We will begin momentarily at 2pm ET

Slides Available Now! Recordings will be available to ACS members after one week

www.acs.org/acswebinars

Contact ACS Webinars® at acswebinars@acs.org

Have Questions?

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Type them into questions box!

Contact ACS Webinars® at acswebinars@acs.org
Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
Like us on Facebook!

facebook.com/acswininars

How has ACS Webinars® benefited you?

“As a budding medicinal chemist in the academia, our research is often too focused to appreciate the vast field out there. ACS Webinars help us gain knowledge and insight in diverse topics which are out of curriculum in our university, yet could be applied to everyday chemistry performed in our labs.”

Fan of the Week

Akul Y. Mehta, Ph.D.
Department of Medicinal Chemistry
Virginia Commonwealth University

Be a featured fan on an upcoming webinar! Write to us @ acswininars@acs.org
All recordings of ACS Webinars® will be available to current ACS members one week after the Live broadcast date.

Live weekly ACS Webinars® will continue to be available to the general public.

Contact ACS Webinars® at acswebinars@acs.org
Thursday, April 2, 2015

“Talking About Polymers, Detecting Explosives”

Jennifer Novotney, PhD Student, Cornell University,
2014 Chemistry Champions Competition Winner
Dr. Darcy Gentleman, Manager of Engagement and Science
Communications, The American Chemical Society

Thursday, April 9, 2015

“Active vs. Passive Voice in Scientific Writing”

Dr. Kristin Sainani, Associate Professor, Stanford
Ms. Celia Elliott, Science Writer and Technical Editor, University of Illinois at Urbana-Champaign

Contact ACS Webinars® at acswinbinars@acs.org
Join the ACS Division of Medicinal Chemistry Today!

The MEDI Division is one of the largest ACS Divisions having ~9,600 members from 79 countries. The Division prepares and publishes Annual Reports in Medicinal Chemistry. This is a 600+ page volume containing timely reviews of progress in many therapeutic areas and on important new technologies, written by expert medicinal chemists. This volume is provided free to members each year, and members have on-line access to previous volumes in the series.

Find out more about the ACS MEDI Division! www.acsmedchem.org

2015 Drug Design & Delivery Symposium

Module 1: Improving Drug Design Efficiency and Efficacy

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 29</td>
<td>Designing Better Drug Candidates</td>
<td>Dr. Paul Leeson</td>
</tr>
<tr>
<td>Feb 26</td>
<td>Strategies to Improve Solubility of Drug Candidates</td>
<td>Dr. Michael Walker</td>
</tr>
</tbody>
</table>

Module 2: Activity/Potency Screening for Drug Lead & Candidate Optimization

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 19</td>
<td>Fragment-Based Drug Design Strategies</td>
<td>Dr. Dan Erickson</td>
</tr>
<tr>
<td>April 30</td>
<td>Screening Strategies</td>
<td>Dr. David Swinney</td>
</tr>
<tr>
<td>May 28</td>
<td>PAINS (Pan-Assay Interference Compounds)</td>
<td>Dr. Jonathan Baell</td>
</tr>
<tr>
<td>June 25</td>
<td>Positron Emission Tomography (PET) Labeling in Drug Discovery & Development</td>
<td>Dr. Lei Zhang</td>
</tr>
<tr>
<td>July 30</td>
<td>X-Ray Crystallography in Drug Discovery</td>
<td>Dr. Jon Mason & Dr. Miles Congreve</td>
</tr>
</tbody>
</table>

Module 3: Enabling Drug Discovery

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 27</td>
<td>Choices and Trends in Solid Dosage Form Section</td>
<td>Dr. Scott Traska & Dr. Ron Smith</td>
</tr>
<tr>
<td>Sept 24</td>
<td>Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies</td>
<td>Dr. Evan Hackelberry</td>
</tr>
</tbody>
</table>

Module 4: Pharmacokinetics

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 29</td>
<td>Pharmacokinetic Considerations in Drug Design and Development</td>
<td>Dr. Punit Marathe</td>
</tr>
<tr>
<td>Nov 19</td>
<td>Prodrugs in Drug Discovery</td>
<td>Dr. John Higgins</td>
</tr>
</tbody>
</table>
Join us April 30, 2015 for the 4th Session!

“Screening Strategies”
with Dr. David Swinney
Institute for Rare and Neglected Diseases Drug Discovery

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html

“2015 Drug Design and Delivery Symposium:
Fragment-Based Drug Design Strategies”

Dr. Dan Erlanson
Co-founder and President, Carmot Therapeutics

Dr. Judd Berman
Chief Scientific Officer, Dalton Medicinal Chemistry

This Symposium is co-produced by ACS Webinars, the ACS Division of Medicinal Chemistry and AAPS
Fragment-Based Drug Design Strategies

Daniel A. Erlanson
Carmot Therapeutics, Inc.
derlanson@carmot.us

ACS 2015 Drug Design and Delivery Symposium
Session 3
19 March 2015

What You Will Learn:

1) Why FBLD can be useful
2) How to find fragments – and avoid pitfalls
3) What you can do with fragments
From Fragment to Clinic: 30+ and Counting

Approved
- Vemurafenib (PLX-4032) Plexxikon B-Raf (V600E)

Phase 3
- ABT-199 Abbott Bcl-2
- MK-8931 Merck BACE1

Phase 2
- AT13387 Astex HSP90
- AT7519 Astex CDK1,2,4,5
- AT9283 Astex Aurora, Janus Kinase 2
- AUY-922 Novartis/Vernalis HSP90
- AZD5363 AstraZeneca/Astex AKT
- Indeglitazar Plexxikon PPAR agonist
- Linifanib (ABT-869) Abbott VEGF & PDGFR
- LY2886721 Lilly BACE1
- LY517717 Lilly/Protherics Fxa
- Navitoclax (ABT 263) Abbott Bcl-2/Bcl-xL
- PLX3397 Plexxikon FMS, KIT, and FLT-3-ITD

Phase 1
- ABT-518 Abbott MMP-2 & 9
- ABT-737 Abbott Bcl-2/Bcl-xL
- AT13148 Astex AKT, p70S6K
- AZD3839 AstraZeneca BACE1
- AZD5099 AstraZeneca Bacterial Topo II
- DG-051 deCODE LTA4H
- IC-776 Lilly/ICOS LFA-1
- JNJ-42756493 J&J/Astex FGFr
- LP-261 Locus Tubulin
- LY2811376 Lilly BACE1
- PLX5568 Plexxikon Kinase
- SGX-393 SGX Bcr-Abl
- SGX-523 SGX Met
- SNS-314 Sunesis Aurora
- Undisclosed Roche BACE1
- Undisclosed Vernalis/Servier Bcl-2

Practical Fragments 5 January 2015
Also Baker Nature Reviews Drug Discovery 2013 12(1) 5-7

HTS vs. Fragment Approaches:

Traditional HTS

[Diagram showing the process of traditional HTS]

Slide 17

Slide 18
“Chemical Space” is Unimaginably Large:

- \(\sim 10^{63} \) possible molecules with up to 30 C, N, O, S atoms

- Global screening collection \(\sim 10^8 \) different molecules

.: Even largest libraries sample an insignificant fraction
of diversity space

Audience Survey Question

ANSWER THE QUESTION ON SCREEN

How many possible molecules can be made with up to 11 non-hydrogen atoms (C, N, O, and F only)?

- \(\sim 100,000 \)
- \(\sim 1,000,000 \)
- \(\sim 10,000,000 \)
- \(\sim 100,000,000 \)
Smaller Number of Smaller Fragments:

- 1.11×10^8 molecules with up to 11 non-hydrogen atoms (MW < 160; C, N, O, and F only)
- 6.4×10^5 reported molecules of this size (0.06%)
- 9.77×10^8 molecules with up to 13 atoms
- 1.66×10^{11} molecules with up to 17 atoms

Other Advantages of Fragments:

- Small fragments less likely to have interfering functionality ("molecular complexity")
- Smaller libraries allow more up-front attention to purity and drug-like properties
- Smaller libraries easier for universities and small companies to get started
- Fragments can tackle new classes of targets

What is a Fragment?

- **Lipinski’s “Rule of 5” for orally active drugs**

 < 500 Da (~38 heavy atoms)*
 < 5 H-bond donors
 < 10 H-bond acceptors
 < 5 octanol-water partition coefficient (logP)

- **Astex’s “Rule of 3” for fragments**

 < 300 Da (~23 heavy atoms)*
 < 3 H-bond donors
 < 3 H-bond acceptors
 < 3 ClogP

 Mean molecular mass of a non-hydrogen (or “heavy”) atom is 13.286 Da (Pfizer)

How Large (and Small) are Fragments?

Poll on *Practical Fragments* May 2012:

“What is the largest number of atoms you would allow in a fragment?”

46 responses

Poll on *Practical Fragments* May 2013

“What is the smallest number of atoms you would allow in a fragment?”

75 responses

Most fragments have between 5 and 20 non-hydrogen atoms
Small Fragments Give High Hit Rates!

![Graph showing the percentage of compounds with specified heavy atom count.](image)

Fig. 6. Percentage of compounds with specified heavy atom count (i.e., the number of non-hydrogen atoms) for compounds in Astex screening libraries from 2001 to 2007 compared with X-ray hits.

Pitfalls in Fragment Screening

Davis & Erlanson
Bioorg Med Chem Lett 2013 2844
http://dx.doi.org/10.1016/j.bmcl.2013.03.028

Learning from our mistakes:
the 'unknown knowns' in fragment screening

- Solubility
- Reactive molecules (electrophiles, oxidizers, etc.)
 - not always obvious (PAINS, May 28)
 - at high concentrations, low-level impurities can be more problematic
- Aggregators
Compounds Can Form Aggregates that Non-specifically Inhibit:

- Even approved drugs can inhibit nonspecifically at micromolar concentrations

Strong Aggregate Formers

- Add non-ionic detergent to the assay (Triton X-100, Tween-20, CHAPS, others)
- Increase protein concentration – this should have no effect on genuine binders (within limits)
- Characterize the mechanism of inhibition (competitive, noncompetitive, or uncompetitive): competitive inhibitors are normally not promiscuous
- Centrifuge your samples and retest them – this can sometimes remove aggregators
- Examine your samples with DLS or flow cytometry – aggregators can sometimes be directly observed as 50-1000 nm particles
- Look closely at your dose-response curve - unusually steep slopes can signal aggregation

Audience Survey Question

ANSWER THE QUESTION ON SCREEN

Which two of these fragments are aggregators?

- All of the above
- 2 and 3
- 2 and 4
- 3 and 4
- None of the above

Aggregators Can’t Be Recognized A Priori:

- 2
 - IC\textsubscript{50} = 65 µM
- 3
 - 40 µM
- 4
 - 226 µM

The first principle is that you must not fool yourself— and you are the easiest person to fool.

So you have to be very careful about that.

Richard Feynman
1974 Caltech commencement address

So How Do You Find Fragments?

- NMR
 - Protein detected (ie, SAR by NMR) *Structural information*
 - Ligand detected (ie, STD, TINS)
- X-ray crystallography *Structural information*
- Surface plasmon resonance (SPR) *Increasingly common*
- Functional screening
 - High concentration screening *Keep eyes open!*
- Computational *Especially as filter*
- Thermal shift
- Isothermal titration calorimetry
- Mass spectrometry: non-covalent or covalent
- Affinity chromatography / capillary electrophoresis

Combinations of above
What Methods are People Using?

% of respondents using technique

- 2.4 techniques used on average (2011)
- 3.6 techniques used on average (2013)

Polls on Practical Fragments September 2011 and December 2013, 97 responses (each)

Ligand Efficiency (LE):
Binding Energy Per Non-hydrogen Atom

Binding energy:
\[\Delta G = -RT \ln(K) \]

LE = \[\frac{\Delta G}{\text{(# heavy atoms)}} \]

Some Predictability in Fragment Optimization:

Each atom adds ~0.3 kcal/mol (or)
Each 10x increase in potency adds ~64 Da

Fragment Growing: Hsp90 Clinical Compound from Astex

AT13387
Phase 1: solid tumors
Phase 2: GIST

But Don’t Assume Binding Mode Remains The Same!

The Dream of Fragment Linking:

$$\Delta G_{\text{linked fragments}} = \Delta G_{\text{(Frag A)}} + \Delta G_{\text{(Frag B)}} + \Delta G_{\text{linker}}$$

$$\therefore K_D(\text{linked fragments}) = K_D(\text{Frag A}) \times K_D(\text{Frag B}) \times L(\text{linker coefficient})$$

Huge combinatorial advantage:
$$10^4 \times 10^4 = 10^8 \text{ virtual compounds}$$
The Dream of Linking: Synergy SAR by NMR to Develop an MMP-2 Inhibitor

\[\text{Kd} = 20 \mu M \quad \text{LE} = 0.43 \]

15 heavy atoms
MW 195

\[\text{Kd} = 17,000 \mu M \quad \text{LE} = 0.48 \]

5 heavy atoms
MW 75

\[\text{lC}_{50} = 0.025 \mu M \quad \text{LE} = 0.49 \]

21 heavy atoms
MW 282

\[\text{lC}_{50} = 0.00078 \mu M \quad \text{LE} = 0.37 \]

34 heavy atoms
MW 505

Superadditivity from Extremely Weak Fragments

\[\Delta \text{G}_{\text{int}} < -3.3 \text{ kcal/mol} \]

\[\text{Compound 1a} \]
\[K_i = 0.002 \mu M \quad \text{LE} = 0.49 \]
\[\Delta \text{G} = -11.8 \text{ kcal/mol} \]

\[\text{Compound 1g} \]
\[K_i = 58 \mu M \quad \text{LE} = 0.58 \]
\[\Delta \text{G} = -5.8 \text{ kcal/mol} \]

\[\text{Compound 1d} \]
\[K_i > 10,000 \mu M \quad \text{LE} < 0.19 \]
\[\Delta \text{G} > -2.7 \text{ kcal/mol} \]

Growing versus Linking

% of responses, linking or growing

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fragment linking</th>
<th>Fragment growing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never tried</td>
<td>45%</td>
<td>35%</td>
</tr>
<tr>
<td>Didn't work</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Worked marginally</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Worked OK</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>Worked well</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Poll on Practical Fragments July-August 2014: 69 responses (linking), 56 responses (growing)
http://practicalfragments.blogspot.com/2014/09/fragment-growing-vs-fragment-linking.html

Fragment Linking for LDHA: AstraZeneca

<table>
<thead>
<tr>
<th>Compound</th>
<th>KD</th>
<th>LE</th>
<th>Enzyme IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>770</td>
<td>0.28</td>
<td>> 500 µM</td>
</tr>
<tr>
<td>20</td>
<td>210</td>
<td>0.33</td>
<td>> 500 µM</td>
</tr>
<tr>
<td>24</td>
<td>160</td>
<td>0.25</td>
<td>> 500 µM</td>
</tr>
</tbody>
</table>

Fragment linking? Abbott’s Bcl Family Inhibitors

\begin{align*}
K_d &= 300 \mu M \\
LE &= 0.30 \\
K_d &= 4300 \mu M \\
LE &= 0.29 \\
K_d &= 6000 \mu M \\
LE &= 0.27 \end{align*}

\begin{align*}
K_d &= 300 \mu M \\
LE &= 0.30 \\
K_d &= 4300 \mu M \\
LE &= 0.29 \\
K_d &= 6000 \mu M \\
LE &= 0.27 \\
K_i &= 0.036 \mu M \\
LE &= 0.27 \\
K_i &= \text{<} 0.0005 \mu M \\
LE &= \text{>} 0.20 \\
K_i &= 0.048 \mu M \\
LE &= 0.20 \end{align*}

Resources – books:

2006

Fragment-based Approaches in Drug Discovery

2008

Fragment-Based Drug Discovery

2011

Methods in ENZYMOLOGY

2012

Library Design, Search Methods, and Applications of Fragment-Based Drug Design

2012

Fragment-Based Drug Discovery and X-Ray Crystallography

2015

Fragment-Based Methods in Drug Discovery

Coming soon in 2015!

RSC Drug Discovery Series No. 47
Fragment-Based Drug Discovery
Edited by Steven Howard and Chris Abell

Resources from the Web

- **Practical Fragments** (http://practicalfragments.blogspot.com/)
- **LinkedIn** (http://www.linkedin.com/groups?gid=121172)
- **Carmot Therapeutics** (www.carmot.us)

Please contact me (derlanson@carmot.us)

Upcoming Events in 2015

- Fragments 2015, Cambridge, UK, March 22-24
- CHI’s Protein-Protein Interactions and Fragment-Based Drug Discovery, San Diego, CA, April 21-23
- NovAlix’s Biophysics in Drug Discovery, Strasbourg, France, June 9-12
- OMICS Group’s Drug Discovery and Designing, Frankfurt, Germany, August 11-13
- Pacifichem 2015, Honolulu, Hawaii, December 15-20
 http://www.pacifichem.org/technical-program/abstracts/

Join us April 30, 2015 for the 4th Session!

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, April 2, 2015
“Talking About Polymers, Detecting Explosives”
Jennifer Novotney, PhD Student, Cornell University,
2014 Chemistry Champions Competition Winner
Dr. Darcy Gentleman, Manager of Engagement and Science
Communications, The American Chemical Society

Thursday, April 9, 2015
“Active vs. Passive Voice in Scientific Writing”
Dr. Kristin Sainani, Associate Professor, Stanford
Ms. Celia Elliott, Science Writer and Technical Editor, University of Illinois at Urbana-Champaign

Contact ACS Webinars® at acswebinars@acs.org

ACS Webinars®
“2015 Drug Design and Delivery Symposium:
Fragment-Based Drug Design Strategies”

Dr. Dan Erlanson
Co-founder and President, Carmot Therapeutics

Dr. Judd Berman
Chief Scientific Officer, Dalton Medicinal Chemistry

This Symposium is co-produced by ACS Webinars, the ACS Division of Medicinal Chemistry and AAPS
Join the ACS Division of Medicinal Chemistry Today!

The MEDI Division is one of the largest ACS Divisions having ~9,600 members from 79 countries. The Division prepares and publishes Annual Reports in Medicinal Chemistry. This is a **600+ page volume containing timely reviews of progress in many therapeutic areas and on important new technologies, written by expert medicinal chemists.** This volume is provided free to members each year, and members have on-line access to previous volumes in the series.

Find out more at the AAPS website

American Association of Pharmaceutical Scientists

DEVELOPING SCIENCE. IMPACTING HEALTH.

A professional, scientific association with approximately 11,000 members employed in industry, academia, and government worldwide from diverse scientific backgrounds such as pharmaceutics, biopharmaceutics, chemistry, biology, engineering, and medicine...

AAPS Focus Groups:

- Discovery Modeling and Simulation
- Drug Candidate Selection
- Oral Absorption
- Systems Pharmacology
- Targeted Drug Delivery and Prodrug

and more...

Find out more at the [AAPS website](https://www.aaps.org)
How has ACS Webinars® benefited you?

“As a budding medicinal chemist in the academia, our research is often too focused to appreciate the vast field out there. ACS Webinars help us gain knowledge and insight in diverse topics which are out of curriculum in our university, yet could be applied to everyday chemistry performed in our labs.”

Fun of the Week
Akul Y. Mehta, Ph.D.
Department of Medicinal Chemistry
Virginia Commonwealth University

Be a featured fan on an upcoming webinar! Write to us @ acswinibars@acs.org

 ACS Webinars®

facebook.com/acswebinars
@acswebinars
youtube.com/acswebinars

Stay connected...
Email us!
acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org
2015 Drug Design & Delivery Symposium

Module 1: Improving Drug Design Efficiency and Efficacy

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 29</td>
<td>Designing Better Drug Candidates</td>
<td>Dr. Paul Leeson</td>
</tr>
<tr>
<td>Feb 26</td>
<td>Strategies to Improve Solubility of Drug Candidates</td>
<td>Dr. Michael Walker</td>
</tr>
</tbody>
</table>

Module 2: Activity/Potency Screening for Drug Lead & Candidate Optimization

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 19</td>
<td>Fragment-Based Drug Design Strategies</td>
<td>Dr. Dan Ehreson</td>
</tr>
<tr>
<td>April 30</td>
<td>Screening Strategies</td>
<td>Dr. David Swinney</td>
</tr>
<tr>
<td>May 28</td>
<td>PAINS (Pan-Assay Interference Compounds)</td>
<td>Dr. Jonathan Baell</td>
</tr>
<tr>
<td>June 25</td>
<td>Positron Emission Tomography (PET) Labeling in Drug Discovery & Development</td>
<td>Dr. Lei Zhang</td>
</tr>
<tr>
<td>July 30</td>
<td>X-Ray Crystallography in Drug Discovery</td>
<td>Dr. Jon Mason & Dr. Miles Congreve</td>
</tr>
</tbody>
</table>

Module 3: Enabling Drug Discovery

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 27</td>
<td>Choices and Trends in Solid Dosage Form Section</td>
<td>Dr. Scott Trzaska & Dr. Evan Thackaberry</td>
</tr>
<tr>
<td>Sept 24</td>
<td>Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies</td>
<td>Dr. Ron Smith</td>
</tr>
</tbody>
</table>

Module 4: Pharmacokinetics

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 29</td>
<td>Pharmacokinetic Considerations in Drug Design and Development</td>
<td>Dr. Punit Marathe</td>
</tr>
<tr>
<td>Nov 19</td>
<td>Prodrugs in Drug Discovery</td>
<td>Dr. John Higgins</td>
</tr>
</tbody>
</table>