Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host.
Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

Have you discovered the missing element?

Find the many benefits of ACS membership!
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Let’s get Social...post, tweet, and link to during today’s broadcast!

facebook.com/acswebinars

@acswebinars

Search for “acswebinars” and connect!
Learn from the best and brightest minds in chemistry! Hundreds of chemistry themed webinars presented by experts in the chemical enterprise.

Recordings are available to current ACS members after the Live broadcast date via an invitation email. www.acs.org/acswebinars

Broadcasts of ACS Webinars® continue to be available to the general public LIVE every Thursday at 2-3pm ET!

www.acs.org/acswebinars
Visit pubs.acs.org/journal/aidcbbc

Infectious Diseases

The first journal to highlight chemistry and its role in the multidisciplinary and collaborative field of infectious disease research.

An individual development planning tool for you!

ChemIDP.org
Upcoming ACS Webinars
www.acs.org/acswebinars

Thursday, April 12, 2018 @ 2-3pm ET

NSF's Big Ideas: Understanding the Rules of Life and The Quantum Leap
Co-produced with ACS External Affairs & Communications

Experts:
Angela K. Wilson
National Science Foundation

Cynthia J. Burrows
University of Utah

Theodore Goodson III
University of Michigan

Glenn Ruskin
American Chemical Society

Thursday, April 26, 2018 @ 2-3pm ET

Nanomaterials for Fighting Antibiotic-Resistant Bacteria
Co-produced with the American Association of Pharmaceutical Scientists and ACS Division of Medicinal Chemistry

Experts:
Vincent Rotello
University of Massachusetts at Amherst

Moderator TBA

Contact ACS Webinars ® at acswebinars@acs.org

Creating New Models to Combat Neglected Disease
Through, Industry, Government, and Public-Private Partnerships

Michael Pollastri
Professor and Chair of Chemistry and Chemical Biology
Northeastern University

Félix Calderón
Drug Discovery Manager
GlaxoSmithKline

Slides available now and an invitation to view the recording will be sent when available.

www.acs.org/acswebinars

This ACS Webinar was co-produced by ACS Infectious Diseases
CREATING NEW MODELS TO COMBAT NEGLECTED DISEASE THROUGH INDUSTRY, GOVERNMENT, AND PUBLIC-PRIVATE PARTNERSHIPS

Northeastern University

Understanding the audience: Which of the following best describes you?

- Academic scientist (faculty, student, postdoc, etc)
- Biotech or pharma scientist
- Industrial scientist in transition to academics
- Working at a non-profit working on rare or neglected diseases (in industry or academia)
- Other
A DRUG DISCOVERY PRIMER

Northeastern University

The early stages of drug discovery

A multidisciplinary process

10-20 years!

Idea ———— Drug

- Target ID
- Validation
- Screen
- Hit Optimiz
- Lead Optimiz
- Candidate Optimiz
- Clinical Trials

Biology: Mechanistic hypotheses, assays, & disease models

Medicinal chemistry
Molecular modeling
Formulations
Drug metabolism & pharmacokinetics
Informatics – Database systems

Northeastern University
What makes a molecule a “drug”?

Hit or Lead Compound → Drug

What makes a molecule a “drug”?

Hit or Lead Compound → Medicinal Chemistry → Drug

- Potency
- Selectivity
- Oral bioavailable
- Non-toxic
- Intellectual property
- Solubility
- Efficacy
- Exposure
Medicinal chemistry
An iterative process

- **Design**
 - Propose compound to test hypothesis

- **Synthesis**
 - Prepare, purify & analyze analog structure

- **Screening**
 - Potency/selectivity
 - Physical property/ADME

- **Analysis**
 - Form versus function
 - Inform next design step

NEGLECTED TROPICAL DISEASES

Northeastern University
Neglected tropical diseases
A significant disease burden

20 NTDs listed by WHO
- Buruli ulcer
- Chagas disease
- Dengue & Chikungunya viruses
- Dracunculiasis
- Echinococcosis
- Foodborne trematodiases
- African sleeping sickness
- Leishmaniasis
- Leprosy (Hansen’s disease)
- Lymphatic filariasis
- Mycetoma & deep mycoses
- Onchocerciasis (river blindness)
- Rabies
- Scabies and other ectoparasites
- Schistosomiasis
- Soil-transmitted helminthiases
- Snakebite envenoming
- Taeniasis/Cysticercosis
- Trachoma
- Yaws

Focus of the London Declaration? 2017 additions to the list of NTDs

www.who.int/neglected_diseases/diseases/en/
www.unitingtocombatntds.org

2009-2010 Data

• 2.3 billion at risk
• 1.1 billion are infected

NTDs represent a serious healthcare disparity

• Total spend in 2011 for 31 tropical diseases was $3.05 billion
 – 67% for HIV, TB, malaria, leaving ~$1 bn for 28 NTDs!
• New therapeutic outputs are grim:
 – 1975-1999: 13 out of 1,398 new drugs for NTDs (1%)
 – 2000-2011: 37 out of 850 (4%); 4 new chemical entities (1%)

The primary reason behind this disparity is the level of poverty of patients who suffer from these diseases
An example of an NTD

Human African trypanosomiasis ("sleeping sickness")

- Caused by protozoan parasites *Trypanosoma brucei gambiense* (W. African) and *T. b. rhodesiense* (E. African)
- Transmitted by bite of infected tsetse fly
- ~3,000 people affected annually
- Clinical course:
 - Stage I – infection of blood and lymph
 - Mild symptoms include headache, fever, muscle pain etc.
 - Stage II – parasite crosses blood-brain barrier
 - Sleep & behavioral disruption, coma, death
- 100% fatal unless treated
- Neurological damage common

Limitations of current drugs

* African sleeping sickness

<table>
<thead>
<tr>
<th>Drug</th>
<th>First used</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suramin</td>
<td>1920</td>
<td>Anaphlaxis, renal failure, neuro effects</td>
</tr>
<tr>
<td>Pentamidine</td>
<td>1940</td>
<td>Hypotension, hyper-or hypo-glycemia</td>
</tr>
<tr>
<td>Melarsoprol</td>
<td>1949</td>
<td>Death (5%), reactive encephalopathy</td>
</tr>
<tr>
<td>Eflornithine</td>
<td>1981</td>
<td>Bone marrow toxicity, seizures,</td>
</tr>
</tbody>
</table>

In clinical use

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melarsoprol</td>
<td>2-3.6 mg/kg/day iv x 3 days. Every other week x 3 weeks</td>
</tr>
<tr>
<td>Eflornithine</td>
<td>400 mg/kg/day iv infusions x 14 d (28g/day. Almost 400g for full treatment)</td>
</tr>
<tr>
<td>NECT</td>
<td>Nifurtimox: 15 mg/kg/day po for 10 days plus eflornithine 400 mg/kg/day for 7 d</td>
</tr>
</tbody>
</table>

Photo credit: Tulane University
Targeted product profiles are defined

<table>
<thead>
<tr>
<th>Properties</th>
<th>Targeted lead properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. brucei pEC₅₀</td>
<td>>7.5 (12 h), cidal</td>
</tr>
<tr>
<td>HepG2 TC₅₀</td>
<td>>100x tryp IC₅₀</td>
</tr>
<tr>
<td>HLM clearance</td>
<td>Clᵣ <8.6 uL/min/mg</td>
</tr>
<tr>
<td>Plasma protein binding</td>
<td><95%</td>
</tr>
<tr>
<td>PAMPA</td>
<td>>200 nm/sec</td>
</tr>
<tr>
<td>Solubility (pH=7)</td>
<td>>10 uM</td>
</tr>
<tr>
<td>Key kinase selectivity</td>
<td>>25x tryp EC₅₀</td>
</tr>
<tr>
<td>Pharmacokinetics</td>
<td>>10 x IC₅₀ for >4 h</td>
</tr>
<tr>
<td>CNS exposure</td>
<td>>3 x IC₅₀ >4 h</td>
</tr>
<tr>
<td>BS mouse efficacy</td>
<td><50 mg/kg po x 5 days; >90% cure</td>
</tr>
<tr>
<td>CNS mouse efficacy</td>
<td><100 mg/kg po x 10 days; >90% cure</td>
</tr>
<tr>
<td>CYP450 pIC₅₀</td>
<td>Profiled</td>
</tr>
<tr>
<td>CYP450 induction</td>
<td>Profiled</td>
</tr>
<tr>
<td>hERG inhibition</td>
<td>Profiled</td>
</tr>
</tbody>
</table>

Definition:
A Lead Compound will be a potent, non-toxic, fast-acting trypanocide that shows in vivo efficacy in mouse models of Stage I and Stage 2 HAT following oral dosing.

Properties devised for compounds to meet the TDR “Lead Activity Criteria” for HAT

Our laboratory’s goal is to discover high quality lead compounds that can launch partnered preclinical studies for tropical disease therapeutics.
Challenges

Academic (or non-profit) drug discovery

<table>
<thead>
<tr>
<th>Industry</th>
<th>Expertise</th>
<th>Infrastructure</th>
<th>Resource</th>
</tr>
</thead>
</table>
| | • Broad and deep diversity of expertise
 | • Singly focused on drug discovery
 | • Co-located
 | • Defined processes and workflows
 | • Speak the same scientific “language” | • Fit-for-purpose
 | • Sample logistics and workflow
 | • Harmonized assays, data analyses, and reporting
 | • Robust data systems | • (Roughly) commensurate with needs
 | • Often inventing cost-effective (cheap) solutions
 | • Ad hoc logistics, workflow, assays, analyses and reporting, on a project-by-project basis
 | • Data often shared via email spreadsheet or other low-cost solutions | • Appropriate staffing and infrastructure support
 | • Seldom sufficient funds to cross all t’s and dot all i’s
 | • Often need to seek in-kind support for key experiments
 | • Effort diverted to obtain publications and external visibility
 | • Significant effort diverted toward fundraising (grants, crowdfunding) |
| Academic | • Siloed and deep expertise in areas
 | • Mission is research, teaching/training
 | • Diffuse collaborative teams
 | • Differing understanding of drug discovery, targeted properties, etc. |
Audience Challenge Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Place your bets! Into which of the following would you invest time or funding first?

- Finding collaborators
- Constructing research infrastructure
- Seeking funding

Issues to address, up-front

Project Niche
- Identify potential collaborators at targeted conferences
- Compare research areas with funding opportunities
- Minimize redundancies
- Seek a consistent theme

Resource & Expertise
- Focus on what I know (medicinal chemistry)
- Collaborate with others on aspects I don’t know (most everything else)
- Seek out in-kind collaborations

Data Sharing
- Excel spreadsheets are untenable for data management
- Shared data system for registration, chemical and biological data needed
- No desire to maintain a database.

Funding
- University startup, NIH R01 award (year 1)
Finding biology collaborators
My first conference in the field - 2009

2009 Molecular Parasitology Meeting
Nearly every one of our collaborations over the last decade were spawned at this or similar meetings!

Our collaborators

AstraZeneca
Peter Webborn
Mark Timms
Jeff Andrews

GlaxoSmithKline
Pepe Fiandor
Pili Manzano
Silvia Gonzalez
Julio Martin
Manuela Berlanga
David Drewry
Bill Zuercher

University of Georgia
Kojo Mensa-Wilmot
Paul Guyett
Ranjan Behera

New York U
Ana Rodriguez
Cristina Galen
Rodriguez

WRAIR
Rick Sciotti
Norma Roncal

Southern Methodist University
Larry Ruben
Vidya Pandarinath

Marine Biological Lab
Bob Campbell
Nick Bland

CSIC – Granada, Spain
Miguel Navarro
Rosario Diaz-Gonzalez

U of Glasgow
Harry de Koning

UC San Diego
Jim McKerrow
Jair Siqueira-Neto
Conor Caffrey

Seattle Biomed
Ken Stuart
Igor Cestari
Chris Merritt

Washington U., St. Louis
Stephen Beverly
Matt Kuhlmann

Vanderbilt University
Galena Lepesheva

Northeastern University
https://college.uchicago.edu/
Specific expertise needs for our work

A flexible data system was needed

(Excel is not a data system)

Desired criteria
- Chemist-proof
- Low maintenance
- Ability to import/export data easily
- Low cost

Capabilities
- Compound registration
- Biological data import
- Computed properties
- Selective data sharing with public and collaborators outside NEU
Collaborative Drug Discovery

A cloud-based solution

Specific expertise needs for our work

We set off knowing we had biology collaborators and a database. ADME/PK would just need to wait until funding came through!

Northeastern University
Target repurposing
Finding opportunities among kinases

Trypanosomatid Kinases
- 176 T. brucei
- 190 T. cruzi
- 199 L. major
- No protein or receptor tyrosine kinase
- Few species-unique genes

Observation: Nonspecific tyrosine kinase inhibitors block transferrin uptake in *T. brucei* and impact parasite growth

Rapid SAR development

44 analogs, 3 cycles
ChemAxon (free acad license)

NEU617 as a lead compound

NEU617 treatment provides 4 day life extension over controls

Project screening funnel, v1.0

Northeastern University
Other parasite labs were interested

Screening funnel v1.2

Parasite hopping

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lapatinib</td>
<td>T. brucei: 1.5 μM
HepG2: 5.2 μM (NIH AID: 461255)</td>
</tr>
<tr>
<td>NEU28</td>
<td>T. brucei: 0.81 μM
L. major (amaSTAG): 2.05 μM
P. falciparum: 0.65 μM
HepG2: 1.9 μM</td>
</tr>
<tr>
<td>NEU27</td>
<td>T. brucei: 0.53 μM
T. cruzi: 10%
L. major (amaSTAG): 1.67 μM
P. falciparum: 0.03 μM
HepG2: >25 μM</td>
</tr>
<tr>
<td>NEU54</td>
<td>T. brucei: 0.65 μM
T. cruzi: 10%
L. major (amaSTAG): 0.5 μM
P. falciparum: 0.47 μM
HepG2: >25 μM</td>
</tr>
</tbody>
</table>

University of Georgia
- Kojo Mensa-Wilmot

New York U
- Ana Rodriguez

WRAIR
- Rick Sciotti

Northeastern University
WIPO RE:Search and BVGH

Patent pool for NTDs

- Participating organizations “deposit” intellectual property that would be made available for NTDs (no cost, royalty-free)
- Managed by BioVentures for Global Health
 - Introduces participating organizations to each other, to identify collaboration opportunities

We were introduced to AstraZeneca, who were willing to support our work with excess Tier 1 ADME capacity.

Added Tier 1 ADME

Screening funnel v1.3

University of Georgia
- Kojo Mensa-Wilmot

New York U
- Ana Rodriguez

WRAIR
- Rick Sciotti

AstraZeneca
- Peter Webborn
- Mark Timms
- Jeff Andrews
Contract organizations filled the gaps

Screening funnel v2.0

Funds liberated by in-kind ADME redirected to later stage experiments

Northeastern University

All looks promising, except...

Time for a shift in focus from potency to properties

Northeastern University

Color: compound core
Improving properties

The headgroup is largest and most lipophilic region and has the flattest SAR.

OpenEye (free acad license)

Properties-based design

Quinazoline scaffold

First generation library (109 quinazolines)

NEU617-similar, CNS MPO compliant VL (26 compounds)

NEU961

Polar heterocyclic replacements

Head

Properties filter

Properties compliant virtual library

3D shape & electrostatics comparison

NEU-617 ▲

Tbb EC_{50}: 0.042 µM
Tbb pEC_{50}: 7.37
LogP: 7.31
LLE: 0.06
Aqueous sol: <1 µM

Northeastern University
Properties-based design

Quinazoline scaffold

First generation library

(109 quinazolines)

NEU617-similar, CNS MPO compliant VL

(26 compounds)

Solubility isn’t driven by lipophilicity

“Greaseball” versus “Brick dust”
Solubility isn’t driven by lipophilicity

“Greaseball” versus “Brick dust”

Northeastern University
Current status

Best T. brucei lead to date

NEU-4438
- *T. brucei* EC$_{50}$ = 13 nM
- *L. major* EC$_{50}$ = 2.3 µM
- *L. donovani* EC$_{50}$ = 20 nM
- TC$_{50}$ = >35 µM
- cLog P: 2.37
- Log D: 0.9
- LLE: 5.52
- Aq sol: 882 µM
- HLM: 21.8 µL/min/mg
- PPB: 15%
- CNS MPO: 5.4

Current status

Other good leads to date

NEU-4643
- *Pfal (D6)* EC$_{50}$: 0.08 µM
- TC$_{50}$ = 25 µM
- cLog P: 2.5
- Log D: 0.7
- LLE: 4.60
- Aq sol: 864 µM
- HLM: 22.4 µL/min/mg
- PPB: 40%

NEU-4837
- *T. brucei* EC$_{50}$ = 0.31 µM (4.23)
- *T. cruzi* EC$_{50}$ = 3.7 µM (3.1)
- TC$_{50}$ = >35 µM
- cLog P: 2.28
- Log D: 2.3
- Aq sol: 828 µM
- HLM: 79.4 µL/min/mg
- PPB: 58%

NEU-4781
- *Lmj* EC$_{50}$: 1.53 µM
- TC$_{50}$ = >35 µM
- cLog P: 3.25
- Log D: 1.2
- LLE: 2.56
- Aq sol: 891 µM
- HLM Clint: 51 µL/min/mg
- PPB: 41%
Summary

• Academic drug discovery, especially in NTDs, requires creative solutions to access all the data needed for good decisions
• Tempting to get everything in place before starting....
 – But don’t let “perfect” get in the way of the “good”!
• Understand what industry and government can (and can’t) do.
 – In-kind work and advising, versus cash infusions
• Lining up good collaborators requires clearly stated alignment of goals and priorities, which isn’t always easy.
• Look beyond the NIH for funding schemes

Northeastern University

Research Faculty
Dr. Lori Ferrins
Research Scientist
Dr. Baljinder Singh
Postdoctoral Associates
Dr. Melissa Buskes
Dr. Hitesh Jalani
PhD students
Kelly Bachovchin
Dana Klug
Westley Tear
Andrew Spaulding
Undergraduates
Jack Fisher
Jeremy Armand
Brady Greene
Mitch Rivers
Raeann Dalton
Erin Burchfield
Max Staab
Kate Schneider
Alex Hughes

Funding & In-Kind Support
R01 AI114685
R01AI124046
R21AI127594
R01AI12611
R56 AI099476
R01 AI082577
OpenLab Foundation
BMGF/Struct Genomics Consort
GlaxoSmithKline
AstraZeneca
OpenEye Scientific Software
ChemAxon
CDD

Group Alumni
Dr. Warren Weiner
Dr. Pooma Mahalingam
Dr. Daljit Matharu
Dr. Seema Bag
Dr. Takashi Satoh
Dr. Emanuele Amata
Dr. Trent Ashton
Dr. David Finnegan
Dr. Caitlin Karver
Dr. Adam Lesser
Dr. Sandra Luongo
Dr. Gautam Patel
Dr. Joao Seixas
Dr. Cuhua Wang
Dr. Namhee Mehta
Dr. William Devine
Dr. Stefan Ochana
Dr. Zhouchi Wang
Dr. Jennifer Woodring
Zeke Clements, MS
Elizabeth Jones, MS
LisBeth Silva, MS
Cheri Snedeker, MS
Uma Swaminathan, MS
Angela Tanner, MS
Joel Beatty
Emily Blazenskey
Peter Edwards
Stephen Ejk
Tim Hopper
Cristin Juda
Michael Russo
Katherine Spring
Matthew Stevenson
Craig Talman
Anthony Varca
Travis DeLano
Vivian Hibborne
Melanie Frithsche
Laura Tchegg
Seeking inhibitors of...
CDk2 PDE4 PI3K EGFR GSK3β

Visit pubs.acs.org/journal/aidcbc

The first journal to highlight chemistry and its role in the multidisciplinary and collaborative field of infectious disease research.
Upcoming ACS Webinars
www.acs.org/acswebinars

Thursday, April 12, 2018 @ 2-3pm ET
NSF's Big Ideas: Understanding the Rules of Life and The Quantum Leap
Co-produced with ACS External Affairs & Communications

Experts

- Angela K. Wilson
 National Science Foundation

- Cynthia J. Burrows
 University of Utah

- Theodore Goodson III
 University of Michigan

- Glenn Ruskin
 American Chemical Society

Thursday, April 26, 2018 @ 2-3pm ET
Nanomaterials for Fighting Antibiotic-Resistant Bacteria
Co-produced with the American Association of Pharmaceutical Scientists and ACS Division of Medicinal Chemistry

Experts

- Vincent Rotello
 University of Massachusetts at Amherst

- Moderator TBA

Contact ACS Webinars ® at acswebinars@acs.org

Creating New Models to Combat Neglected Disease
Through, Industry, Government, and Public-Private Partnerships

- Michael Pollastri
 Professor and Chair of Chemistry and Chemical Biology
 Northeastern University

- Félix Calderón
 Drug Discovery Manager
 GlaxoSmithKline

Slides available now and an invitation to view the recording will be sent when available.
www.acs.org/acswebinars

This ACS Webinar was co-produced by ACS Infectious Diseases
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org

Upcoming ACS Webinars

www.acs.org/acswebinars

Thursday, April 12, 2018 @ 2-3pm ET
NSF’s Big Ideas: Understanding the Rules of Life and The Quantum Leap
Co-produced with ACS External Affairs & Communications
Experts
Angela K. Wilson
National Science Foundation
Theodore Goodson II
University of Michigan
Cynthia J. Burrows
University of Utah
Glenn Ruskin
American Chemical Society

Thursday, April 26, 2018 @ 2-3pm ET
Nanomaterials for Fighting Antibiotic-Resistant Bacteria
Co-produced with the American Association of Pharmaceutical Scientists and ACS Division of Medicinal Chemistry
Experts
Vincent Rotello
University of Massachusetts
Moderator TBA

Contact ACS Webinars® at acswebinars@acs.org