

We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week.

www.acs.org/acswebinars

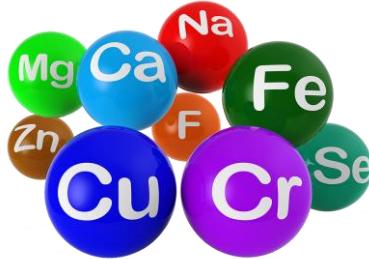
Contact ACS Webinars ® at acswebinars@acs.org

1

Have Questions?

Type them into questions box!

“Why am I muted?”


Don't worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

2

Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

3

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

4

Let's get Social...post, tweet, and link to ACS Webinars during today's broadcast!

[facebook.com/acswebinars](https://www.facebook.com/acswebinars)

@acswebinars

Search for "acswebinars" and connect!

5

How has ACS Webinars® benefited you?

"The 2015 Drug Delivery and Design Symposium on ACS Webinars provides thoughtful reviews of advanced medicinal chemistry and drug design concepts in a time-efficient manner."

Fan of the Week

John O'Neill, M.S.
Director, Information Resources
Jazz Pharmaceuticals

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

6

7

All recordings of ACS Webinars® will be available to current ACS members one week after the Live broadcast date.

Live weekly ACS Webinars® will continue to be available to the general public.

Upcoming ACS Webinars®

www.acs.org/acswebinars

Thursday, June 4, 2015

“Chemistry & the Economy: 2015 Mid-Year Review”

Paul Hodges, Chairman of International eChem

Mark Jones, Executive External Strategy and Communications Fellow, Dow Chemical

Thursday, June 11, 2015

“Science Communication in the Digital Media Age”

Nathan Allen, Moderator of /r/science, Reddit

Chris McCarthy, Social Media Manager, American Chemical Society

Contact ACS Webinars® at acswebinars@acs.org

9

AAPS eLEARNING

AAPS eCourses

Engaging Members in New Ways.

*Fundamentals
of
Biotherapeutics
Development*

*Essentials for
Regulatory Affairs
for Pharmaceutical
Scientists*

*Immunogenicity
of Biologically
Based
Therapeutics*

*Drug Discovery,
Development,
and
Pharmacotherapy*

*Selecting
Candidates with
Optimal Oral
Exposure*

Visit www.aaps.org/eCourses for
more information!

Inquires: elearning@aaps.org

Join the ACS Division of
Medicinal Chemistry Today!

For \$25 (\$10 for students), you will get:

- A free copy of our annual medicinal chemistry review volume (over 600 pages, \$160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

11

YOUR NOVEL RESULTS DESERVE
Distinction and Extra Speed

Journal of
Medicinal Chemistry

MOST CITED IN MEDICINAL CHEMISTRY

ACS **Medicinal Chemistry Letters**

PUBLICATION SPEED OF 9 WEEKS OR LESS

Submit Your Research Today!

Pubs.acs.org

ACS Publications
Most Trusted. Most Cited. Most Read.

2015 Drug Design & Delivery Symposium

#ACSWebinars

Co-produced by
ACS Division of Medicinal Chemistry
American Association of Pharmaceutical
Scientists (AAPS)

Module 1: Improving Drug Design Efficiency and Efficacy

Jan 29	Designing Better Drug Candidates	Dr. Paul Leeson
Feb 26	Strategies to Improve Solubility of Drug Candidates	Dr. Michael Walker

Module 2: Activity/Potency Screening for Drug Lead & Candidate Optimization

Mar 19	Fragment-Based Drug Design Strategies	Dr. Dan Erlanson
April 30	Screening Strategies	Dr. David Swinney
May 28	PAINS (Pan-Assay Interference Compounds)	Dr. Jonathan Baeil
June 25	Positron Emission Tomography (PET) Labeling in Drug Discovery & Development	Dr. Lei Zhang
July 30	X-Ray Crystallography in Drug Discovery	Dr. Jon Mason & Dr. Miles Congreve

Module 3: Enabling Drug Discovery

Aug 27	Choices and Trends in Solid Dosage Form Section	Dr. Scott Trzaska &
Sept 24	Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies	Dr. Ron Smith Dr. Evan Thackaberry

Module 4: Pharmacokinetics

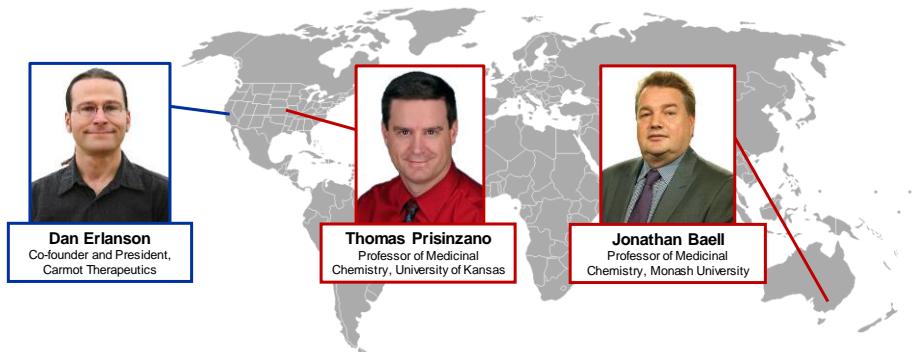
Oct 29	Pharmacokinetic Considerations in Drug Design and Development	Dr. Punit Marathe
Nov 19	Prodrugs in Drug Discovery	Dr. John Higgins

13

Join us June 26, 2015
for the 6th Session!

“Accelerating CNS Positron Emission Tomography (PET) Ligand Discovery”

with Lei Zhang of Pfizer Inc.



www.acs.org/content/acs/en/events/upcoming-acss-webinars/drug-design-2015.html

14

“2015 Drug Design and Delivery Symposium: Avoiding PAINS (pan-assay interference compounds)”

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

This ACS Webinar is sponsored by The Journal of Medicinal Chemistry and ACS Medicinal Chemistry Letters

15

Baell J & Walters MA. Chemical con artists foil drug discovery. *Nature* **513** (2014) 481-483

Jonathan Baell

Monash Institute of Pharmaceutical Sciences

2015 Drug Design and Delivery Symposium

May 28th 2015

The WEHI HTS Library

- **Established in 2003** – one of few worldwide
- **Guiding Philosophy:** lead-like & optimizable:
 - MW 150-400
 - # Rings 1-4
 - HBA 8 & HBD 5
 - Extensive functional group filtering
 - All analogues > 85% similar removed
- **Outcome:** 93,000 compounds from four different “vouched for” vendors (ChemDiv, Specs, Maybridge, Tripos)
- These vendors represent a range of the different types available chemistries - **historical, combinatorial, de novo**
- *Hence our library is a good representation of available chemistry space for HTS*

| 17

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Do you use small molecule HTS for drug discovery?

- Yes (academia)
- Yes (industry/private)
- No
- No but I am interested

| 18

Reactives/Unsuitables removed as recommended (GSK, AMGEN or both)

- **REMOVED:** [\(1/2° alkyl halides\)](#), [\(acid halides\)](#), carbazides, [\(alkyl sulfonates\)](#), [\(anhydrides\)](#), [\(peroxides\)](#), (isocyanates), (isothiocyanates), triflates, lawessons, phosphoramides, azides, b-carbonyl-NR4+, acylhydrazides, quat. C+/Cl+/I+/P+/S+, phosphoranes, chloramidines, nitroso, [\(P/S halides\)](#), carbodiimide, isonitrile, triacyloximes, cyanohydrins, acyl cyanides, sulfonyl cyanides, cyanophosphonates, azocyanamides, azoalkanals, [disulfides](#), (thiols), [epoxides](#), thioepoxides, [aziridines](#), hydrazothiourea, thiocyanate, benzylic NR4+, cyanamides, betalactones, betalactams, [labile esters](#), [perhaloketones](#), [\(aldehydes\)](#), [certain michael acceptors](#), [imines](#), [phosphate/phosphonate esters](#)
- **WEHI REMOVED:** (Ketenes), (oxoniums), carbamic acids, trialkyl phosphines, boronic acids, primary hydrazines/oxyamines, fluoropyridines, ugly alkyl halides, P-N, P-S, cyclohexadienes, dialkynes, activated sulfonyl (hetero)aryl halides
- **Also** - Nitros (VERTEX)
- **KEPT:** [ketones](#), [esters](#), [hydrazones](#), [oximes](#), [thioethers](#), [thiocarbonyls](#).

And thus it was perfect.....

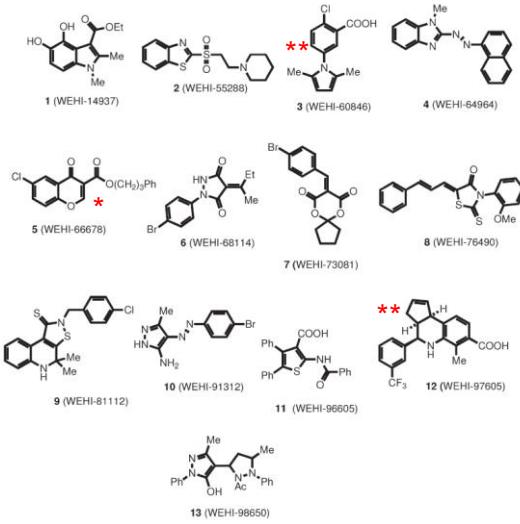
- Reactives removed
- Assays run in the presence of detergent (e.g. 0.01% Triton X-100)
 - [Avoiding the “Shoichet Frequent Hitter Aggregates”**](#)
- Random viewing of 1000 compounds - pretty good.
- Compounds simple and highly optimizable

**McGovern et al., J Med Chem 45,(2002)

**Coan et al., J Med Chem 52,(2009)

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

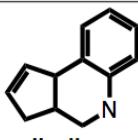

Do you view “PAINS” as something to be concerned about?

- Yes
- No
- Maybe
- I need to know more

| 21

But we had HTS and H2L headaches 2003-2006

- Much time wasted on cul-de-sac HTS hits
- Sometimes labelled proteins* or activity disappeared on remaking and purification**
- Or SAR ended flat or uninterpretable and led nowhere
- Similar looking compounds kept appearing in different screens
- So library not quite perfect


Recurring hits generally implies promiscuity – not developable compounds: we don't want them

- Observation: classes were recurring: not just individual compounds
- We wanted to establish a new library without nuisances
- We did not wish to purchase nuisance classes again.
- Task – identify and define classes of problematic compounds
 - Deceptively difficult!
 - HOW MANY ASSAYS DOES A COMPOUND CLASS NEED TO HIT BEFORE IT IS CONSIDERED INHERENTLY NON-SPECIFIC...i.e. PROBLEMATIC?

We first focused on readily identifiable classes that had caused us grief

- e.g fused THQ-cyclopentenes
- We observed in six selected HTS campaigns the proportion of analogues hitting between 2-6 assays relative to those that hit none seemed high

Substructure ^a	Number of AlphaScreen® assays hit							Total Cpds	Enrichment ^b
	6	5	4	3	2	1	0		
 anil_alk_ene	1	6	6	3	7	11	17	51	135%

- We term this our “Enrichment” value
i.e. $1+6+6+3+7 = 23$and $23/17 = 135\%$

A clear difference between “clean” classes and suspected “dirty” classes

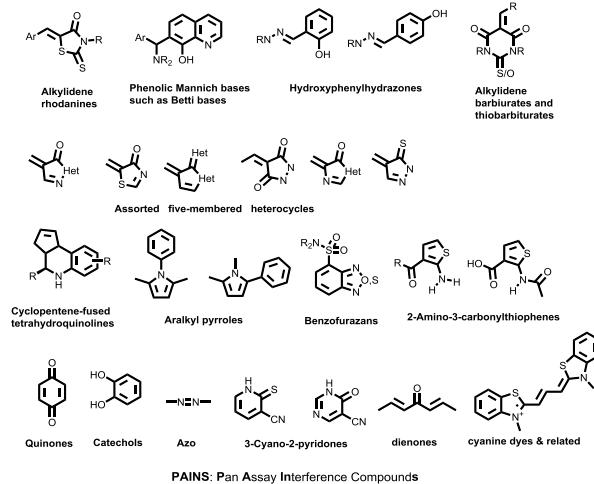
Substructure	Proportion hitting 2-6 screens compared with those hitting no screens	“Enrichment”
Amide	8%	
2-Aminopyridine	10%	
Benzothiazole	14%	
Chlorophenyl	11%	
Aromatic N	16%	
hydrazones	28% ??	
p-hydroxyphenylhydrazones	55%	
tetrahydroquinolines	135%	

- “Clean” substructures contain 8-16% of compounds that hit 2-6 screens
- “Dirty” substructures contain > 40% of compounds that hit 2-6 screens.

Ultimately, we identified 480 classes of nuisance compounds: all classes excluded from future HTS libraries before purchase

Library Name (Date)	Broad Selection Principles	PAINS Filtered?	Other
Inaugural WEHI 93 K (2003)	Lead-like*	N	Four Vendors
WEHI Legacy 15K (2007)	Lead-like*	Y	One Vendor
CTx 136K (2007)	Lead-like*	Y	Two Vendors
WECC 112K (2010)	Lead-like*	Y	Ten Vendors

Baell JB. Broad coverage of commercially available lead-like screening space with fewer than 350,000 Compounds. *Journal of Chemical Information and Modelling*. **53** (1), 39-55 (2013).


* Broad selection principles

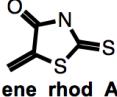
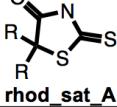
- Chiral_{max} 3
- Mw 150-450
- HBD_{max} 5
- Rings 1-4
- HBA 1-8
- cLogP_{max} 5
- Rot. Bonds_{max} 10

Other Filters Applied:

- Inappropriate Functional Groups.
- Analogs more than 85% similar

Around 16/480 classes account for 58% of nuisance compounds – readily recognizable

PAINS: Pan Assay Interference Compounds



 MONASH University
Institute of Pharmaceutical Sciences

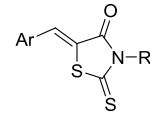
Baell & Holloway. *J. Med. Chem.*
53 (2010) 2719-2740.

| 27

Why are these compounds promiscuous?

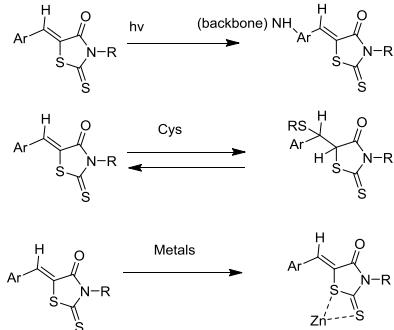
- It is not signal just interference: that would be “six out of six”!

Substructure ^a	Number of AlphaScreen® assays hit							Total Cpd	Enrichment ^b
	6	5	4	3	2	1	0		
 ene_rhod_A	16	41	21	26	32	39	60	235	227%
 rhod_sat_A	0	6	6	6	6	7	2	33	1200%


 MONASH University
Institute of Pharmaceutical Sciences

Baell & Holloway. *J. Med. Chem.* 53 (2010) 2719-2740.

| 28

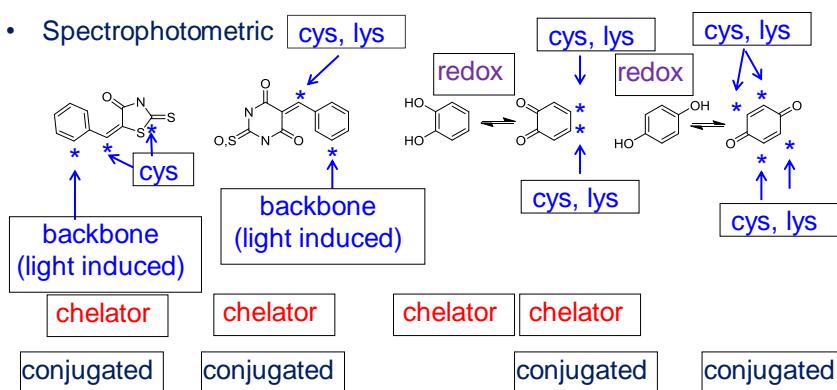

Why are these compounds promiscuous?

The literature gives us clues

Crystal Complexes:

- Covalent and irreversible light-induced reaction with proteins (TNF- α - Voss et al BMCL 13 (2003) 533, Carter et al, PNAS 98 (2001) 11879)
- Covalent - but reversible - bond formation with proteins (Hepatitis C virus RNA-dependent RNA polymerases - Powers et al, JMC 49 (2006) 1034; Lee et al JMB 357 (2006) 1051)
- Chelation with protein active site zinc (anthrax lethal factor - Forino et al. Proc. Natl Acad. Sci USA 2005, 102, 9499-9504)

MONASH University
Institute of Pharmaceutical Sciences


Baell & Holloway. *J. Med. Chem.* **53** (2010) 2719-2740.

| 29

Multiple potential modes of assay interference

- Covalent binding *
- Chelation
- Redox
- Spectrophotometric

e.g. ALKYLIDENE RHODANINES & BARBITURATES, CATECHOLS, HYDROQUINONES AND QUINONES

MONASH University
Institute of Pharmaceutical Sciences

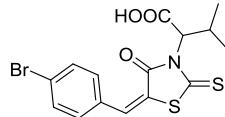
Baell & Holloway. *J. Med. Chem.* **53** (2010) 2719-2740.

| 30

Promiscuity & false cell-based activity

- If a class is conjugated, redox-active, chelating and protein reactive
 - Assay interference may give a false readout at almost every level
 - From target to cell with no common mechanism!
 - Particularly relevant to reactivity – assay independent

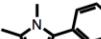
The value of a good acronym

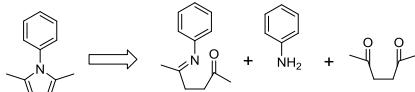

- We termed such compounds PAINS
 - Pan Assay Interference CompoundS

Baell JB & Holloway GA, 'New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays'. *Journal of Medicinal Chemistry*, **53** (2010) 2719-2740. [ca 400 citations](#)

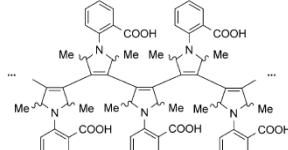
Personal experience with a literature rhodanine

- BH3I-1, an alkylidene rhodanine PAIN
 - High profile publication¹
 - Highly cited & widely used as tool (Bcl-2-mediated cytotoxicity)


- Access to rare cell line showed cytotoxicity not linked to mechanism²


1. Degterev et al, *Nat. Cell Biol.* **3** (2001) 173;

2. Van Delft et al, *Cancer Cell* **10** (2006) 389-399


Some less publicized PAINS

- **Aralkyl pyrroles**
- **Activity disappeared on purification**
- **Some sort of retrosynthetic degradation?**

Substructure ^a	Number of AlphaScreen® assays hit							Total Cpds	Enrichment ^b
	6	5	4	3	2	1	0		
	1	16	13	14	11	21	42	118	131%
	4	5	9	0	0	2	3	29	600%

- **Close – propensity towards promiscuous polymers**

Zhu et al. *Chem. Eur. J.* 19 (2013) 8379

| 33

Audience Survey Question

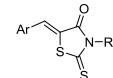
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Have you been burnt by PAINS?

- Yes
- No
- No, but I know someone who has been.

| 34

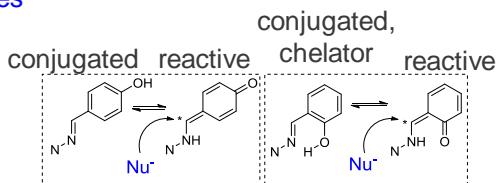
The Troubling Ramifications



- Such compounds are not uncommon in screening and vendor libraries
 - They will appear as hits in any assay in other labs
- Such compounds may appear to be selective and yield to early SAR
- Screening-based drug discovery a recent expansion to academic laboratories
 - Not as experienced as the pharmaceutical industry
 - Pressure to publish
- Is all the above reflected in the literature?
 - i.e are these compounds appearing increasingly in academic publications and portrayed as valid hits/probes/medchem starting points when they are not?

Yes! Literature rhodanine screening hits:

Diversity of assay technologies


- Anthrax lethal factor
- Glycosyltransferase MurG
- SARS coronavirus
- PRL-3
- glycogen synthase kinase-3b
- HIV-1 integrase
- extracellular signal-regulated kinase 2
- tau aggregation
- botulinum neurotoxin type A
- *Plasmodium falciparum* enoyl-acyl carrier protein reductase
- leucocyte migration (by stabilizing activated $\alpha_M\beta_2$ integrin),
- hepatitis C NS5b RNA
- TNF- α
- UDP-galactopyranose mutase
- Lck
- VHR phosphatase
- Formylpeptide receptor (FPR)
- Protein tyrosine phosphatase (PTN)-1B
- Yersinia tyrosine phosphatase YopH
- Retinoid X receptor RXRa
- Yersinia protein kinase YpkA
- DNA adenine methyltransferase DAM
- RNA polymerase
- cholesterol accumulation
- peptide deformylase
- human apurinic/apyrimidinic endonuclease 1
- *Helicobacter pylori* shikimate kinase

Some less publicized PAINS

- o- and p-hydroxyphenylhydrazones
- Activity retained on purification

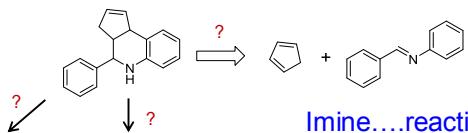
Substructure ^a	Number of AlphaScreen® assays hit							Total Cpd	Enrichment ^b
	6	5	4	3	2	1	0		
 hzone phenol A	5	4	7	17	208	82	156	479	154%
 hzone phenol B	2	2	9	6	38	54	104	215	55%

 MONASH University
Institute of Pharmaceutical Sciences

Baell & Holloway. *J. Med. Chem.* 53 (2010) 2719-2740.

| 37

Some less publicized PAINS – not just academics!


- Fused tetrahydroquinolines
- Activity lost on purification (so is the class as drawn ok?.....)
- Mechanism unknown

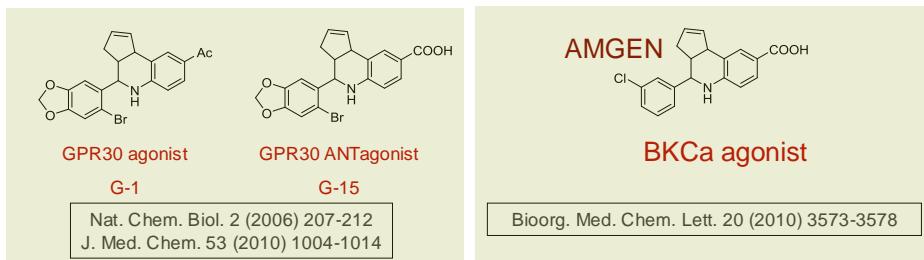
Substructure ^a	Number of AlphaScreen® assays hit							Total Cpd	Enrichment ^b
	6	5	4	3	2	1	0		
 anil_alk_ene	1	6	6	3	7	11	17	51	135%

- Emails from several pharma “we had these too”

- >20 years ago!

- Several hypotheses

Heavy metal
contaminants


Oxidation in sample to reactive
quinoids, nitroso etc

 MONASH University
Institute of Pharmaceutical Sciences

Baell JB. *Fut. Med. Chem.* 2 (2010) 1529-1546.

| 38

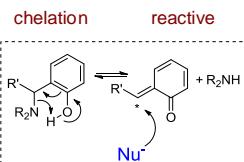
Rediscovery of these PAINS by pharma

MLI 64 Probes¹: Scored generally well by experienced medicinal chemists:

SCORES (0-10): 0, 0, 1, 2, 2, 3, 3, 4.2, 5, 6, 10

0, 1, 2, 2, 3, 3, 4, 4.3, 6, 7, 10

1. Nat. Chem. Biol. 5 (2009) 441

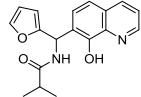

 MONASH University
Institute of Pharmaceutical Sciences

In both cases, confusing SAR and poor downstream data

| 39


Some less publicized PAINS – pharma fooled too!

- Mannich bases of phenols – activity retained on purification



Substructure ^a	Number of AlphaScreen® assays hit							Total Cpd	Enrichment ^b
	6	5	4	3	2	1	0		
	2	4	13	15	59	57	146	296	64%

Sanofi-Aventis: covalent inhibitors of MIF tautomerase²

MLI 64 probes¹

Scored generally well by experienced medicinal chemists:

SCORES (0-10): 0, 1, 2, 2, 4, 4, 4, 4.5, 6, 6

1. Nat. Chem. Biol. 5 (2009) 441

"The present work demonstrated a valuable strategy for lead seeking by coupling *in silico* virtual screening with prudent follow-up experimental studies" (Sanofi-Aventis)

2. Bioorg. Med. Chem. Lett. 19 (2009) 6717-6720

 MONASH University
Institute of Pharmaceutical Sciences

Baell & Holloway. J. Med. Chem. 53 (2010) 2719-2740.

| 40

The cost of PAINS

- Other PAINS also prevalent in literature
- Hundreds (and hundreds) of publications
 - Precious research dollars
- Hundreds (and hundreds) of patents
 - \$\$\$\$\$\$
- Take up by others
 - Tool compounds
 - PK
 - Student projects
 - Drug development
 - Validation *in silico* algorithms
 - And MORE PUBLICATIONS AND PATENTS!
- We wish to alert the academic drug discovery community to these nuisance compounds

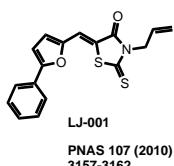
Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Whether or not you knew of PAINS before, at this point do you view them as something to be seriously concerned about?

- Yes
- No
- No, but I would like to learn more.

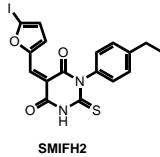
Typical Hallmarks of PAINS publications:


- Hits both from HTS but especially in silico
- Little or no medicinal chemistry optimization
- Unconvincing SAR
- Relative lack of improvement in biological activity to meaningful levels that often hover around the uM mark
- Molecular modeling described as though it is an experimental observation of relevant binding
- Literature is frequently ignored as an important SAR source of evidence that similar compounds appear to be hitting different targets and could be promiscuous

What can we collectively do?

▪ PUBLISHERS - JOURNALS SHOULD NOT BURY STRUCTURES

- LJ-001 was reported in a high profile journal as a broad-spectrum antiviral targeting entry of enveloped viruses (**irreversible**) and received extensive press coverage.



- This compound will turn out to be non-specific
- LJ-001 buried in SI – harder to assess by others

What can we collectively do?

- AUTHORS: BE MINDFUL OF OVERSTATEMENTS
- JOURNALS / REVIEWERS : DISCOURAGE OVERSTATEMENTS
 - In silico screening hit SMIFH2 that “may be a useful drug to elucidate formin-dependent processes in a wide range of organisms and cell types”.

Chem. Biol. 16 (2009)
1158-1168

- But this is a PAIN that will turn out to be non-specific.

PAINS – Identification

- Readily visually identified*
- Already implemented in Sybyl software
- For non-Sybyl users or non-experts, more accessible automated

molecular
informatics

DOI: 10.1002/minf.201100076

KNIME Workflow to Assess PAINS Filters in SMARTS Format. Comparison of RDKit and Indigo Cheminformatics Libraries

Simon Saubermann^[a], Rajarshi Guha^[b] and Jonathan B. Bael^[a,c,d]

Keywords: Cheminformatics · Drug discovery · High throughput screening · Virtual screening

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 14 2011, pages 2018–2020 doi:10.1093/bioinformatics/btr333

Data and text mining

Advance Access publication June 2, 2011

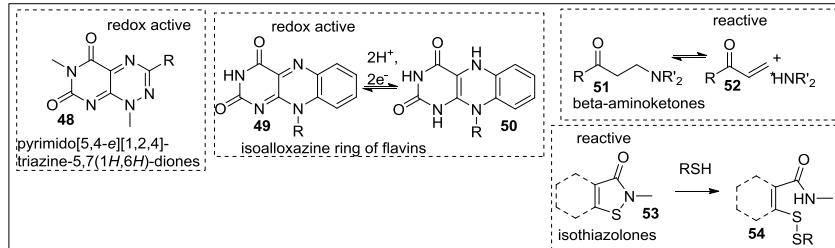
The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections

David Lagorce^{1,*}, Julien Maupetit^{1,2}, Jonathan Bael^{3,4}, Olivier Sperandio¹, Pierre Tuffery^{1,2}, Maria A. Miteva¹, Hervé Galons⁵ and Bruno O. Villoutreix^{1,2,*}

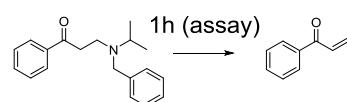
¹MTI, ²Ressource Parisienne en Bioinformatique Structurale (RPBS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 073 – Paris Diderot University, 75005 Paris, Cedex 13, France, ³The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, ⁴Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia and ⁵UMR8601, Paris Descartes University, 75006 Paris, France

Associate Editor: John Quackenbush

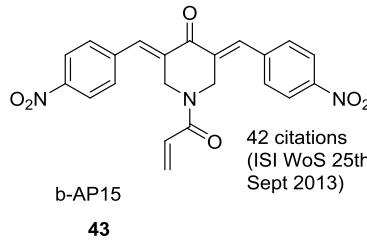
http://fafdrugs3.mti.univ-paris-diderot.fr/


Our PAINS filters would recognize all these and many more

- But don't turn your brain off.....
- Many PAINS filters imperfectly translated from sln (including our own KNIME implementation)
- Some PAINS escape even perfectly implemented versions of filters.....


Reactives that escape PAINS filters

- Appeared in later HTS campaigns after PAINS filters defined


- Highly problematic, highly prevalent
- Regrettably, the likes of AstraZeneca not blameless
- “Useful JAK3 pharmacological probes”¹

Reactives that escape PAINS filters

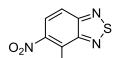
- Because groups so reactive they were never in our library!

42 citations
(ISI WoS 25th
Sept 2013)

Hao J, Ao A, Zhou L, Murphy
Clare K, Frist Audrey Y, Keel
Jessica J, et al. Selective Small
Molecule Targeting γ -Catenin
Function Discovered by In Vivo
Chemical Genetic Screen. *Cell Reports*. 2013;4(5):898-904.

D'Arcy P, Brnjic S, Olofsson MH,
Fryknas M, Lindsten K, De Cesare
M, et al. Inhibition of proteasome
deubiquitinating activity as a new
cancer therapy. *Nat Med*.
2011;17(12):1636-40

PAINS that escape PAINS filters



- Benzofurazans (2,1,3-benzothiadiazoles and oxadiazoles)**

Substructure ^a	Number of AlphaScreen® assays hit							Total Cpds	Enrichment ^b
	6	5	4	3	2	1	0		
 diazox_sulfon_A	1	4	2	2	4	6		17	36 78%

- But this related PAIN not recognized
- Because we had no nitros
- See this blog for the thinking filter:

<https://www.collaborativedrug.com/buzz/2010/03/08/guest-blog-dr-jonathan-baell/>

Recommended Read

PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulphydryl-Scavenging HTS

Jayne L. Dahlin, J. Willem M. Nissink,
Jessica M. Strasser, Subhashree
Francis, LeeAnn Higgins, Hui Zhou,
Zhiguo Zhang & Michael A. Walters

J. Med. Chem., 58 (2015) 2091–2113

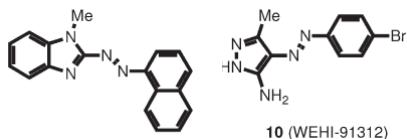
PPPP – Pains Paper Proliferation Problems

- Inexperience & over expectation of what HTS can deliver
 - Target-based hits often not that useful
 - *Usually no cell-based activity*
 - *If they have – off-target*
 - PAINS usually more potent than real hits
 - *Some sharp SAR amongst the flat*
- Budget to only screen small number of compounds or only to use in silico screening – guaranteed to find false hits
- Lack of understanding of the need for effort in H2L medicinal chemistry.....or lack of funding
- Pressure to publish.....and the dynamics of an academic team

Publications are the Driver: What can we collectively do?

- **BECOME FAMILIAR WITH PAINS**
 - As editors
 - As authors
 - As researchers
 - As reviewers
- Remember, that of the 480 classes, 16 classes accounted for 58% of these nuisance compounds
- Readily recognizable

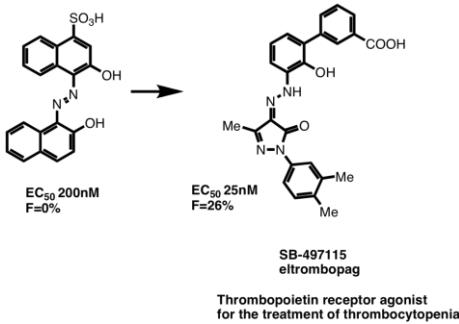
Hit prosecution – best practice (target-based)


- Discard if a PAIN without good reason; check for aggregates
- Treat any hit as false until proven otherwise
- Confirm IC₅₀ on resynthesized pure material
- Confirm IC₅₀ with orthogonal assay technology (Hill Slope 1 preferable)
- Binding kinetics (SPR) and/or thermodynamics (ITC) + stoichiometry
- Screening deck and literature history of class promiscuity
- Consider profiling in reactivity assays that are coming on-line (see refs)
- Order, make and test quality SAR set to IC₅₀ < 200 nM
- At around this mark, expect to dial in cell-based activity EC₅₀ 1-10uM
- Cell-based activity should correlate with intracellular biomarker

But resist becoming dogmatic

▪ Azo

Substructure ^a	Number of AlphaScreen® assays hit						Total Cpd	Enrichment ^b
	6	5	4	3	2	1		
R'—N=N—R'' azo_A	29	30	33	43	24	55	110	324


- Occasionally mentioned as unsuitable due to tox
- Bioreductively labile
- But not specifically assay interference

4 (WEHI-64964)

Compounds that wasted our time

But eltrombopag contains an azo

1. Duffy, K. J. *et al.* *J. Med. Chem.* **44**, 3730–3745 (2001).
2. Duffy, K. J. *et al.* *J. Med. Chem.* **45**, 3573–3575 (2002).
3. Duffy, K. J. *et al.* *J. Med. Chem.* **45**, 3576–3578 (2002).
4. Erickson-Miller, C. L. *et al.* *Exp. Hematol.* **33**, 85–93 (2005).

- Hit from a cell-based reporter screen [1-4]
- FDA approved drug
- Due to promiscuity, we have no azo groups – would miss this hit
- But sharp SAR was observed from the beginning
- And low lipophilicity in hit
- **Key point:** azo PAINS mechanism unclear and promiscuity not obviously linked to reactivity
- Keep your brain turned on
- Resist dogma

| 55

FOR MORE ON PAINS, SEE

- Baell JB* & Holloway GA. New substructure filters for removal of pan assay interference compounds [PAINS] from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* **53** (2010) 2719-2740.
- Baell JB*. Observations on Screening-Based Research and Some Concerning Trends in the Literature. *Future Med. Chem.* **2** (2010) 1529–1546.
- Baell JB*. Broad coverage of commercially available lead-like screening space with fewer than 350,000 Compounds. *J. Chem. Inf. Model.* **53** (2013) 39-55. [CHEMICAL DIVERSITY DISCUSSION IN SI]
- Baell J & Walters MA. Chemical con artists foil drug discovery. *Nature* **513** (2014) 481-483.
- Baell, JB. Screening-based-translation of public research encounters painful problems. *ACS Med. Chem. Lett.* (accepted). [THE IMPORTANCE OF SAR]
- <https://collaborativedrug.com/buzz/2010/03/08/guest-blog-dr-jonathan-baell/> [IMPORTANT & PRACTICAL GUIDE TO USE OF PAINS SI FOR PAINS RECOGNITION]

Email me for reprints: jonathan.baell@monash.edu

| 56

Published Assays to Detect Problem Hits

▪ Protein-reactive/thiol-reactive

- McCallum MM, Nandhikonda P, Temmer JJ, Eyermann C, Simeonov A, Jadhav A, et al. High-Throughput Identification of Promiscuous Inhibitors from Screening Libraries with the Use of Containing Fluorescent Probe. *Journal of Biomolecular Screening*. 2013;18(6):705-13.
- Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, et al. ALARM NMR: A Rapid and Robust Experimental Method To Detect Reactive False Positives in Biochemical Screens. *Journal of the American Chemical Society*. 2004;127(1):217-24.

▪ Redox-active

- Lor LL, Schneck J, McNulty DE et al. A simple assay for detection of small-molecule redox activity. *J. Biomol. Screen.* 12, 881-890 (2007).
- Johnston PA, Soares KM, Shinde SN et al. Development of a 384-well colorimetric assay to quantify hydrogen peroxide generated by the redox cycling of compounds in the presence of reducing agents. *Ass. Drug Develop. Technol.* 6, 505-518 (2008).

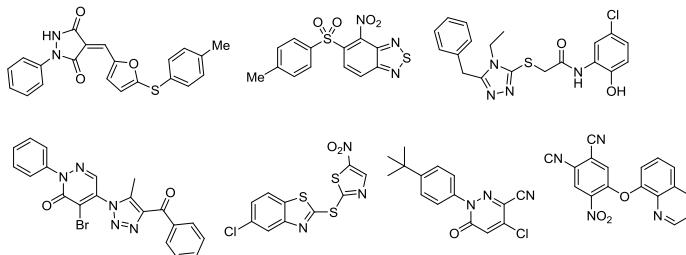
Reactivity and the literature for rhodanines, quinones, catechols etc

- Powers JP, Piper DE, Li Y, Mayorga V, Anzola J, Chen JM, et al. SAR and Mode of Action of Novel Non-Nucleoside Inhibitors of Hepatitis C NS5b RNA Polymerase. *Journal of Medicinal Chemistry*. 2006;49(3):1034-46.
- Carter Ph Fau - Scherle PA Fau - Muckelbauer JK, Muckelbauer Jk Fau - Voss ME, Voss Me Fau - Liu RQ, Liu Rq Fau - Thompson LA, Thompson La Fau - Tebben AJ, et al. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. *Proc Natl Acad Sci U S A*. 2001;98(21):11879-84.
- Voss ME, Carter PH, Tebben AJ, Scherle PA, Brown GD, Thompson LA, et al. Both 5-arylidene-2-hioxodihydropyrimidine-4,6(1H,5H)-diones and 3-thioxo-2,3-dihydro-1H-imidazo[1,5-aj]indol-1-ones are light-Dependent tumor necrosis factor- α antagonists. *Biorganic & Medicinal Chemistry Letters*. 2003;13(3):533-8.
- Carlson EE, May JF, Kiessling LL. Chemical Probes of UDP-Galactopyranose Mutase. *Chemistry & Biology*. 2006;13(8):825-37.
- Lee G, Piper DE, Wang Z, Anzola J, Powers J, Walker N, et al. Novel Inhibitors of Hepatitis C Virus RNA-dependent RNA Polymerases. *Journal of Molecular Biology*. 2006;357(4):1051-7.
- Metz J, Huth J, Hajduk J. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. *J Comput Aided Mol Des*. 2007;21(1-3):139-44.
- Huth JR, Song D, Mendoza RR, Black-Schaefer CL, Mack JC, Dorwin SA, et al. Toxicological Evaluation of Thiol-Reactive Compounds Identified Using a La Assay To Detect Reactive Molecules by Nuclear Magnetic Resonance. *Chemical Research in Toxicology*. 2007;20(12):1752-9.
- Tanaka K, Chen X, Kimura T, Yoneda F. 5-Arylidene 1,3-Dimethylbarbituric Acid Derivatives, Mild Organic Oxidants for Allylic and Benzylic Alcohols. *Chemical & pharmaceutical bulletin*. 1988;36(1):60-9.
- Meissner JWG, van der Laan AC, Pandit UK. Reduction of 5-arylidenebarbiturate derivatives by thiols. *Tetrahedron Letters*. 1994;35(17):2757-60.
- Tanaka K, Chen X, Yoneda F. Oxidation of thiol with 5-arylidene-1,3-dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide1. *Tetrahedron*. 1988;44(11):3241-9.
- Forino M, Johnson S, Wong TY, Rozanov DV, Savinov AY, Li W, et al. Efficient synthetic inhibitors of anthrax lethal factor. *Proceedings of the National Academy of Sciences of the United States of America*. 2005;102(27):9499-504.
- Tjernberg A, Haller D, Schulz J, James S, Benkertock K, Byström S, et al. Mechanism of action of pyridazine analogues on protein tyrosine phosphatase 1B (PTP1B). *Biorganic & Medicinal Chemistry Letters*. 2004;14(4):891-5.
- McCallum MM, Nandhikonda P, Temmer JJ, Eyermann C, Simeonov A, Jadhav A, et al. High-Throughput Identification of Promiscuous Inhibitors from Screening Libraries with the Use of Thiol-Containing Fluorescent Probe. *Journal of Biomolecular Screening*. 2013;18(6):705-13.
- Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, et al. ALARM NMR: A Rapid and Robust Experimental Method To Detect Reactive False Positives in Biochemical Screens. *Journal of the American Chemical Society*. 2004;127(1):217-24.
- Steno L, Staack RF, Varesio E, Hopfgartner G. Investigating the in vitro metabolism of ipexofe: characterization of reactive metabolites using liquid chromatography/mass spectrometry. *Rapid Communications in Mass Spectrometry*. 2007;21(14):2301-11.
- Dietrich LEP, Teal TK, Price-Whelan A, Newman DK. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria. *Science*. 2008;321(5893):1203-6.
- Li W-W, Heinze J, Haehnel W. Site-Specific Binding of Quinones to Proteins through Thiol Addition and Addition-Elimination Reactions. *Journal of the American Chemical Society*. 2005;127(17):6140-1.
- Liu X-W, Sek D-E. Identification of alkylation-sensitive target chaperone proteins and their reactivity with natural products containing Michaelis acceptor. *Arch Pharm Res*. 2003;26(12):1047-54.
- Andjelkovic M, Depaemaera G, Van Camp J, Verha R. Metal chelation properties of phenolic acids bearing catechol and galloyl groups. *Polyphenols Communication*. 2004 - Supplement 2004;17:8.

Reactivity and the Literature for hydroxyphenylhydrazones, phenolic Mannich bases, and 2-amino-3-carbonylthiophenes

- Hugh JR, Mendoza R, Olejniczak ET, Johnson RW, Cotheron DA, Liu Y, et al. ALARM NMR: A Rapid and Robust Experimental Method To Detect Reactive False Positives in Biochemical Screens. *Journal of the American Chemical Society*. 2004;127(1):217-24.
- Il DR, Rodrigues CR, Alencastro RB, Fraga CAM, Barreiro EJ. A possible molecular mechanism for the inhibition of cysteine proteases by salicylaldehyde N-acylhydrazones and related compounds. *Journal of Molecular Structure: THEOCHEM*. 2000;505(1-3):11-7.
- Ledesma GN, Gonzalez Sierra M, Escandar GM. Spectroscopic and theoretical study of aromatic α -hydroxy hydrazones and their copper(II) complexes in dioxane-water mixtures. *Polyhedron*. 1998;17(9):1517-23.
- Ainscough EW, Brodie AM, Denny WA, Finlay GJ, Gothe SA, Ranford JD. Cytotoxicity of salicylaldehyde benzoylhydrazone analogs and their transition metal complexes: quantitative structure-activity relationships. *Journal of Inorganic Biochemistry*. 1999;73(3-4):125-33.
- McGovern SL, Caselli E, Grigorieff N, Shiochiet BK. A Common Mechanism Underlying Promiscuous Inhibitors from Virtual and High-Throughput Screening. *Journal of Medicinal Chemistry*. 2002;45(8):1712-22.
- Herzig Y, Lerman L, Goldenberg W, Lerner D, Goldfarb HE, Nudelman A. Hydroxy-1-aminoindans and Derivatives: Preparation, Stability, and Reactivity. *The Journal of Organic Chemistry*. 2006;71(11):4130-40.
- Weinert EE, Dondi R, Collredo-Melz S, Frankenfeld KN, Mitchell CH, Freccero M, et al. Substituents on Quinone Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts. *Journal of the American Chemical Society*. 2006;128(36):11940-7.
- McLean LR, Zhang Y, Li H, Li Z, Lukaszczuk U, Cho Y-M, et al. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening. *Biorganic & Medicinal Chemistry Letters*. 2009;19(23):6717-20.
- Caufield MJ, McAllister DJ, Russo T, Solomon DH. Complexes of Benzene-1,2-diol Mannich Bases. II. Novel Aluminium(III) Complexes. *Australian Journal of Chemistry*. 2001;54(6):383-9.
- Occhipinti G, Bjørsvik H-R, Törnroos KW, Jensen VR. Ruthenium Alkyldiene Complexes of Chelating Amine Ligands. *Organometallics*. 2007;26(24):5803-14.
- Xie Y, Liu Q, Jiang H, Ni J. Novel Complexes of Ligands Containing Phenol and Alcohol Groups: From Polynuclear Cluster, 1D Coordination Polymer to 2D Supramolecular Assemblies. *European Journal of Inorganic Chemistry*. 2003;2003(22):4010-6.
- Ghaliene R, Marakchi K, Komina N, Kabaj OK, Chraibi M, Habbadi N, et al. A theoretical investigation of the conformational aspects of aminophenols and of their complexation with $\text{BF}_2\text{-}$ and ZnCl_2 . *Journal of Molecular Structure: THEOCHEM*. 2000;531(1):223-39.

Reactivity and the Literature for beta-aminoketones, isothiazolones etc


- Tjernberg et al. *Bioorg. Med. Chem. Lett.* 14 (2004) 8913-5.
- McCallum et al. *Journal of Biomolecular Screening*. 2013;18(6):705-13.
- Chem. Res. Toxicol. 16 (2003) 627-636.
- Bioorg. Med. Chem. 17 (2000) 467-474.
- Bioorg. Med. Chem. Lett. 10 (2000) 575-579.
- Bioorg. Med. Chem. Lett. 17(2007) 1280-1283.

 MONASH University
Institute of Pharmaceutical Sciences

| 59

Test your skills

- Can you find the flaws in the following GSK compounds?
- “HTS identifies ATP-competitive inhibitors of the NLRP1 inflammasome”
- “These results highlight a promising strategy for the identification of inhibitors of NLR family members which are rapidly emerging as key drivers of inflammation in human disease”

Harris et al, Bioorg. Med. Chem. Lett. 2015 (accepted)

 MONASH University
Institute of Pharmaceutical Sciences

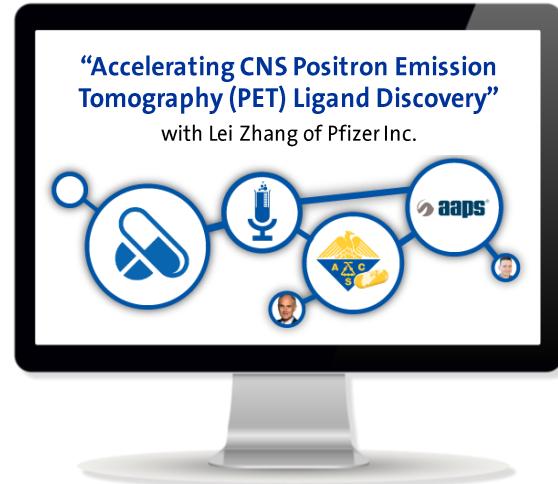
| 60

ACKNOWLEDGEMENTS

- Georgina Holloway, Hendrik Falk, Carl Rye, Keith Watson, Guillaume Lessene
- All the WEHI HTS group over the years

**“2015 Drug Design and Delivery Symposium:
Avoiding PAINS (pan-assay interference compounds)”**

Dan Erlanson
Co-founder and President,
Carmot Therapeutics


Thomas Prisinzano
Professor of Medicinal
Chemistry, University of Kansas

Jonathan Baell
Professor of Medicinal
Chemistry, Monash University

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

This ACS Webinar is sponsored by The Journal of Medicinal Chemistry and ACS Medicinal Chemistry Letters ⁶²

Join us June 26, 2015
for the 6th Session!

www.acs.org/content/acs/en/events/upcoming-acs-webinars/drug-design-2015.html

63

Upcoming ACS Webinars®

www.acs.org/acswebinars

Thursday, June 4, 2015

“Chemistry & the Economy: 2015 Mid-Year Review”

Paul Hodges, Chairman of International eChem

Mark Jones, Executive External Strategy and Communications Fellow, Dow Chemical

Thursday, June 11, 2015

“Science Communication in the Digital Media Age”

Nathan Allen, Moderator of /r/science, Reddit

Chris McCarthy, Social Media Manager, American Chemical Society

Contact ACS Webinars ® at acswebinars@acs.org

64

YOUR NOVEL RESULTS DESERVE
Distinct and Extra Speed

**Journal of
 Medicinal Chemistry**

MOST CITED IN MEDICINAL CHEMISTRY

**ACS Medicinal
 Chemistry Letters**

PUBLICATION SPEED OF 9 WEEKS OR LESS

Submit Your Research Today!

Pubs.acs.org

ACS Publications
 Most Trusted. Most Cited. Most Read.

 ACS Webinars®
 CLICK • WATCH • LEARN • DISCUSS

**“2015 Drug Design and Delivery Symposium:
 Avoiding PAINS (pan-assay interference compounds)”**

Dan Erlanson
 Co-founder and President,
 Carmot Therapeutics

Thomas Prisinzano
 Professor of Medicinal
 Chemistry, University of Kansas

Jonathan Baell
 Professor of Medicinal
 Chemistry, Monash University

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

This ACS Webinar is sponsored by The Journal of Medicinal Chemistry and ACS Medicinal Chemistry Letters ⁶⁶

*Join MEDI in Boston,
Aug 16-20, 2015!*

Featured Topics:

- Neuroinflammation
- Cancer Immunotherapy
- Heart Failure
- Natural Products
- Protein-Protein Interactions
- Drug Safety
- Deuterated Drugs
- Covalent Inhibitors
- Ophthalmic Drugs
- Allosteric Inhibitors
- Inducible Pockets
- First Time Disclosures

www.acsmedchem.org

AAPS eLEARNING

AAPS eCourses

Engaging Members in New Ways.

Fundamentals of Biotherapeutics Development

Essentials for Regulatory Affairs for Pharmaceutical Scientists

Immunogenicity of Biologically Based Therapeutics

Drug Discovery, Development, and Pharmacotherapy

Selecting Candidates with Optimal Oral Exposure

Visit www.aaps.org/eCourses for more information!

Inquires: elearning@aaps.org

 aaps

How has ACS Webinars® benefited you?

"The 2015 Drug Delivery and Design Symposium on ACS Webinars provides thoughtful reviews of advanced medicinal chemistry and drug design concepts in a time-efficient manner."

Fan of the Week

John O'Neill, M.S.
Director, Information Resources
Jazz Pharmaceuticals

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org ⁶⁹

ACS Webinars®

CLICK • WATCH • LEARN • DISCUSS

[facebook.com/acswebinars](https://www.facebook.com/acswebinars)

@acswebinars

[youtube.com/acswebinars](https://www.youtube.com/acswebinars)

Search for "acswebinars" and connect!

ACS Webinars®
CLICK • WATCH • LEARN • DISCUSS
www.acs.org/acswebinars

Stay
connected...

Email us!
acswebinars@acs.org

ACS
Chemistry for Life®

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

71

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

72

2015 Drug Design & Delivery Symposium

#ACSWebinars
Co-produced by
 ACS Division of Medicinal Chemistry
 American Association of Pharmaceutical
 Scientists (AAPS)

Module 1: Improving Drug Design Efficiency and Efficacy		
Jan 29	Designing Better Drug Candidates	<i>Dr. Paul Leeson</i>
Feb 26	Strategies to Improve Solubility of Drug Candidates	<i>Dr. Michael Walker</i>
Module 2: Activity/Potency Screening for Drug Lead & Candidate Optimization		
Mar 19	Fragment-Based Drug Design Strategies	<i>Dr. Dan Erlanson</i>
April 30	Screening Strategies	<i>Dr. David Swinney</i>
May 28	PAINS (Pan-Assay Interference Compounds)	<i>Dr. Jonathan Baeil</i>
June 25	Positron Emission Tomography (PET) Labeling in Drug Discovery & Development	<i>Dr. Lei Zhang</i>
July 30	X-Ray Crystallography in Drug Discovery	<i>Dr. Jon Mason & Dr. Miles Congreve</i>
Module 3: Enabling Drug Discovery		
Aug 27	Choices and Trends in Solid Dosage Form Section	<i>Dr. Scott Trzaska & Dr. Ron Smith</i>
Sept 24	Delivery Options to Support Dose Escalation in Preclinical Toxicology and Pharmacodynamic Activity Studies	<i>Dr. Evan Thackaberry</i>
Module 4: Pharmacokinetics		
Oct 29	Pharmacokinetic Considerations in Drug Design and Development	<i>Dr. Punit Marathe</i>
Nov 19	Prodrugs in Drug Discovery	<i>Dr. John Higgins</i>