Integration of chemistry-based technology programs in ACS guidelines and lessons learned

Tamika Duplessis

2016 Biennial Conference on Chemical Education
University of Northern Colorado, Greely
August 1, 2016
Overview

• Background
• Major changes
• Resources
2009 Guidelines

• Supplement
 – 2009 separate document with appendices

• Need
 – Incorporate into main document

• Approach
 – Infuse language specific to chemistry-based technology degree programs throughout
Key Changes

• Program Definitions
• Faculty & Staff
• Infrastructure
• Curriculum
• Student Research and Scholarly Activities
• Partnerships
Programs Defined

- **Chemistry transfer programs**
 - *Primary purpose*: transfer to baccalaureate chemistry programs
 - Degree: AS or equivalent degree, no degree

- **Chemistry-based technology programs**
 - *Primary purpose*: immediate employment
 - Degree: AAS or equivalent degree

- **Chemistry-based courses that support programs in other disciplines**
 - *Primary purpose*: support allied programs and/or general education
 - Degree: no chemistry degree
Faculty & Staff

• Professional Development (3.4)
 – Opportunities for faculty will strengthen faculty’s skill in preparing students for the workplace.
 – Examples:
 • Externships
 • Job-shadowing
 • Training
Infrastructure

• Organization of Facilities (4.1)
 – Support student education
 – Align with needs of employers
• Equipment and Instrumentation (4.2)
 – Programs typically require more equipment
 – Specialty equipment may be needed
• Transferring Students (4.7)
 – Prepare students for transfer and employment
Curriculum

- Employing partners should have input into curriculum development
- Chemistry-based technology courses (5.13)
 - Address skills and knowledge specific to program partners
- Laboratory experience (5.14)
 - Provide significant, relevant hands-on experience
- Frequency of course offerings (5.15)
 - Allow qualified students to complete program in two years.
Undergraduate Research, Internships, and Other Experiential Activities

• Internships and/or co-operative learning experiences (6.2)
 – Critical for chemistry-based technology programs
 – Valued by employers
 – Best provided by the program partners as future employers
Partnerships

• Valuable to all programs for
 – Curriculum development
 – Faculty and institutional support
 – Recruitment and placement of students

• Advisory Boards (10.1)
 – Active members with vested interest in the program

• Employers (10.5)
 – Provide support and experiences that support students’ career development
Resources

• Programs & education
 – Funding
 – Partnerships
 – Preparing students for the workplace
 – Chemistry-based technology program resources

• Curriculum Development
 – Instructional materials for chemistry education
 – Chemical safety
 – Professional, student, or soft skills
 – Research and internships

• Faculty Development
 – Externships

• Other?
Symposium schedule

8:30 a.m. Introductory remarks
8:35 a.m. Integration of chemistry-based technology programs in ACS guidelines and lessons learned
8:55 a.m. Importance of partnerships in two-year college chemistry programs
9:15 a.m. Safety in the 2015 two-year guidelines
9:35 a.m. Panel discussion I
9:55 a.m. Intermission
10:10 a.m. Updated student skills in the 2015 ACS Guidelines for Chemistry in Two-Year College Programs
10:30 a.m. Student mentoring and the ACS Guidelines for Chemistry in Two-Year College Programs
10:50 a.m. Fostering alignment between the ACS Guidelines for degree programs at 2-year and 4-year institutions
11:10 a.m. Panel discussion II
11:30 a.m. Concluding remarks