Correlations to Next Generation Science Standards

<table>
<thead>
<tr>
<th>Article</th>
<th>Chemistry Concepts</th>
<th>NGSS Connections</th>
</tr>
</thead>
</table>
| **Bugs and the Future of Meat** | Structural formulas
Functional groups
Polymers
Saturated vs. unsaturated | HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. |
| **How Hair Removers Get Rid of Unwanted Fuzz** | Physical properties
Intermolecular forces
Molecular structure | HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. |

Disciplinary Core Ideas:
- LS2.B: Cycles of matter and energy transfer in ecosystems
- LS1.A: Structure and function

Crosscutting Concepts:
- Structure and function
- Energy and matter
- Stability and change
- Systems and system models

Science and Engineering Practices:
- Using mathematics and computational thinking
- Obtaining, evaluating, and communicating information

Nature of Science:
- Scientific knowledge is based on empirical evidence.
- Science is a human endeavor.
| **Can You Power Devices With Your Body?** | Electrons
Electrostatic forces
Electron transfer
Valence electrons | HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Disciplinary Core Ideas:
- ETS1.B: Developing Possible Solutions

Crosscutting Concepts:
- Patterns
- Cause and effect
- Stability and change
- Systems and System Models

Science and Engineering Practices:
- Constructing explanations and designing solutions

Nature of Science:
- Scientific knowledge assumes an order and consistency in natural systems. |
| **Bottled Water Wars** | Acids and bases
pH
Solutions
Equilibriums
Partial pressure
Hydrogen bonding
Ions | HS-PS1-3. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

Disciplinary Core Ideas:
- PS1.B: Chemical reactions
- ETS1C: Optimizing the design solution

Crosscutting Concepts:
- Stability and change
- Structure and function

Science and Engineering Practices:
- Constructing explanations and designing solutions

Nature of Science:
- Scientific knowledge assumes an order and consistency in natural systems.