisons require caution.
Statistical tests should be performed to determine whether observed differences in salaries of various sample groups could be mere chance occurrences resulting from peculiarities of the samples. Whether a difference in salaries is "statistically significant" depends not only on the magnitude of the difference but also on the sample sizes and the magnitudes of the sample standard deviations.

References for statistical tests of significance may be found in Numerical and Statistical Techniques, by J.H. Pollard, Handbook of Tables for Probability and Statistics, published by the Chemical Rubber Company, and other similar texts.

ESTIMATING SAMPLING ERROR FOR PERCENTS

Percents in this report are derived from the sample. If the entire population had received and returned questionnaires, most estimates would be somewhat different. How large could these differences be? Although this question does not have an 'exact answer, the table below does provide some guidance. To use the table find the column headed by the percent (p) derived from the sample, and find the row appropriate for the sample size (n). (Approximations for p and n may be used.) Note the number in that column and that row of the table. This number from the body of the table measures the precision with which the sample percent estimates the percent of the entire population. Specifically, if this procedure is applied repeatedly, about 95 times out of 100 the population percent will differ from the sample percent by no more than the amount shown in the table.

Approximate Sampling Errors for Percents

n	$\begin{aligned} & p=10 \% \\ & \text { or } 90 \% \end{aligned}$	$\begin{aligned} & p=20 \% \\ & \text { or } 80 \% \end{aligned}$	$\begin{aligned} & p=30 \% \\ & \text { or } 70 \% \end{aligned}$	$\begin{aligned} & p=40 \% \\ & \text { or } 60 \% \end{aligned}$	$p=50 \%$
50	8. 3 \%	11.1\%	12.7\%	13.6\%	13.9\%
100	5.9	7.8	9.0	9.6	9.8
200	4.2	5.5	6.4	6.8	6.9
500	2.6	3.5	4.0	4.3	4.4
1000	1.9	2.5	2.8	3.0	3.1
2000	1.3	1.8	2.0	2.1	2.2
5000	0.8	1.1	1.3	1.4	1.4
10000	0.6	0.8	0.9	1.0	1.0

In Table B-l (page 28), for example, 232 respondents classified as chemists indicated their highest degree as PhD, and their employment status as employed full-time in chemistry or chemical engineering. The percent of this group who are women is listed as 12.5 percent ($p=12.5$). A "95\% confidence interval" for this percent may be approximated by taking n and p to be about 200 and 10% respectively. The table shows an approximate sampling error of 4.2%. Hence, the 95% confidence interval is 8.3% to 16.7\%. If 100 similar estimates were made at this "level of confidence", about 95 of the true population percents would be contained in their respective intervals.
SALARIES OF RESPONDENTS
Full-time Inexperienced Chemists16
Men-------------- A-2 17
Women A-3 18
Employer----------------------Certification Status---Bachelors A-4 19
Field of Highest Degree-------Highest Degree- 20
Full-time Inexperienced Chemical Engineers
Highest Degree----------------Employer A-6 21
Men A-7 22
Women A-8 23
Full-time Inexperienced Chemists and Chemical Engineers
Highest Degree- A-9 24
Minority Status-- A-10 25
Geographic Region A-11 26
Postdoctoral Chemists and Chemical Engineers
Employer A-12 27
EMPLOYMENT STATUS
All Chemists

E	est Degree--	B-1
	Certification Status---Bachelors-------	B-2
	Field of Highest Degree---Masters and	
	Doctorates---	B-3
	Citizenship------------Highest Degree--	B-4
	Minority Status--------Highest Degree--	B-5

All Chemical Engineers

ADVANCED FURTHER STUDIES

Full-time and Part-time Study
Table page
Chemists
Field of Advanced Study-------Sex-------------------------Highest Degree-- C-1 36
Certification Status----Bachelors------- C-2 37
Chemical Engineers
Field of Advanced Study C-3 38
Full-time Study
Chemists
Field of Advanced Study C-4 39
Certification Status----Bachelors------- C-5 40
Chemical Engineers
Field of Advanced Study-------Sex Highest Degree-- C-6 41
Unemployed Chemists and Chemical Engineers
Advanced Study Plans-----------Sex C-742
AGE
All Chemists and Chemical Engineers
Age-------------------------------Sex Bachelors------- D-1 43
Masters-- D-2 44
Doctorates------ D-3 45
Postdoctoral Chemists and Chemical Engineers
Sex$D-446$
NUMBER OF JOB OFFERS Table Page
Full-time Employed Chemists
Number of offers------------------Sex Highest Degree-- E-l 47
Full-time Employed Chemical Engineers
Number of offers-------------------Sex Highest Degree-- E-2 48
MINORITY CLASSIFICATION AND CITIZENSHIP
All Chemists
Citizenship------------------------Minority Status Highest Degree-- F-1 49
All Chemical Engineers
Citizenship Highest Deqree-- F-2 50
All Chemists and Chemical Engineers
Minority Status---------------------Sex- Highest Degree-- F-3 51
Citizenship-------------------------Sex Highest Degree-- F-4 52
COOPERATIVE EDUCATION PARTICIPATION
 53
Employer 54
Employment Status 55
Geographic Region 56
Advanced study G-5 57
Age 58
Sex 59
Type of bachelor's degree G-8 59
STARTING YEARLY SALARIES
of Inexperienced Full-time Chemists
by Highest Degree Earned and Employer

STARTING YEARLY SALARIES
of Inexperienced Full-time Chemists

STARTING YEARLY SALARIES
of Inexperienced Full-time Chemists
by Highest Degree Earned and Employer - Women

STARTING YEARLY SALARIES

of inexperienced Full-time B.S. Chemists
by Employer and Certification Status

STARTING YEARLY SALARIES
of Inexperienced Full-time M.S. and Ph.d. Chemists

by Field of Highest Degree

STARTING YEARLY SALARIES
of Inexperienced Full-time Chemical Engineers
by Highest degree Earned and Employer

Table
STARTING YEARLY SALARIES
of Inexperienced Full-time Chemical Engineers
BY Highest Degree EARNED AND EMPLOYER - MEN

Table $\mathrm{P}-8$

HIGHEST DEGREE

STARTING YEARLY SALARIES
of Inexperienced Full-time Minority Chemists and Chemical Engineers by Highest Degree Earned

YEARLY SALARIES

of Postdoctoral Chemists and Chemical engineers

> BY EMPLOYER

by Highest Degree Earned and Sex

MASTER

POSTGRADUATION STATUS OF B.S. CHEMISTS

by Certification Status

ADVANCED STUDY PLANS FALL 1979

POSTGRADUATION STATUS OF CHEMISTS

POSTGRADUATION STATUS

of Minority Chemists

By Highest Degree Earned

ADVANCED STUDY PLANS FALL 1979

USTGRADUATION STATUS OF CHEMICAL ENGINEERS

ADVANCED STUDY PLANS FALL 1979

EMPLOYMENT STATUS

ADVANCED STUDY PLANS FALL 1979

POSTGRADUATION STATUS

of Minority Chemical Engineers
by Highest Degree Earned

ADVANCED STUDY PLANS FALL 1979

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS
Who Plan Further Studies (Full-time or Part-time) in Fall, 1979

```
by Certification Status
```

 у07ЭHフロg

FIELD OF ADVANCED FURTHER STUDIES OF CHEMISTS
Who Plan Further Studies (FUul-time) in Fall, 1979
by Highest Degree Earned and Sex

FIELD OF ADVANCED FURTHER STUDIES OF B.S. CHEMISTS Who Plan Further Studies (Full-time) in Fall, 1979 by Certification Status

FIELD OF ADVANCED FURTHER STUDIES OF CHEMICAL ENGINEERS Who Plan Further Studies (Full-time) in Fall, 1979
 by Highest Degree Earned and Sex

PLANS FOR FURTHER STUDIES

Óf UNEMPLOYED CHEMISTS AND CHEMICAL ENGINEERS

by Highest Degree Earned and Sex

NOT SEEKING EMPLOYMENT

ADVANCED STUDY CHEMISTRY				CHEMICAL ENG		
PLANS FALL 1979	MEN	WOMEN	$\begin{aligned} & \text { ROW } \\ & \text { TOTAL } \end{aligned}$	IMEN	HOMEN	ROW
FULL-TIME COUNT I	$\begin{array}{r} 78 \\ 93 \\ \hline \end{array}$	127 21.3 90.1	597 92.6	$\begin{array}{ll}\text { I } & \\ \text { I } & 88 \\ \text { I } & 88\end{array}$	11.9	67 94.4
PART-TIME		27.8 3.8	18 2.8	$\begin{array}{ll} 1 \\ I & 0 \\ \frac{1}{1} & 0 \\ 0 \end{array}$		- 0
NO FLANS	\square	9 30.0 6.4	30 4.7	$\begin{array}{r} 50 \\ 3 \end{array}$	$\begin{aligned} & 50 \\ & 20 . \\ & \hline \end{aligned}$	4 5
COLUMN		21419	$\begin{array}{r} 645 \\ 100.0 \end{array}$	85.	14.10	$\begin{array}{r} 71 \\ 100.0 \end{array}$
$\begin{aligned} & \text { FULL-TIME COUNT } \\ & \% \text { OF ROW } \\ & \% \text { OF COL } \\ & \hline \end{aligned}$	$\begin{array}{r} 92 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 33 \\ 33.3 \\ \hline \end{array}$	86.25	1 I 66 1 100 1	33.1 100.0	100.3
NO PLANS		$\begin{array}{r} 100.4 \\ 66.7 \end{array}$	13.4		$\begin{array}{r} 0 \\ 0.0 \\ 0.0 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 0.0 \end{array}$
$\begin{aligned} & \text { COLUMN } \\ & \text { TOTAL } \end{aligned}$		20.7	$\begin{array}{r} 29 \\ 100.0 \end{array}$		$33 . \frac{1}{3}$	100.3
PHD ---COUNT $-\overline{\mathrm{I}}$----M-----						
COLUMN		0.0	100.0^{1}	0	0	0.0

AGE DISTRIBUTION

of B.S. Chemists and Chemical Engineers

by Sex

CHEMISTRY

by Sex

AGE DISTRIBUTION.
of Ph.d. Chemists and Chemical engineers
by Sex

Table D-4

AGE DISTRIBUTION
of Postdoctoral Chemists and Chemical Engineers
by. Sex

by Highest Degree Earned and Sex

NUMBER OF FIRM JOB OFFERS TO FULL-TIME EMPLOYED CHEMICAL ENGINEERS

by Highest Degree Earned and Sex

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMISTS
by Highest Degree Earned

MASTER
U.S.

CITIZEN
U.S. PERMANENT RESIDENT VISA

OTHER TYPE CF VISA

MINORITY CLASSIFICATION AND CITIZENSHIP OR VISA STATUS OF CHEMICAL ENGINEERS
by Highest Degree Earned

MASTER

> U.S. $\%$ OF
> CITIZEN \% OF
> U.S. PERMANENT
> RESIDENT VISA

OTHER TYPE OF VISA

I
I 10

 124
82.1 10
6.6

PHD

U.S.
CITIZEN
U.S. PERMANENT

RESIDENT VISA

OTHER TYPE OF VISA
CITIZENSHIP OR VISA STATUS OF CHEMISTS AND CHEMICAL ENGINEERS
by Highest Degree Earned and Sex

Table G-1

BACHELOR'S DEGREE RECIPIENTS BY FIELD OF HIGHEST DEGREE AND PARTICIPATION IN COOPERATIVE EDUCATION PROGRAMS

Table G-2

BACHELOR'S DEGREE RECIPIENTS BY EMPLOYER AND PARTICIPATION
IN COOPERATIVE EDUCATION* PROGRAMS

Table G-3

BACHELOR'S DEGREE RECIPIENTS BY EMPLOYMENT STATUS AND PARTICIPATION IN COOPERATIVE EDUCATION PROGRAMS

BACHELOR'S DEGREE RECIPIENTS BY GEOGRAPHIC REGION AND PARTICIPATION IN COOPERATIVE EDUCATION PROGRAMS

Table G-5

BACHELOR'S DEGREE RECIPIENTS BY ADVANCED STUDY PLANS AND PARTICIPATION IN COOPERATIVE EDUCATION PROGRAMS

BACHELOR'S DEGREE RECIPIENTS BY AGE AND PARTICIPATION
IN COOPERATIVE EDUCATION PROGRAMS

Table G-7

BACHELOR'S DEGREE RECIPIENTS BY SEX AND PARTICIPATION
IN COOPERATIVE EDUCATION PROGRAMS

Table G-8

BACHELOR'S DEGREE RECIPIENTS BY TYPE OF BACHELOR'S DEGREE AND PARTICIPATION IN COOPERATIVE EDUCATION PROGRAMS

A. Highest degree earned (check one):
(2) __M.S. $\longrightarrow G o$ to question B.
(3) B. B. \longrightarrow B.S. \longrightarrow Bachelors degree recipients only:

Approximate overall Grade Point Average ($A=4.00, B=3.00, C=2.00$): Were you employed as an intern or cooperative education student as a formal part of your college training? (1)__yes (2)__no.
B. When did you receive this degree? \qquad
C. Field of highest degree (check one):

D. Do you plan further advanced studies in fall 1979? (check one)
(1) Yes, full-time
(2) Yes, part-time
$(3) _$_No \longrightarrow to question F.
E. Field of further studies (check one):
(01) Chemistry
(02) _Other physical science, or math.
(03) _Chemical engineering
(04) _other engineering
(05)_Biochemistry
(06)_Other life science
(07)_Medicine
(08)_Dentistry
(09)_Pharmacy, pharmacology
(10)_Business, management
(11)_Law
(12)_Social science, or humanities
(13)_Other (specify)
F. Month and year of birth: \qquad year
G. Sex:
(1) \qquad Male
(2) \qquad Female
H. Citizenship or visa status (check one):
(1)___U.S. citizen
(2) —_U.S. permanent resident visa
(3) __Other type of visa (specify) \qquad
I. Racial or ethnic group:
(1) Black (not of Hispanic origin)
(2) __American Indian or Alaskan Native
(3)__Asian or Pacific Islander (of Chinese, Japanese, Korean, Filipino, or Subcontinental Indian origin)
(4)__Hispanic (of Mexican, Puerto Rican, Cuban, or Spanish origin)
(5) ___ None of the above
J. Post-graduation employment status (check one):

Accepted or continued full-time employment (excluding summer employment):
(1)___in a field of chemistry or chemical engineering
(2) _in a field other than chemistry or chemical engineering
(3)_Accepted a graduate assistantship or a postdoctoral or other fellowship

Not employed (or employed part-time or for the summer):
(4) and seeking full-time employment. \rightarrow Stop here.
(5)__and not seeking full-time employment—Return questionnaire in envelope provided.
K. When did you begin working for your current employer?
month year
L. Professional or technical work experience prior to graduation (check one):
(1)__less than 12 months (or none)
(2) - 12 to 36 months
(3) __more than 36 months
M. How many firm offers of employment did you receive in a field of chemistry or chemical engineering? Specify number \qquad
N. Employer classification (check the one category which best describes your employer):

Private industry or business:

O. Annual salary: $\$$ \qquad per year
P. Geographic. location of employment: State

Please return within 10 days to the American Chemical Society 1155 Sixteenth St. N.W., Washington, D.C. 20036 Thank you

PLEASE DO NOT WRITE

IN THIS SPACE
A. (1) \qquad
(2)
(5) \qquad
B. (6) \qquad
c. (10) \qquad
D. (12) \qquad
E. (13) \qquad
F. (15) \qquad
G. (19) \qquad
H. (20) \qquad
I. (21) \qquad
J. (22) \qquad
K. (23) \qquad
L. (27) \qquad
M. (28) \qquad
N. (30) \qquad
0. (32) \qquad
P. (37) \qquad
Q. (39) \qquad
R. (68) \qquad

