COMMON REDUCING AGENTS

LiAlH₄
LITHIUM ALUMINIUM HYDRIDE (LAH)
Non-selective reagent for hydride transfer reductions. Reacts with carboxylic acids, esters, lactones, anhydrides, amides and nitriles, converting them into alcohols and amines. Ketones, aldehydes, epoxides, alkyl halides are also reduced with lithium aluminium hydride.

LiBH₄
LITHIUM BOROHYDRIDE
Allows for selective reduction of esters in the presence of carboxylic acids, amides and nitriles. Also reacts with aldehydes, ketones and epoxides.

NaBH₄
SODIUM BOROHYDRIDE
Reduces aldehydes and ketones to corresponding alcohols. Sodium borohydride is not reactive to esters, epoxides, lactones, carboxylic acids, nitro compounds and nitriles, but reduces acyl chlorides. In combination with CeCl₃ allows for selective reductions of α,β-unsaturated carbonyls without reacting with C=C-bonds.

i-Bu₂AlH
DIISOBUTYLALUMINIUM HYDRIDE (DIBAL, DIBALH, DIBAl-H)
Selective reducing agent for carbonyl compounds and halides in the presence of esters and carboxylic acids.

BH₃·L
Borane complexes
Reduce carboxylic acids in the presence of esters, amides and halides.

SmI₂ (samarium iodide)
Selectives reducing agent for carbonyl compounds and halides in the presence of esters and carboxylic acids.

H₂, Pd
ROSENHEIM
Reduces aldehydes and ketones to corresponding alcohols. In combination with CeCl₃ allows for selective reductions of α,β-unsaturated carbonyls without reacting with C=C-bonds.

H₂
ROSENHEIM
Reduces aldehydes and ketones to corresponding alcohols. In combination with CeCl₃ allows for selective reductions of α,β-unsaturated carbonyls without reacting with C=C-bonds.

TsCl, then [H]
ROSENHEIM
Reduces esters and amides (also Weinreb amides) to corresponding aldehydes. Nitriles are reduced to aldehydes too via imine formation step.