We will begin momentarily at 2pm ET

Slides available now! Recordings available as an exclusive ACS member benefit.

www.acs.org/acswebinars
Contact ACS Webinars ® at acswebinars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org
Let's get Social... post, tweet, and link to ACS Webinars during today's broadcast!

facebook.com/acswebinars

@acswebinars

Search for “acswebinars” and connect!

Learn from the best and brightest minds in chemistry! Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members one week after the Live broadcast date. www.acs.org/acswebinars

Broadcasts of ACS Webinars® continue to be available to the general public LIVE every Thursday at 2pm ET!
Have you discovered the missing element?

Find the many benefits of ACS membership!

An individual development planning tool for you!

- Know your career options
- Develop strategies to strengthen your skills
- Map a plan to achieve your career goals

ChemIDP.org
How has ACS Webinars® benefited you?

“I found the webinar very interesting and the presentation clear, informative, and educational. I look forward to more ACS Webinars!”

Fan of the Week
Stephanie E. Logan, MS
High School Science
Trinity Christian Academy

Be a featured fan on an upcoming webinar! Write to us @ acswебinars@acs.org

Upcoming ACS Webinars
www.acs.org/acswебinars

Tuesday, December 12, 2017
New Requirements for Chemicals in Commerce: Chemical Regulation under TSCA Reform
Special Broadcast for ACS Chemistry & the Law Division
Irene Hantman, Esq. Counsel, Verdant Law, PLLC
Kurt Blase, Senior Counsel, Verdant Law, PLLC

Thursday, December 14, 2017
How to Sustainably Innovate Throughout the Life Cycle of Drug Research and Development
Co-produced with the ACS Green Chemistry Institute
Paul Richardson, Director, Discovery Chemistry, Pfizer
Joe Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars® at acswebinars@acs.org
Tomorrow’s Virtual Issue from Various ACS Journals for World AIDS Day!

Available Friday, December 1st

Learn more at:

www.aapspharmsci360.org
Join the ACS Division of Medicinal Chemistry Today!

For $25 ($10 for students), You Will Receive:

- A free copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

A Full Year of Drug Discovery Webinars!

2017 Drug Design and Delivery Symposium

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 26</td>
<td>Fighting Cancer: Targeting ChS Malignancy with Kinase Inhibitors, Timothy P. Hefton - Genentech, Mark Wittman - Bristol-Myers Squibb</td>
</tr>
<tr>
<td>February 23</td>
<td>Fighting Cancer: Epigenetic targets for Oncology, Stuart Conway - Oxford, Sharan Bagai - AstraZeneca</td>
</tr>
<tr>
<td>March 28</td>
<td>Fighting Cancer: Allostery and Targeting Cancer Cell Metabolism, Stefan Gross - Agios, Scott Edmundson - AstraZeneca</td>
</tr>
<tr>
<td>April 20</td>
<td>Cystic Fibrosis: Discovery of CFTR Modulators, Peter Groothuis - Vertex, Nick Meanwell - Bristol-Myers Squibb</td>
</tr>
<tr>
<td>May 25</td>
<td>Anti-Infectives: National Approaches to the Design and Optimization, Jason Sello - Brown University, Courtney Aldrich - University of Minnesota</td>
</tr>
<tr>
<td>June 29</td>
<td>Tuberculosis: An Introduction for Medicinal Chemists, Carl Nathan - Weill Cornell Medicine, Christopher Boyce - Merck</td>
</tr>
<tr>
<td>July 27</td>
<td>Viral Hepatitis: The Search for a Cure, Mike Sofia - Arbusa Biopharma, Stephen Mason - CarisCor Corporation</td>
</tr>
<tr>
<td>September 28</td>
<td>Special Broadcast</td>
</tr>
<tr>
<td>October 26</td>
<td>Psoriasis: Treatment and Novel Approaches, Frank Najjar - AstraZeneca, John Morrison - Bristol-Myers Squibb</td>
</tr>
<tr>
<td>November 30</td>
<td>Lupus: Treatment and Novel Approaches, Laurence Minard - Bristol-Myers Squibb, Mary Struthers - Bristol-Myers Squibb</td>
</tr>
</tbody>
</table>

“Treating Lupus: SLE Pathogenesis and Targeted Therapies”

Outline

• Overview of SLE disease and symptoms

• SLE disease pathophysiology

• Targeted pathways
 – BAFF and B cells
 – IFN pathway
 – TLRs and pDC
 – T cell activation and polarization

• Conclusions
Systemic Lupus Erythematosus (SLE)

• More common in women (9:1 ratio)

• US prevalence: 20-150/100,000
 – Symptom onset typically between 20–40 years of age
 – 2-3 x more frequent, with more severe symptoms, in African American, Hispanic, Native American and Asian individuals than Caucasians
 – Periods of remission and flares

• High economic burden of medical costs, job reduction or loss, and work disability: one-third of people with lupus are on work disability; by 15 years after diagnosis, 51% have stopped working

www.lupusresearch.org

Audience Challenge Question

Answer the question on blue screen in one moment

What are common symptoms of lupus? (multiple answers possible)

• Rash on the face
• Mouth ulcers
• Depression
• Joint pain
• Blue urine
SLE Symptoms and Complications

• Common symptoms:
 – Fever and fatigue
 – Stiffness, swelling, and joint pain
 – Red rashes on the face
 – Sun sensitivity
 – Skin lesions
 – Mouth ulcers
 – Shortness of breath
 – Dry eyes
 – Headaches
 – Seizures
 – Confusion
 – Weight gain or loss
 – Anemia

• Lupus nephritis: main complication, can progress to end stage renal disease

• Abnormal blood tests
 – Autoantibodies: anti-nuclear antibodies (ANA), anti-dsDNA, anti-Sm, anti-RNP
 – Low complement (C3 or C4)
 – Lymphopenia

Etiology

• Combination of genetic and environmental factors

Etiology: Role of Genetics

- Genome wide association studies have revealed many implicated loci, most of them shared with other autoimmune diseases.
- Each small nucleotide polymorphism (SNP) confers a relative small risk by itself.

<table>
<thead>
<tr>
<th>Pathway(s)</th>
<th>Loci implicated in SLE and other autoimmune diseases</th>
<th>Loci implicated only in SLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocyte activation</td>
<td>PTPN2, TNFSF4, IL-10, SPRED2, STAT4, PIK3, AFF1, IL-2A, BANF1, TCF7, SKP1, MHC genes, ILK, IKZF1 and IKZF2, BLK, ARID5B, CD44, LYN, ET51, FLI1, SH2B3, CSK, ELF1, CIRH, IFGAM, TK2</td>
<td>IKZF2</td>
</tr>
<tr>
<td>IFN or Toll-like receptors</td>
<td>IFNHI, PRDM1, LHRF1, IFI1, IFI15, IFI19, IFI75, IFI70, IFI44, IFI63, IFI67</td>
<td>None</td>
</tr>
<tr>
<td>Inflammation</td>
<td>TNIPI</td>
<td>None</td>
</tr>
<tr>
<td>Immune complex or waste clearance</td>
<td>FCGR2A, FCGR2B, FCGR3B, FCGR4B, ATG5, CLEC16A</td>
<td>NCF2, LYST</td>
</tr>
<tr>
<td>Unknown</td>
<td>ABHD6 (may be related to lymphocyte activation), RAD51B (may be related to IFN pathways), RASGRF3, TMEFF2, PRKCI, TNK2, JAK3, XKR6, FAM167A-AS1, WDFY4, unknown genes: rN1167798, rN463128, rN136852, rN1797475</td>
<td>SMG7 (may be related to interferon pathways), DHCR7, NAG3YN1, SLC25A4, PLD2, CXorf21</td>
</tr>
</tbody>
</table>

- A few mono-allelic mutations give higher risk to develop lupus or lupus-like diseases (e.g., complement genes, DNASE1, genes associated with nucleic acid sensing and IFN signaling).

SLE Pathophysiology

1. **Apoptotic debris bind autoantibodies and activate plasmacytoid dendritic cells**

2. **Dendritic cells activate autoreactive T and B cells and propagate inflammation**

3. **Tissue injury by cytotoxic T cells and autoantibodies**

Adapted from Nature Medicine 18, 871–882 (2012)
Standard of Care Treatments

- Most commonly used and approved therapies:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Use</th>
<th>Significant Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAID, aspirin</td>
<td>Pain, joint inflammation</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Flares, but also took in the long term</td>
<td>infections, bone destruction, osteoporosis</td>
</tr>
<tr>
<td>Antimalarials (e.g. chloroquine)</td>
<td>Milder disease</td>
<td>Retinal toxicity</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Lung and kidney disease</td>
<td>Bladder bleeding, hair loss, sterility</td>
</tr>
<tr>
<td>Mycophenolate mofetil (MMF)</td>
<td>Lupus nephritis</td>
<td></td>
</tr>
<tr>
<td>Azathioprine</td>
<td>Liver and kidney disease</td>
<td>Pancreatitis, hepatitis</td>
</tr>
<tr>
<td>Belimumab</td>
<td>SLE</td>
<td></td>
</tr>
</tbody>
</table>

- These drugs can have significant side effects and toxicities
- Only one biologic approved (belimumab), need for more targeted therapies

Belimumab is an Inhibitor of the BAFF Pathway

1. Apoptotic debris bind autoantibodies and activate plasmacytoid dendritic cells

2. Dendritic cells activate autoreactive T and B cells and propagate inflammation

3. Tissue injury by cytotoxic T cells and autoantibodies

Adapted from Nature Medicine 18, 871–882 (2012)
BAFF Pathway

- BAFF/Blys is required for B cell survival and maturation
- Animal models:
 - BAFF Tg mice develop SLE-like disease,
 - BAFF blockade suppresses lupus in mice
- In patients:
 - Higher BAFF level that correlate with disease activity
 - Autoantibodies secreted by B cells

Belimumab is the 1st BAFF Inhibitor Approved

- Belimumab is the 1st approved targeted therapy for lupus (2011)
 - IgG1κ targets soluble BAFF, developed by Human Genome Sciences & GlaxoSmithKline
 - 2 phase III trials showed improvement
 - Patients with high disease activity, high anti-dsDNA and low complement levels showed better response

Combination of 2 trials: Proportion of patients showing improvement from baseline at 52 weeks

- **All patients (52 weeks)**
- **Patients with high serologic activity at baseline (52 weeks)**

![Graphs showing improvement from baseline at 52 weeks](Image)
Other Inhibitors of the BAFF Pathway

• More inhibitors of the BAFF pathway have been/are being considered

<table>
<thead>
<tr>
<th>Agent</th>
<th>Type</th>
<th>Target</th>
<th>Clinical Stage</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atacicept</td>
<td>Fusion protein</td>
<td>BAFF + APRIL</td>
<td>Phase IIb/ III</td>
<td>EMD Serono</td>
</tr>
<tr>
<td>Blisibimod</td>
<td>Peptibody</td>
<td>Membrane and soluble BAFF</td>
<td>Phase III</td>
<td>Anthera</td>
</tr>
<tr>
<td>Tabalumab</td>
<td>Monoclonal antibody</td>
<td>Membrane and soluble BAFF</td>
<td>Discontinued</td>
<td>Eli Lilly</td>
</tr>
</tbody>
</table>

Adapted from Stohl W et al, 2014

B Cell Inhibition

• B cell depletion:
 – Rituximab is an anti-CD20 antibody that depletes CD20+ B cells
 – Failed to show efficacy in 2 phase III trials (SLE and lupus nephritis)
 – BAFF is elevated after B cell depletion therapy, potentially favoring survival and activation of remaining autoreactive B cells and relapse
 – Rituximab followed by belimumab to be tested in clinical trials

• Inhibition of B cell receptor (BCR) signaling with Burton tyrosine kinase (BTK) inhibitor:
 – BTK required for BCR signaling
 – Irreversible BTK inhibitor ibrutinib used to treat B cell cancers
 – BTK also involved in Fc receptor signaling on myeloid cells
 – BIIB068 (Biogen) completed phase I (SLE)
 – Evobrutinib (EMD Sereno) in phase II (SLE)
What does belimumab target?

- Soluble BAFF
- Membrane BAFF
- B cells
- Type I IFNs
- T cell costimulation

Targeting the Type I Interferon (IFN) Pathway

1. Apoptotic debris bind autoantibodies and activate plasmacytoid dendritic cells

2. Dendritic cells activate autoreactive T and B cells and propagate inflammation

3. Tissue injury by cytotoxic T cells and autoantibodies

Adapted from Nature Medicine 18, 871–882 (2012)
IFN Pathway

• IFN have anti-viral properties
 – I: e.g. IFNα, IFNβ
 – II: IFNγ
 – III: IFNλ

• pDC are the largest producers

• Increased type I IFN in SLE sera

• Increased IFN-induced genes in SLE patients

• Several SLE risk gene variants in loci linked to type I IFN system

• SLE-like syndrome with IFNα treatment

IFN Pathway Inhibitors: Biologics

• Biologics being tested in the clinic

<table>
<thead>
<tr>
<th>Target</th>
<th>Drug Name</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I IFN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-IFNAR mAb</td>
<td>Anifrolumab</td>
<td>Phase III—recruiting</td>
</tr>
<tr>
<td>Anti-IFNα mAb</td>
<td>Sifalimumab</td>
<td>Phase II—completed</td>
</tr>
<tr>
<td>Anti-IFNλ mAb</td>
<td>Rontalizumab</td>
<td>Phase II—completed</td>
</tr>
<tr>
<td>Anti-IFNκ mAb</td>
<td>ASG-009</td>
<td>Phase I—completed</td>
</tr>
<tr>
<td>IFN-kinoid vaccine</td>
<td>IFN-K</td>
<td>Phase IIb—ongoing</td>
</tr>
</tbody>
</table>

| Type II IFN | | |
| Anti-IFNγ mAb | AMG811 | Phase I—completed |

Oon S, Wilson NJ and Wicks I, Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clinical & Translational Immunology, 2016
IFN pathway Inhibitors: Small Molecules

- JAK small molecules inhibitors in the clinic

<table>
<thead>
<tr>
<th>Target</th>
<th>Drug Name</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK/STAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAK1/3 inhibitor</td>
<td>Tofacitinib</td>
<td>Phase I—recruiting</td>
</tr>
<tr>
<td>JAK1 inhibitor</td>
<td>GSK2586184</td>
<td>Phase II—terminated</td>
</tr>
<tr>
<td>JAK/SYK inhibitor</td>
<td>R333 (topical)</td>
<td>Phase II—completed</td>
</tr>
</tbody>
</table>

Oon S, Wilson NJ and Wicks I, 2016; clinicalTrials.gov

Tyk2 inhibitor: phase II in SLE initiated by BMS

Upstream of IFN Pathway: pDC and TLR Targeting

1. Apoptotic debris bind autoantibodies and activate dendritic cells

2. Dendritic cells activate autoreactive T and B cells and propagate inflammation

3. Tissue injury by cytotoxic T cells and autoantibodies

Adapted from Nature Medicine 18, 871–882 (2012)
Upstream of IFN Pathway: pDC and TLR Targeting

- pDC produce the highest amount of type I IFN upon stimulation with TLR7 and TLR9
- pDC constitutively express IRF7
- The pDC/TLR axis offers opportunities for targeting by small molecule inhibitors
- Hydroxychloroquine affects acidification of endosomes and inhibits TLR7/8/9

![Diagram showing IFN pathway](image)

Kirou KA & Gkrouzman E, Anti-interferon alpha treatment in SLE, Clinical Immunology, 2013

pDC and TLR Targeting

<table>
<thead>
<tr>
<th>Target</th>
<th>Drug name</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDCs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-BDCA2 mAb</td>
<td>BIIB059</td>
<td>Phase II CLE ± SLE — recruiting</td>
</tr>
<tr>
<td>Bcl-2 inhibitors</td>
<td>ABT-199</td>
<td>Phase I trials in SLE completed</td>
</tr>
<tr>
<td>Anti-CD123 mAb</td>
<td>CSL362/JNJ-473</td>
<td>Preclinical, phase I completed in AML</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA/RNA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-Fc fusion protein</td>
<td>RSLV-132</td>
<td>Phase Ia—recruiting</td>
</tr>
<tr>
<td>Recombinant DNAse 1</td>
<td></td>
<td>Phase Ib—completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLRs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR7/9 oligonucleotide inhibitor</td>
<td>DV1179</td>
<td>Phase Ib/IIa—completed</td>
</tr>
<tr>
<td>TLR7/9 oligonucleotide inhibitor</td>
<td>IRS-954</td>
<td>Preclinical</td>
</tr>
<tr>
<td>TLR7/9 oligonucleotide inhibitor</td>
<td>IMO-3100</td>
<td>Preclinical in SLE; Phase II completed in psoriasis</td>
</tr>
<tr>
<td>TLR7/8/9 oligonucleotide inhibitor</td>
<td>IMO-8400</td>
<td>Preclinical in SLE; Phase II completed in psoriasis</td>
</tr>
<tr>
<td>TLR7/8/9 small-molecule inhibitor</td>
<td>CpG-52364</td>
<td>Phase I—completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MyD88</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MyD88 dimerization inhibitor</td>
<td>ST-2825</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>

Oon S, Wilson NJ and Wicks I, 2016; clinicalTrials.gov
Inhibition of T Cell Activation and Polarization

1. Apoptotic debris bind autoantibodies and activate plasmacytoid dendritic cells

2. Dendritic cells activate autoreactive T and B cells and propagate inflammation

3. Tissue injury by cytotoxic T cells and autoantibodies

Adapted from Nature Medicine 18, 871–882 (2012)

Inhibition of T Cell Activation and Polarization

- Costimulation of T cells by antigen presenting cells (APC) leads to the activation of adaptive immunity and T cell-mediated damage
 - Abatacept (Orencia):
 - CTLA4-Ig, blocks CD80/86-CD28 interactions
 - Approved for RA, did not meet primary endpoints in SLE(IIb) and lupus nephritis (II/III), may be beneficial in arthritis
 - Dapirolizumab
 - Anti-CD40L: promising results in phase I
 - Ustekinumab (Stelara):
 - Anti-IL12/23, blocks T cell polarization (Th1/Th17)
 - Approved in psoriasis, psoriatic arthritis and Crohns’ disease
 - Positive results in phase II SLE (60% response vs 31% placebo)
 - Calcineurin inhibitors:
 - Tacrolimus and cyclosporine A already used as induction therapies in lupus nephritis
 - Voclosporin, an analog of CSA, starting phase III in lupus nephritis

Additional Approaches

- **Targeting the defective cleaning of apoptotic debris:** micro-particles, neutrophil extracellular traps (NETs)

- **Metabolic pathways:**
 - Dysregulated metabolic pathways in CD4 T, B, myeloid cells in SLE
 - MMF, methotrexate, glucocorticoids may have a positive impact on metabolic pathways
 - Rapamycin and PPARg agonists (mTOR inhibitors) in trials

- **Antigen-specific targeting, tolerance induction:** expansion of Treg and deletion/anergy of autoreactive T and B cells
 - Mostly pre-clinical
 - Autoantigens are not known for every patient
 - Dosing is crucial, tolerance induction could backfire

Audience Challenge Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Which statement(s) do you disagree with? (multiple answers possible)

- One new drug has been approved for lupus in decades
- Targeting more than one pathway at once may be required for maximal efficacy
- We just need to ‘crack the code’ and figure out the drug that will work for everyone
- Personalized medicine may be required for transformational efficacy
- I agree with all of the above
Conclusions

• SLE is a complex heterogeneous systemic autoimmune disease
• Both innate and adaptive immunity are implicated in the disease
• Significant unmet needs remain since only one new drug has been approved in decades
• Targeting of significant pathogenic pathways are being tested in the clinic (type I IFN, TLRs, costimulation)
• Personalized medicine and combination approaches may be required for transformational efficacy

Acknowledgments

• Mary Struthers
• Nicholas Meanwell
• Jim Burke
• Julie Carman
• Nataly Manjarrez Orduno
• Steve Nadler
“Treating Lupus: SLE Pathogenesis and Targeted Therapies”

Laurence Menard
Senior Research Investigator, Bristol-Myers Squibb

Mary Struthers
Director Immunoscience, Bristol-Myers Squibb

Slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars
Co-produced with ACS Medicinal Chemistry and the American Association of Pharmaceutical Scientists

A Full Year of Drug Discovery Webinars!

2017 Drug Design and Delivery Symposium

January 26 Fighting Cancer: Targeting Chronically Malignant Tumor Inhibitors
Timothy Hefton - Genentech
Mark Wittenman - Bristol-Myers Squibb

February 23 Fighting Cancer: Epigenetics and Oncology
Stuart Conway - Oxford
Sharon Baggi - AstraZeneca

March 28 Fighting Cancer: Allotery and Targeting Cancer Cell Metabolism
Stefan Gross - Agios
Scott Edmundson - AstraZeneca

April 20 Cystic Fibrosis: Discovery of CFTR Modulators
Peter Groothuis - Vertex
Nick Meanwell - Bristol-Myers Squibb

May 25 Anti-Infectives: Rational Approaches to the Design and Optimization of Novel Drugs
Jason Sello - Brown University
Courtney Aldrich - University of Minnesota

June 29 Tuberculosis: An Introduction for Medicinal Chemists
Carl Nathan - Weill Cornell Medicine
Christopher Boyce - Merck

July 27 Viral Hepatitis: The Search for a Cure
Mike Sofia - Arbutus Biopharma
Stephen Mason - CarGEO Corporation

Special Broadcast

September 28 Spinal Muscular Atrophy
Kevin Heddle - Harvard Medical School
Alyson Waldmann - ACS Publications

October 26 Psoriasis: Treatment and Novel Approaches
Frank Narjes - AstraZeneca
John Morrison - Bristol-Myers Squibb

November 30 Lupus: Treatment and Novel Approaches
Laurence Menard - Bristol-Myers Squibb
Mary Struthers - Bristol-Myers Squibb

Upcoming ACS Webinars
www.acs.org/acswebinars

Tuesday, December 12, 2017

New Requirements for Chemicals in Commerce: Chemical Regulation under TSCA Reform
Special Broadcast for ACS Chemistry & the Law Division
Irene Hantman, Esq. Counsel, Verdant Law, PLLC
Kurt Blase, Senior Counsel, Verdant Law, PLLC

Thursday, December 14, 2017

How to Sustainably Innovate Throughout the Life Cycle of Drug Research and Development
Co-produced with the ACS Green Chemistry Institute
Paul Richardson, Director, Discovery Chemistry, Pfizer
Joe Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org

“Treating Lupus: SLE Pathogenesis and Targeted Therapies”

Laurence Menard
Senior Research Investigator, Bristol-Myers Squibb
Mary Struthers
Director Immunoscience, Bristol-Myers Squibb

Slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars
Co-produced with ACS Medicinal Chemistry and the American Association of Pharmaceutical Scientists
Learn more at:
www.aapspharmsci360.org

Join the ACS Division of Medicinal Chemistry Today!

For $25 ($10 for students), You Will Receive:

- A free copy of our annual medicinal chemistry review volume (over 600 pages, $160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org
Tomorrow’s Virtual Issue from Various ACS Journals for World AIDS Day!

Available Friday, December 1st

FIGHTING HIV WITH CHEMISTRY

How has ACS Webinars® benefited you?

“I found the webinar very interesting and the presentation clear, informative, and educational. I look forward to more ACS Webinars!”

Fan of the Week
Stephanie E. Logan, MS
High School Science
Trinity Christian Academy

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars

www.acs.org/acswebinars

Tuesday, December 12, 2017

New Requirements for Chemicals in Commerce: Chemical Regulation under TSCA Reform
Special Broadcast for ACS Chemistry & the Law Division

Irene Hantman, Esq. Counsel, Verdant Law, PLLC
Kurt Blase, Senior Counsel, Verdant Law, PLLC

Thursday, December 14, 2017

How to Sustainably Innovate Throughout the Life Cycle of Drug Research and Development
Co-produced with the ACS Green Chemistry Institute

Paul Richardson, Director, Discovery Chemistry, Pfizer
Joe Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org