

Have Questions?

Type them into questions box!

"Why am I muted?"

Don't worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

1

@AmericanChemicalSociety

@AmerChemSociety

@AmerChemSociety

<https://www.linkedin.com/company/american-chemical-society>

2

Contact ACS Webinars ® at acswebinars@acs.org

Check out the ACS Webinar Library!

An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Library is divided into 6 different sections to help you more easily find what you are searching.

Professional Development

[▶ View the Collection](#)

Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what can not be taught in the lab.

Technology & Innovation

[▶ View the Collection](#)

From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.

Drug Design and Delivery

[▶ View the Collection](#)

The Drug Design Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insight on how to possibly overcome your own med chem roadblocks.

Culinary Chemistry

[▶ View the Collection](#)

Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don't forget to come back for a second helping.

Popular Chemistry

[▶ View the Collection](#)

Feeling burdened by all that molecular weight? Listen to experts expound on the amazing side of current hot science topics. Discover the chemistry of rockets, how viruses have affected human history, or the molecular breakdown of a hangover.

Business & Entrepreneurship

[▶ View the Collection](#)

How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry whether you are looking to start a business or desire a priceless industry-wide perspective.

<https://www.acs.org/content/acs/en/acs-webinars/videos.html>

3

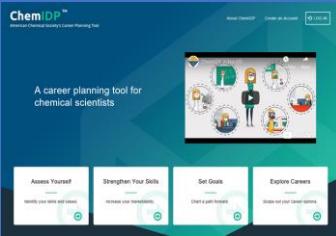
ACS Webinars®

CLICK • WATCH • LEARN • DISCUSS

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public several times a week generally from 2-3pm ET!


A collection of the best recordings from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.

www.acs.org/acswebinars

4

Advance YOUR CAREER

ChemIDP™

ChemIDP.org

Discover ACS PUBLICATIONS

Publishing Resources

publish.acs.org

Connect WITH CHEMISTS AND OTHER SCIENCE PROFESSIONALS

CAS SciFinder Future Leaders

171 alumni, 35 countries and over 120 institutions

acsocampus.acs.org/resources

ACS
Chemistry for Life®

From ACS Industry Member Programs

- ♦ **Industry Matters Newsletter**
ACS Member-only weekly newsletter with exclusive interviews with industry leaders and insights to advance your career.
Preview & Subscribe: acs.org/indnews
- ♦

Connect, collaborate, and stay informed about the trends leading chemical innovation
Join: bit.ly/ACSinnovationhub

ACS Career Navigator: Your Home for Career Services

Whether you are just starting your journey, transitioning jobs, or looking to brush up or learn new skills, the **ACS Career Navigator** has the resources to point you in the right direction.

We have a collection of career resources to support you during this global pandemic:

Professional
Education

Virtual Career
Consultants

ACS Leadership
Development System

Career Navigator LIVE!

ChemIDP

College to Career

ACS Webinars

Virtual Classrooms

Visit www.acs.org/COVID19-Network to learn more!

7

Join us in our efforts to increase the diversity of chemistry.

Valued donors like you have sustained ACS educational programs that are welcoming students from diverse backgrounds into our profession.

www.acs.org/donate

ACS Office of Philanthropy
Chemistry for Life®

ACS Department of Diversity Programs

Advancing ACS's Core Value of Diversity, Inclusion & Respect

We believe in the strength of diversity in all its forms, because inclusion of and respect for diverse people, experiences, and ideas lead to superior solutions to world challenges and advances chemistry as a global, multidisciplinary science.

Contact Us:

https://app.suggestionox.com/r/DI_R
Diversity@acs.org

@ACSDiversity

acsvoices.podbean.com/

ACS Diversity

www.acs.org/diversity

9

ACS Webinars®

CLICK • WATCH • LEARN • DISCUSS

Date: Wednesday, March 3, 2021 @ 2-3pm ET
Speaker: Robert Migliorini, Exxon Mobil Corporation
Moderator: Bryan Tweedy, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- Learn about the major sections of a contract and common types of IP related agreements, including confidentiality/non-disclosure, material transfer, and more
- Understand the various type of IP agreements, the business and technical use of each type of agreement and the important provisions for each type of IP agreement
- Know the appropriate type of IP agreement to put in place prior to working with an outside party

Co-produced with: ACS Professional Education

Date: Wednesday, March 10, 2021 @ 11am-12pm ET
Speakers: Zafra Lerman, Malta Conferences Foundation / Peter Hotchkiss, Organisation for the Prohibition of Chemical Weapons / Vaughan Turekian, National Academies' Policy and Global Affairs Division
Moderator: Lori Brown, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- How the OPCW works with the governments of 193 countries to prevent the use of chemical weapons
- How the US National Academies' Policy and Global Affairs office mobilizes experts and networks around the world to increase the use of evidence to advance local, national and global policy and capacity
- How the Malta Conferences uses science diplomacy to overcome cultural, religious, and political barriers in the Middle East

Co-produced with: ACS External Affairs & Communications

ACS

Chemistry for Life®

Date: Thursday, March 11, 2021 @ 1-2pm ET

Speakers: Julie Mann, PURIS Holdings, LLC / Joshua March, Artemys Foods / Andrew Ivey, Big Idea Venture
Moderator: Christopher Gregson, Greenstalk Food Consulting LLC

[Register for Free!](#)

What You Will Learn:

- A better understanding of the most significant transformation of the food industry in decades
- The challenges of formulating plant-based products or using cell cultures to "grow" meat
- How it will affect peoples' dietary choices in the future

Co-produced with: The Science History Institute and Chemical & Engineering News

www.acs.org/acswebinars

10

aaps American Association of Pharmaceutical Scientists

2021 National Biotechnology Conference

AAPS seeks experienced scientists to lead the 2021 NBC Scientific Programming Committee!

[READ MORE](#)

Contact Us:
2107 Wilson Blvd
#700
Arlington, VA 22201

(703)243-2800
aaps@aaps.org

AAPS Membership
membership@aaps.org
(877)998-2277 (AAPS)

PharmSci 360

Check out the program today!

[Read More](#)

PharmSci 360

Registration is now open!

[Read More](#)

PharmSci 360 Workshops

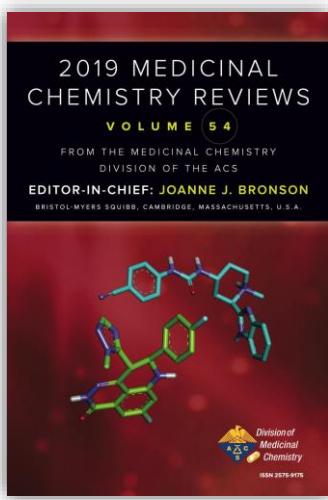
View full list today!

[Read More](#)

AAPS Happenings:

AAPS Member Demographics

AAPS Live Webinars Are Free and Open Access


Webinars offer a great opportunity to receive the latest information on pharmaceutical science topics without the need for travel or time away from home and office. Plan to participate in our upcoming live events, replay a past session in our archives, or submit a proposal for organizing your own webinar!

[Register for Upcoming Webinars](#)
[Reply/Archived Webinars](#)
Archived webinars are a member benefit—join today!

<https://www.aaps.org>

11

Join the Division Today!

For \$25 membership (\$10 for students), You Will Receive:

- A free digital copy of our annual medicinal chemistry review volume (over 680 pages, \$160 retail price)
- Abstracts of MEDI programming at national meetings
- Access to student travel grants and fellowships

Find out more about the ACS MEDI Division! www.acsmedchem.org

12

ORGANIZERS

- Annette Bak
AstraZeneca
- Lorraine Clark
ACS Publications
- Patrice L. Jackson-Ayotunde
Univ. of Maryland Eastern Shore
- Anirban Mahapatra
ACS Publications
- Nicholas Meanwell
Bristol-Myers Squibb
- John Morrison
The Janssen Pharmaceutical Companies of Johnson & Johnson
- Nurulain Zaveri
AstraZeneca Therapeutics

2021 Drug Design and Delivery Series

We are continuing the theme of last year's symposium and will feature more of the most innovative and revolutionary ideas in drug design and delivery. **This year we have decided to increase the duration of each broadcast for an additional 30 minutes in the hope to dive deeper into each topic as well as answer more of your questions.** The details for upcoming broadcasts will be posted as they are finalized.

<https://www.acs.org/content/acs/en/acs-webinars/drug-discovery.html>

CO-PRODUCED WITH

SPEAKERS FROM

13

 ACS Chemistry for Life®

ACS Publications Most Trusted. Most Cited. Most Read. aaps® ACS Technical Division Medicinal Chemistry (MEDI)

THE DISCOVERY OF SOTORASIB (AMG 510)

FIRST-IN-CLASS INVESTIGATIONAL COVALENT INHIBITOR OF KRAS G12C

 FREE Webinar | TODAY at 2pm ET ACS Webinars® CLICK • WATCH • LEARN • DISCUSS

THIS ACS WEBINAR WILL BEGIN SHORTLY...

14

The Discovery of Sotorasib (AMG 510): First-in-Class Investigational Covalent Inhibitor of KRAS G12C

Brian Lanman
Director Research,
Medicinal Chemistry, Amgen, Inc.

Ariamala Gopalsamy
Director, Interim Head of Boston Oncology
Chemistry, AstraZeneca

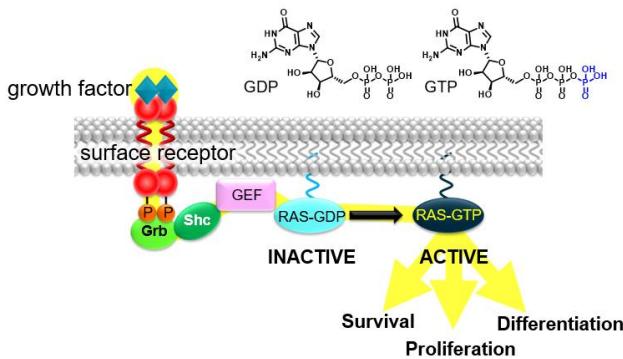
Presentation slides are available now! The edited recording will be made available as soon as possible.

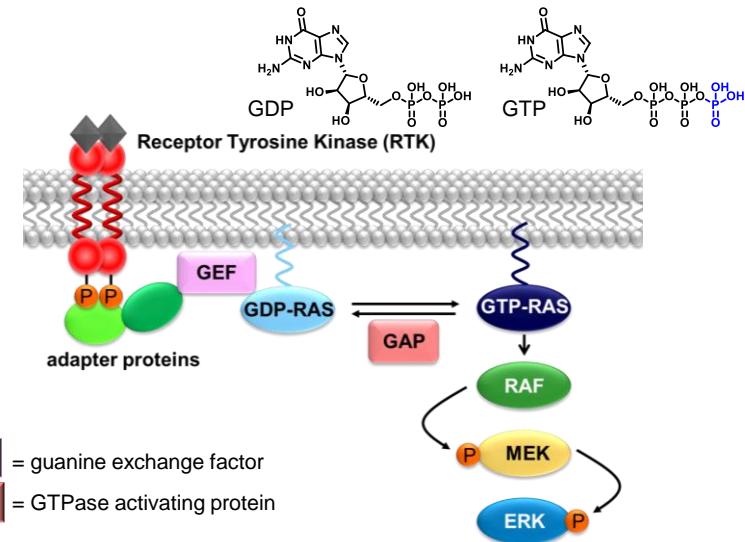
www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Medicinal Chemistry, American Association of Pharmaceutical Scientists, and ACS Publications

15

RAS, A MOLECULAR SWITCH REGULATING CELLULAR PROLIFERATION

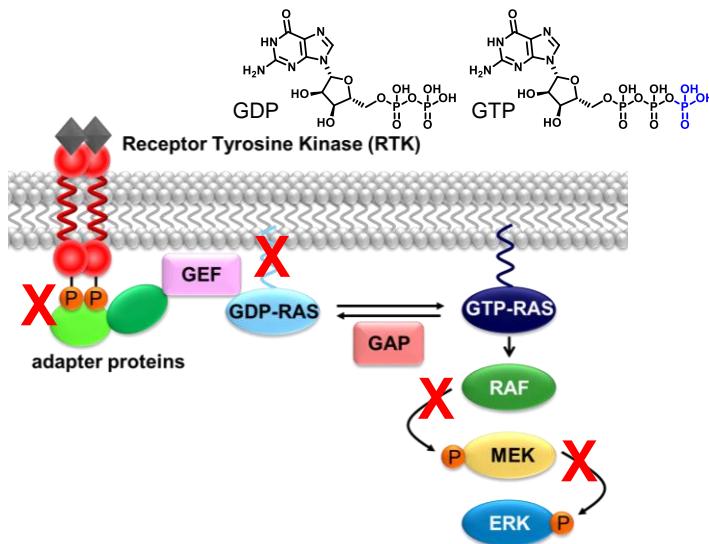



Table 1 | Activation of RAS signalling pathways in different tumours

Defect or mutation	Tumour type	Frequency (%)
RAS mutation	Pancreas	90 (K)
	Lung adenocarcinoma (non-small-cell)	35 (K)
	Colorectal	45 (K)
	Thyroid (Follicular)	55 (H, K, N)
	Thyroid (Undifferentiated papillary)	60 (H, K, N)
	Seminoma	45 (K, N)
	Melanoma	15 (N)
	Bladder	10 (H)
	Liver	30 (N)
	Kidney	10 (H)
	Myelodysplastic syndrome	40 (N, K)
	Acute myelogenous leukaemia	30 (N)

Downward, J. *Nat. Rev. Cancer* **2003**, 3, 11–22

Nearly 50% of all cancers demonstrate oncogenic mutations of the Ras signaling pathway


WORK IN THE 1980s DEFINED THE RAS SIGNALING PATHWAY

17

AMGEN

PROGRESS IN INHIBITING THIS PATHWAY BEGAN IN THE EARLY 2000s

Therapeutically useful inhibitors of Ras have remained elusive for over 30 years

“UNDRUGGABLE”: DIRECT INHIBITORS OF RAS REMAINED ELUSIVE

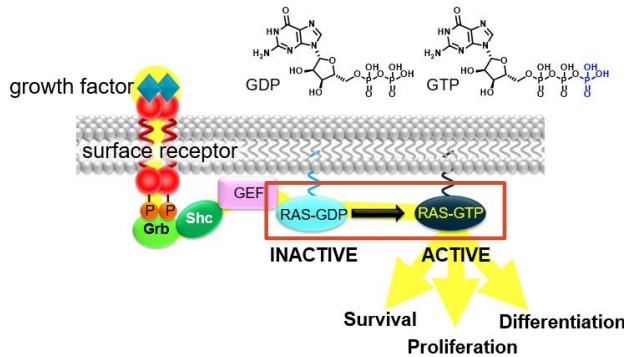
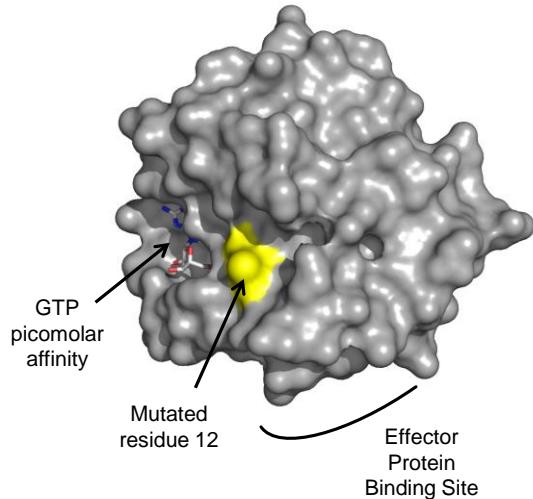


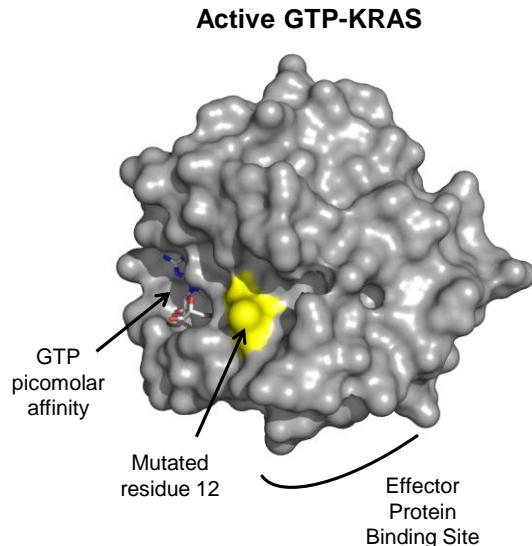
Table 1 | Activation of RAS signalling pathways in different tumours


Defect or mutation	Tumour type	Frequency (%)
RAS mutation	Pancreas	90 (K)
	Lung adenocarcinoma (non-small-cell)	35 (K)
	Colorectal	45 (K)
	Thyroid (Follicular)	55 (H, K, N)
	Thyroid (Undifferentiated papillary)	60 (H, K, N)
	Seminoma	45 (K, N)
	Melanoma	15 (N)
	Bladder	10 (H)
	Liver	30 (N)
	Kidney	10 (H)
	Myelodysplastic syndrome	40 (N, K)
	Acute myelogenous leukaemia	30 (N)

Downward, J. Nat. Rev. Cancer 2003, 3, 11–22

Nearly 50% of all cancers demonstrate oncogenic mutations of the Ras signaling pathway

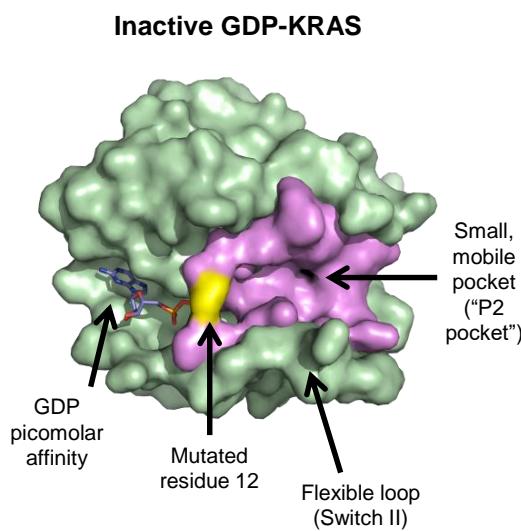
WHY HAS KRAS SIGNALING REMAINED RESISTANT TO INHIBITION?


Active GTP-KRAS

- GTP-KRAS is a good approximation of the definition of “undruggable”
- GTP pocket: $K_d \sim 10 \text{ pM}$
Intracellular GTP concentration: 0.5 mM
- Other surface clefts too small ($<100 \text{ \AA}^3$) to enable high-affinity binding

AMGEN

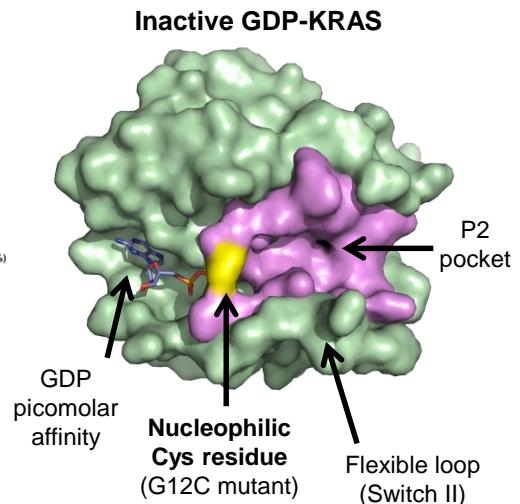
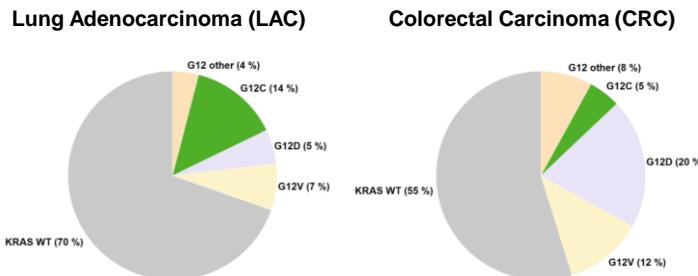
WHY HAS KRAS SIGNALING REMAINED RESISTANT TO INHIBITION?


21

https://disney.fandom.com/wiki/Death_Star

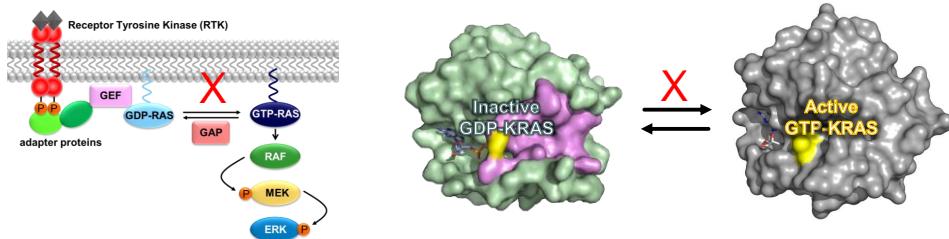
AMGEN

A NEW STRATEGY: COULD INHIBITING GDP-KRAS SUPPRESS SIGNALING?

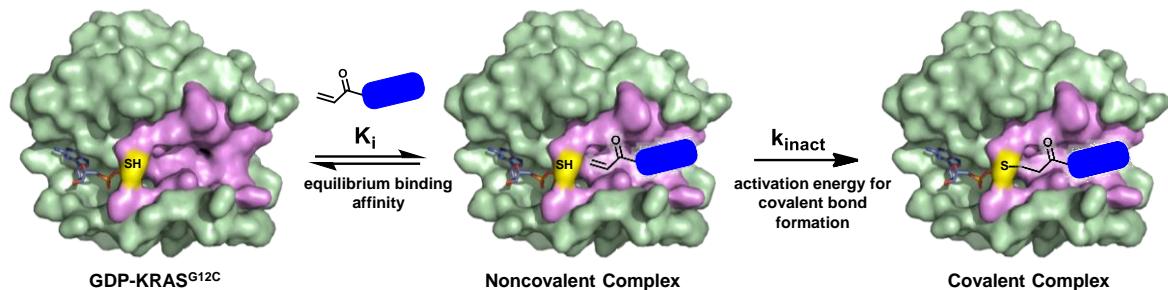


22

- GDP binding induces a small, flexible pocket adjacent to the GDP binding side
- Small size ($139\text{--}213 \text{ \AA}^3$) & limited enclosure precluded the identification of high-affinity binders
- Proximity to a frequently mutated residue, Gly12, suggested a potential strategy...

AMGEN


THE G12C MUTANT OFFERS A UNIQUE OPPORTUNITY IN TARGETING GDP-KRAS BECAUSE IT POSITION A REACTIVE CYS RESIDUE NEXT TO THE P2 POCKET

Codon 12 mutation frequency in select solid tumors



Survey of COSMIC, cBioPortal, TumorPortal, and ICGC data portal. *Nat. Rev. Drug Disc.* 2014, 13, 828–851

PROJECT GOAL: LOCK GDP-KRAS^{G12C} IN ITS INACTIVE STATE...

...WITH A COVALENT INHIBITOR OF KRAS^{G12C}

Motivations & potential benefits:

- Moderately druggable pocket \Rightarrow only low-affinity ligands (K_i) likely to be identified; Covalent binding (k_{inact}) should afford **enhanced potency**
- Targeting G12C allows for selectivity toward non-mutant KRAS, **mitigating off-target toxicity**
- Irreversible inhibition should allow for **persistent pharmacological effects** (i.e., persisting until unmodified protein is resynthesized and lasting even after elimination of circulating drug)

Review of covalent inhibitors as a therapeutic class: J. Singh, *et al.*, *Nat. Rev. Drug Disc.* **2011**, *10*, 307–317

POLL QUESTION: FIRST COVALENT INHIBITOR?

Which of the following was the first marketed covalent inhibitor drug?

benzylpenicillin (Penicillin G)

acetylsalicylic acid (Aspirin)

omeprazole (Prilosec)

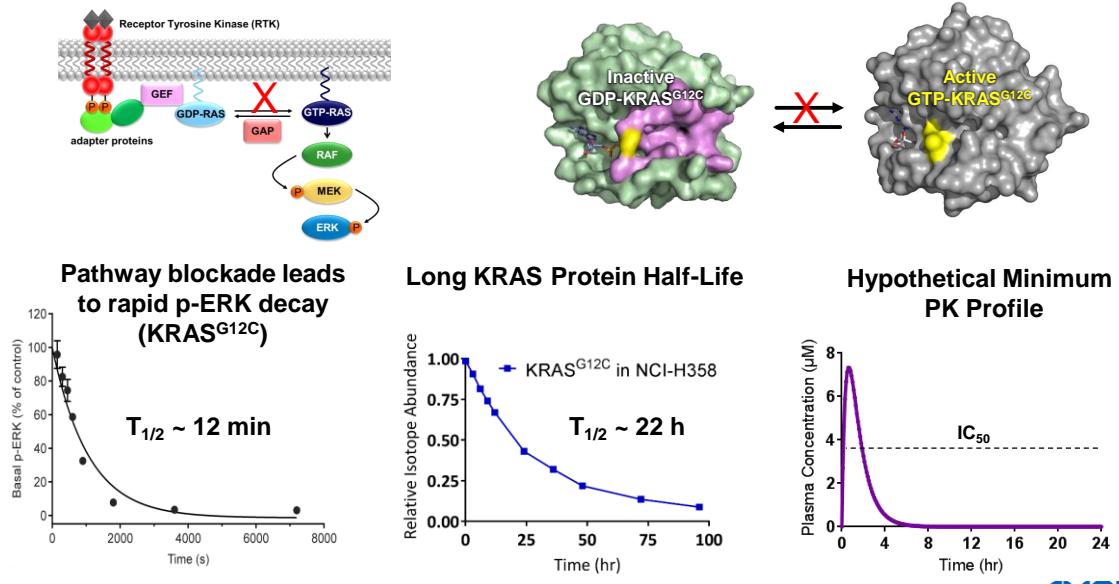
clopidogrel (Plavix)

POLL QUESTION: FIRST COVALENT INHIBITOR?

Answer: acetylsalicylic acid (Aspirin)

benzylpenicillin (Penicillin G) – 1942

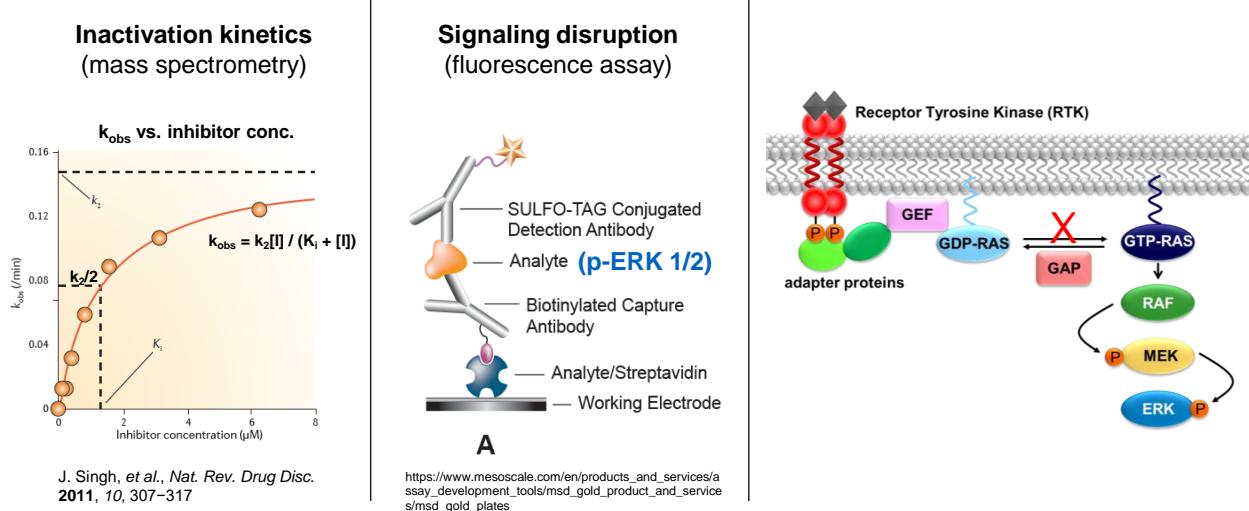
acetylsalicylic acid (Aspirin) – 1899

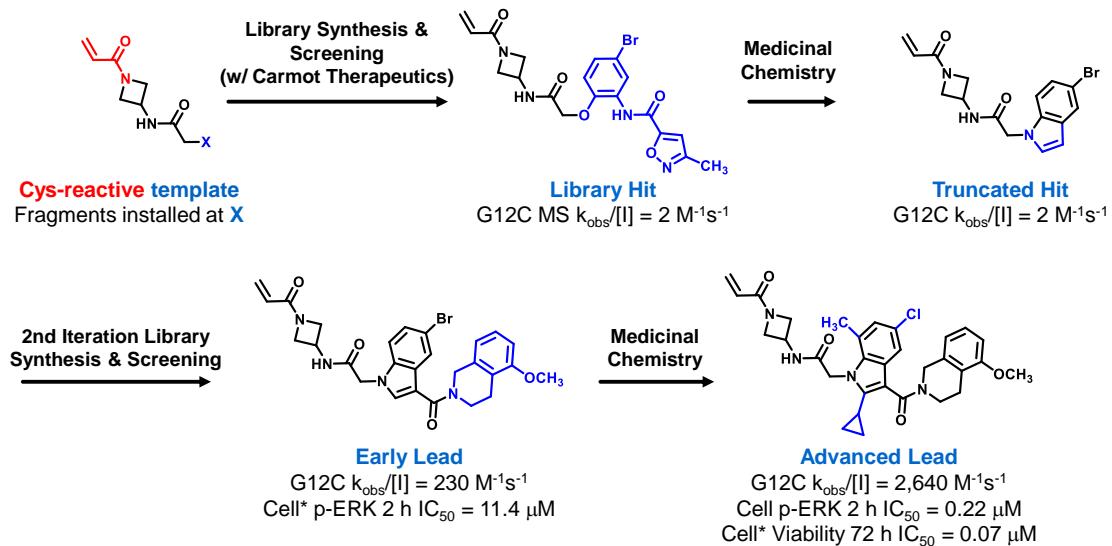

omeprazole (Prilosec) – 1988

clopidogrel (Plavix) – 1997

27

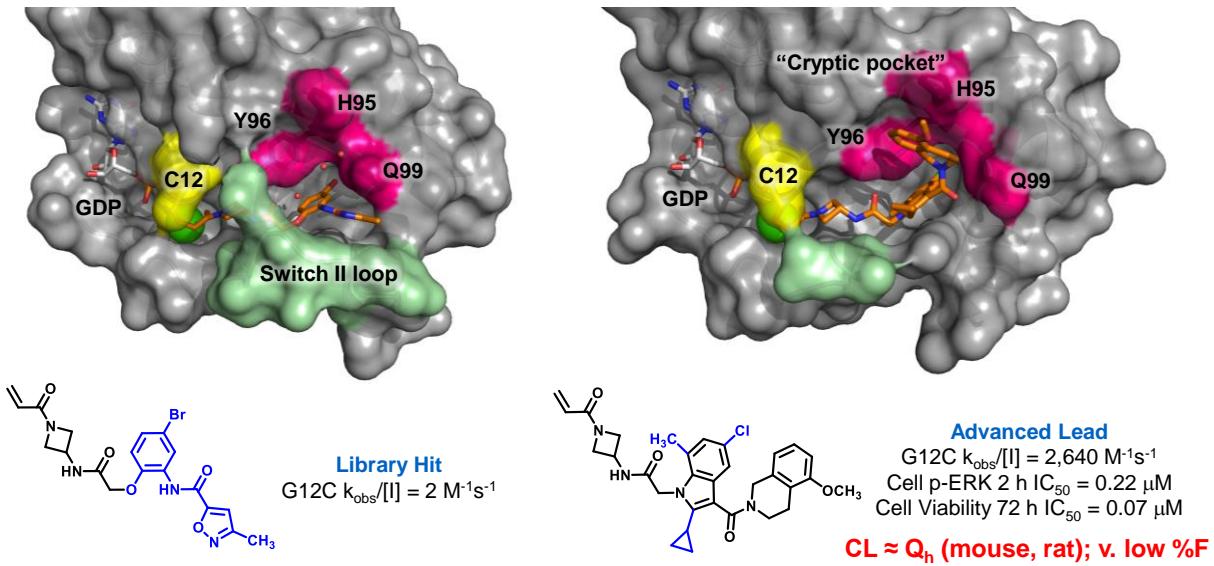
AMGEN


ASSESSING FEASIBILITY: LOCKING GDP-KRAS^{G12C} IN ITS INACTIVE STATE


28

AMGEN

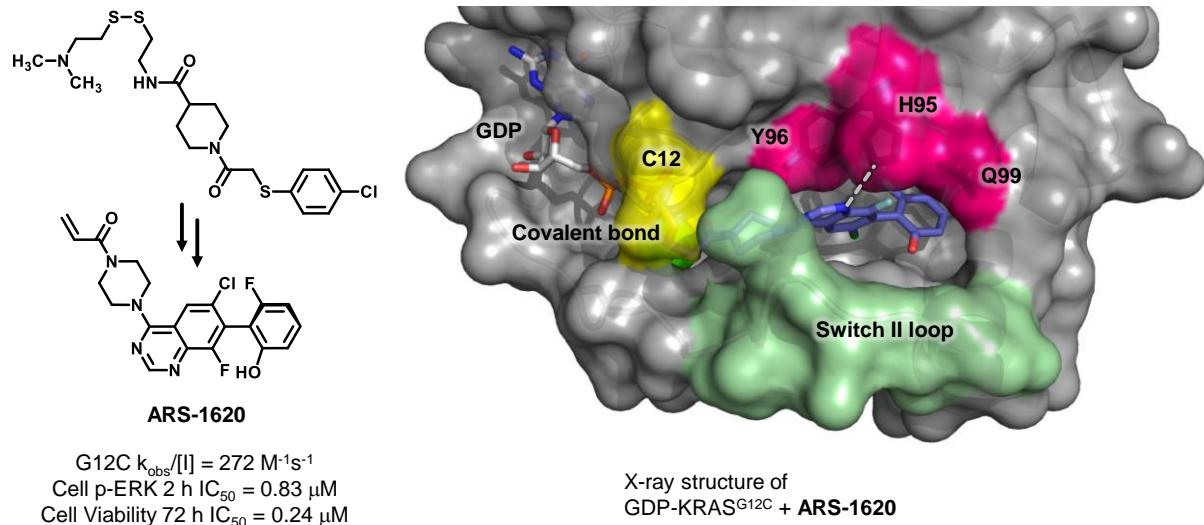
ASSESSING LEADS: AN OVERVIEW OF KRAS ASSAYS


THE SEARCH FOR A STARTING POINT: SCREENING LIBRARIES OF CYS-REACTIVE COMPOUNDS IDENTIFIED A NOVEL INHIBITOR SCAFFOLD

Y. Shin, et al., *ACS Med. Chem. Lett.* 2019, 10, 1302–1308

* MIA PaCa-2 human pancreatic tumor (homozygous KRAS p.G12C-mutant)

NEW SCAFFOLDS ENGAGED A PROXIMAL CRYPTIC POCKET

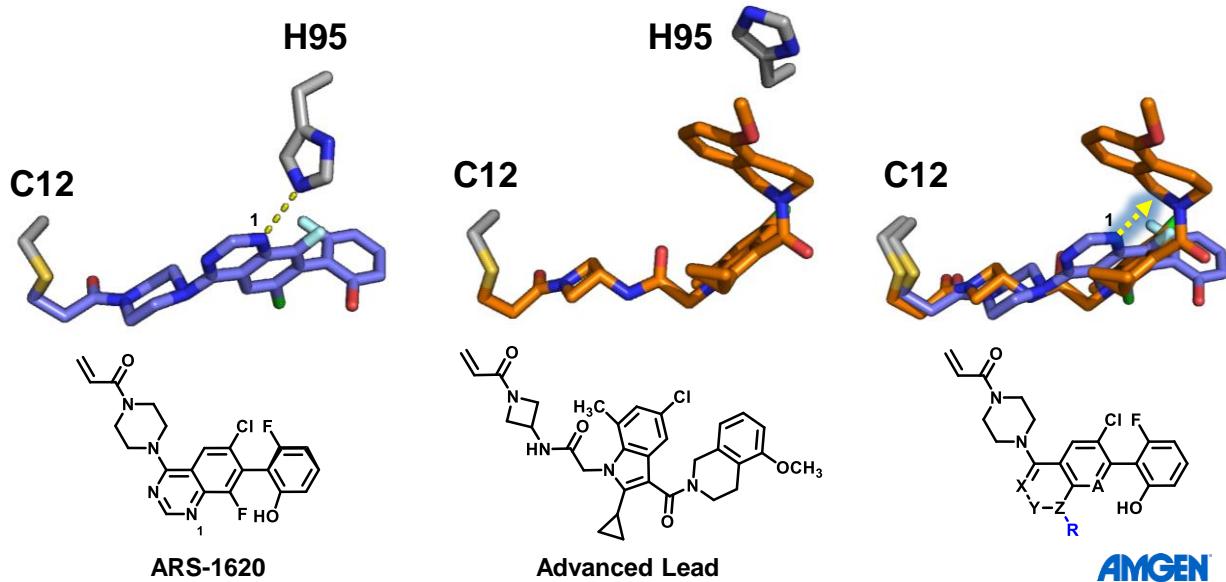


Y. Shin, et al., *ACS Med. Chem. Lett.* **2019**, *10*, 1302–1308

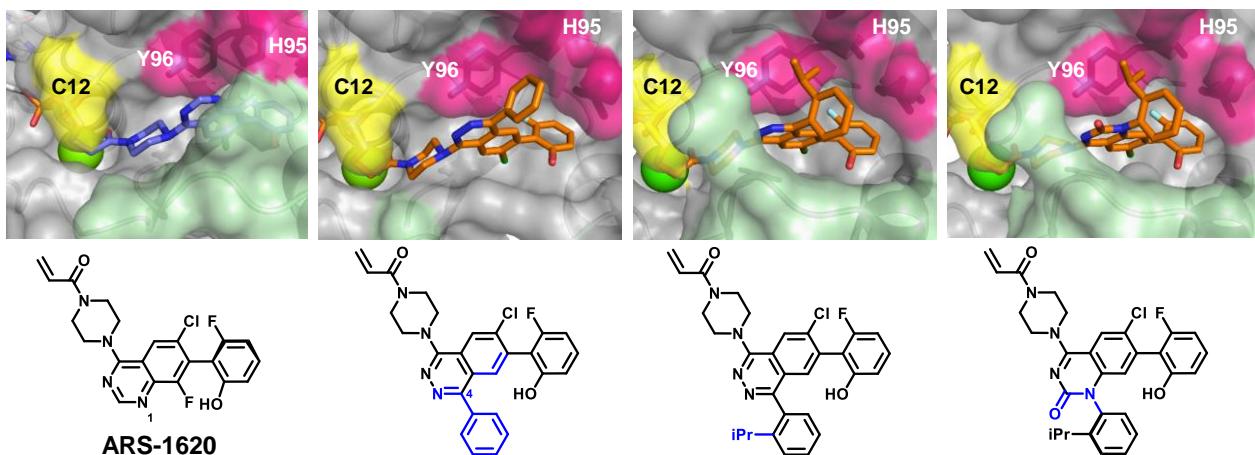
31

AMGEN

STRUCTURAL BIOLOGY OF A PUBLISHED KRAS^{G12C} INHIBITOR



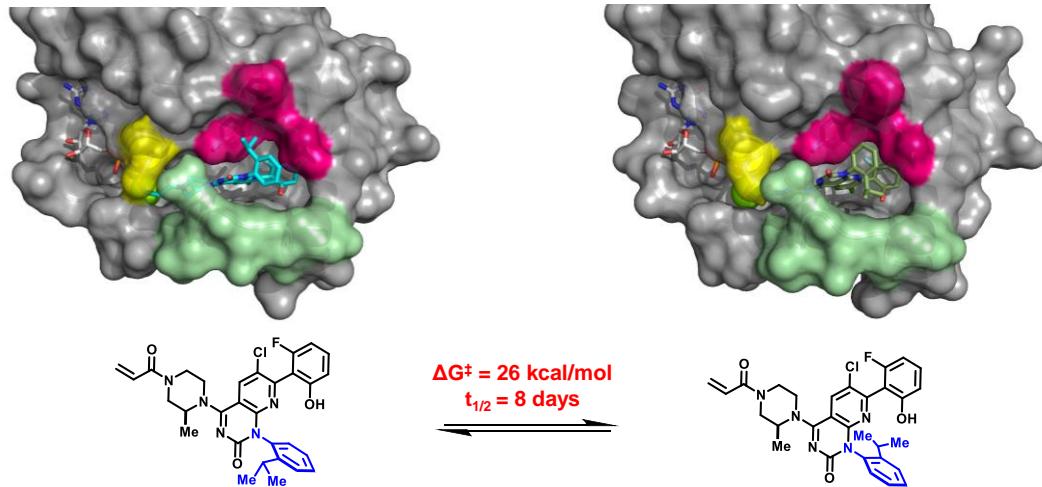
M. R. Janes, et al. *Cell* **2018**, *172*, 578–589


32

AMGEN

HYBRIDIZING SCAFFOLDS TO IDENTIFY NEW CHEMICAL MATTER WITH IMPROVED PHARMACEUTICAL PROPERTIES

HYBRID SCAFFOLDS EXPLOIT THE CRYPTIC POCKET & GAIN POTENCY



Cell p-ERK 2 h IC ₅₀ (μM)			
2.89 (0.831 [*])	58.0	3.47	0.211 (0.130 [*])
Cell Viability 72 h IC ₅₀ (μM)			
0.492 (0.246 [*])	n.d.	1.10	0.113 (0.093 [*])

^{*} Single atropisomer

Lanman, *et al.*, *J. Med. Chem.* **2020**, 1, 52–65

...BUT WITH A STEREOCHEMICAL COMPLICATION

N-Aryl Quinazolinone (*R*)-Atropisomer
 Cell p-ERK 2 h $IC_{50} = 0.043 \mu\text{M}$
 Cell Viability 72 h $IC_{50} = 0.005 \mu\text{M}$

N-Aryl Quinazolinone (*S*)-Atropisomer
 Cell p-ERK 2 h $IC_{50} = 0.500 \mu\text{M}$
 Cell Viability 72 h $IC_{50} = 0.045 \mu\text{M}$

AMGEN

35

POLL QUESTION: ATROPISSOMERISM

When was phenomena of atropisomerism first reported in the literature?

1815

1848

1893

1922

36

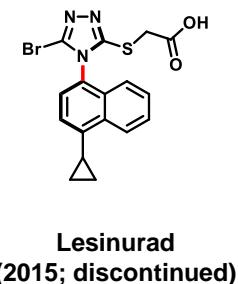
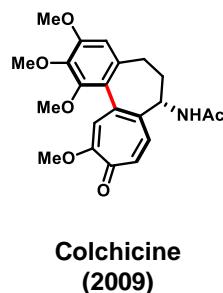
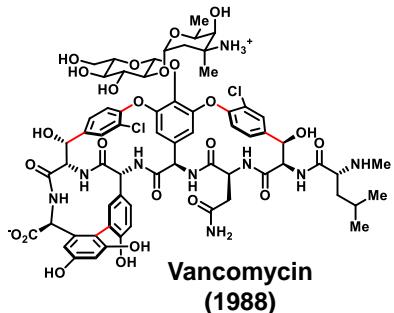
AMGEN

POLL QUESTION: ATROPISOMERISM

When was phenomena of atropisomerism first reported in the literature?

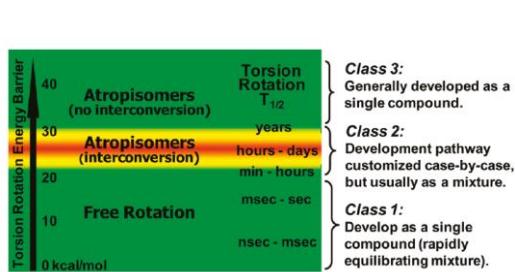
1815 – Jean-Baptiste Biot; rotation of plane-polarized light

1848 – Louis Pasteur; discovery of enantiomers




1893 – Lord Kelvin coined the term “chirality”

1922 – James Kenner & George Hallatt Christie (Univ. of Sheffield); atropisomer separation by crystallization

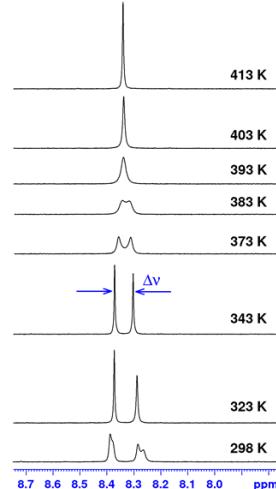
37


FAST FACTS: ATROPISOMERISM

- The term *atropisomer* was first proposed in 1933 by Richard Kuhn (Univ. of Heidelberg; 1938 Nobel Laureate in Chemistry)
- Atropisomer* is derived from the Greek *atropos*, meaning “without turn”
- Examples of FDA-approved atropisomERICALLY stable drugs:

38

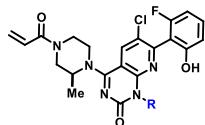
HOW TO DEAL WITH META-STABLE ATROPISOMERS?



LaPlante, S. R., et al. *J. Med. Chem.*, 2011, 54, 7005–7022

Strategies:

- (1) Lock biaryl bond rotation
- (2) Completely free rotation of biaryl bond
- (3) Remove axial chirality

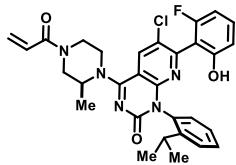

$$\Delta G^\ddagger = 0.0191 \cdot T_c (9.97 + \ln \left(\frac{T_c}{\Delta v} \right))$$

AMGEN

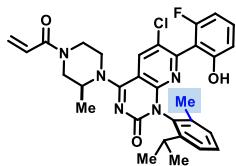
39

OPTIMIZATION OF ATROPISOMER STABILITY & KRAS ACTIVITY

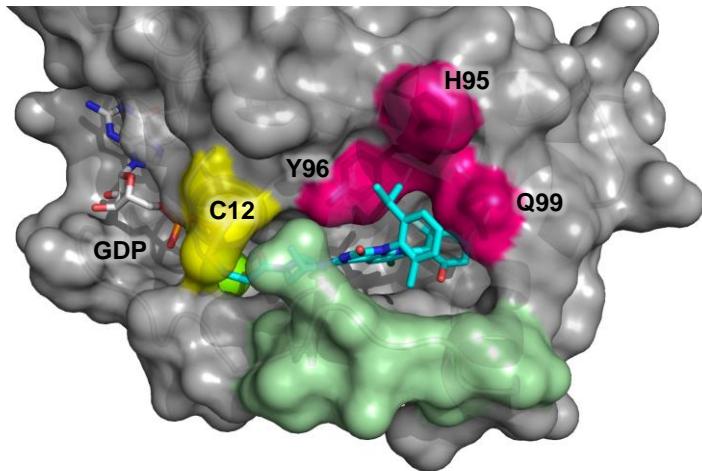
Cmpd	R	Coupled Exchange IC ₅₀ (μM)	p-ERK IC ₅₀ (μM)	Interconversion barrier (ΔG [‡] , kcal/mol) ^a
(R)-18	i-Pr	0.051	0.044	26.0 ¹
(R)-23	i-Bu	0.117	0.051	>30 ²
(R)-24	i-Pr	0.025	0.028	>30 ²
26	i-Pr	0.083	0.053	23.5 ²
28	i-Pr	0.081	0.063	17.5 ²
31	Et	0.068	0.036	NA
33	i-Pr	0.021	0.025	NA


^aInterconversion barriers measured by ¹time-course or ²VT NMR

Cmpd	CL (L/h/kg)	PPB (f _u)	t _{1/2} (h)	%F	10 mg/kg C _{max,u} / p-ERK IC ₅₀
(R)-24	2.7	0.03	0.5	21	4.5
28	2.2	0.02	1.1	22	1.5
31	3.3	0.03	0.5	8	0.8
33	2.3	0.03	0.8	13	0.8

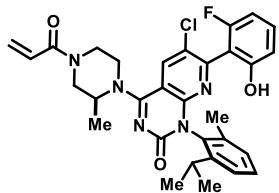


Lanman, et al., *J. Med. Chem.* 2020, 1, 52–65


BIS-ORTHO SUBSTITUTION AFFORDS A CONFIGURATIONALLY STABLE LEAD

$k_{\text{obs}}/[I] = 5,800 \text{ M}^{-1}\text{s}^{-1}$
 Cell p-ERK 2 h $\text{IC}_{50} = 0.043 \mu\text{M}$
 Cell Viability 72 h $\text{IC}_{50} = 0.005 \mu\text{M}$
 $\Delta G^\ddagger = 26 \text{ kcal/mol (DMSO); } t_{1/2} = 8 \text{ days}$

$k_{\text{obs}}/[I] = 23,500 \text{ M}^{-1}\text{s}^{-1}$
 Cell p-ERK 2 h $\text{IC}_{50} = 0.033 \mu\text{M}$
 Cell Viability 72 h $\text{IC}_{50} = 0.002 \mu\text{M}$
 $\Delta G^\ddagger = 35 \text{ kcal/mol (DMSO); } t_{1/2} = >2,000 \text{ years}$

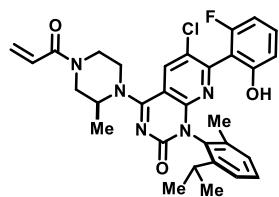

Bis-ortho substitution restricts C–N bond rotation, affording separable & highly stable atropisomers

AMGEN

41

FROM LEAD TO DRUG: OPTIMIZATION OF PHARMACEUTICAL PROPERTIES

Configurationally-Stable Lead

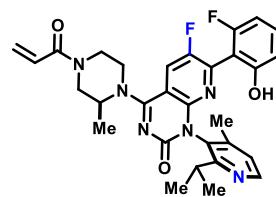

Cell p-ERK 2 h $\text{IC}_{50} = 0.033 \mu\text{M}$
 Cell Viability 72 h $\text{IC}_{50} = 0.002 \mu\text{M}$

	Solubility (mg/mL)	
	Amorphous	Crystalline
FaSSGF (pH 1.6)	0.108	0.001
PBS (pH 7.4)	0.115	<0.001
FaSSIF (pH 6.8)	0.118	0.004

Oral bioavailability (%F) markedly impacted by crystalline form

FROM LEAD TO DRUG: OPTIMIZATION OF PHARMACEUTICAL PROPERTIES

Configurationally-Stable Lead



Cell p-ERK 2 h IC_{50} = 0.033 μ M
Cell Viability 72 h IC_{50} = 0.002 μ M

	Solubility (mg/mL)	
	Amorphous	Crystalline
FaSSGF (pH 1.6)	0.108	0.001
PBS (pH 7.4)	0.115	<0.001
FaSSIF (pH 6.8)	0.118	0.004

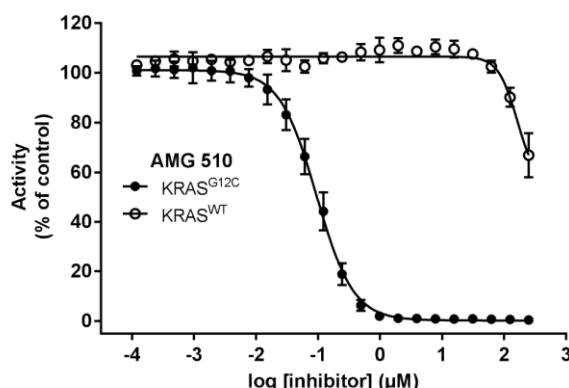
Oral bioavailability (%F) markedly impacted by crystalline form

Sotorasib (AMG 510)

Cell p-ERK 2 h IC_{50} = 0.070 μ M
Cell Viability 72 h IC_{50} = 0.005 μ M

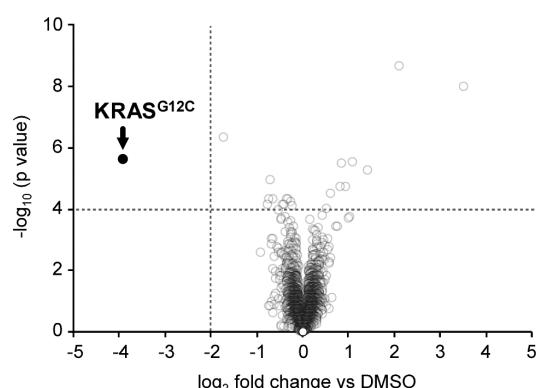
	Solubility (mg/mL)	
	Amorphous	Crystalline
FaSSGF (pH 1.6)	4.2	2.4
PBS (pH 7.4)	0.10	0.052
FaSSIF (pH 6.8)	0.17	0.070

Oral bioavailability (%F) similar across different physical forms


Lanman, et al., *J. Med. Chem.* 2020, 1, 52–65

43

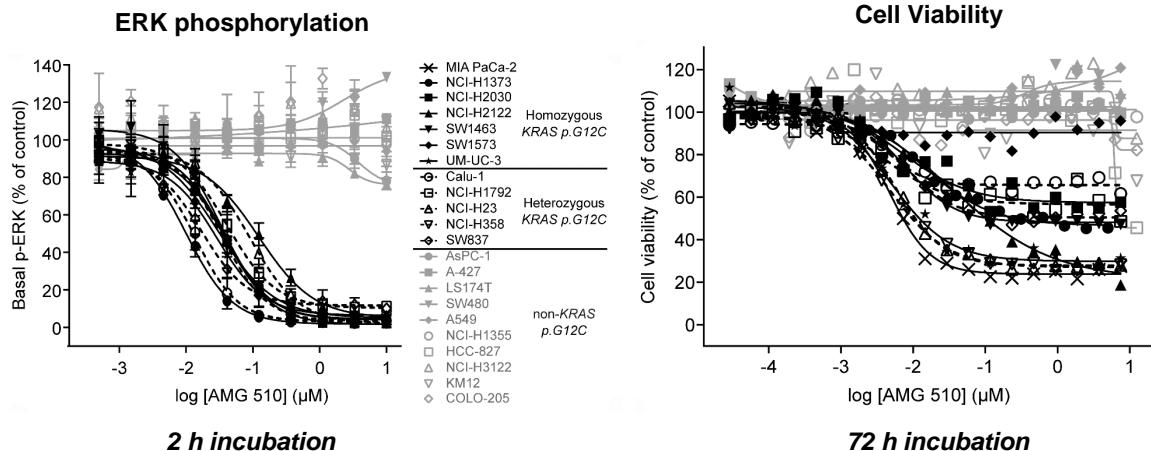
AMGEN


SOTORASIB (AMG 510) IS HIGHLY SELECTIVE FOR KRAS^{G12C}

Coupled Nucleotide Exchange

40 min SOS-1-catalyzed GDP/GTP exchange coupled to binding of c-RAF RAS-binding domain (RBD)

NCI-H358 Cysteine Proteome (Sotorasib vs DMSO)

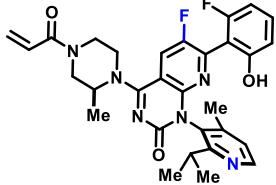

6451 unique cysteine-containing peptides identified

Canon, et al., *Nature* 2019, 575, 217–223

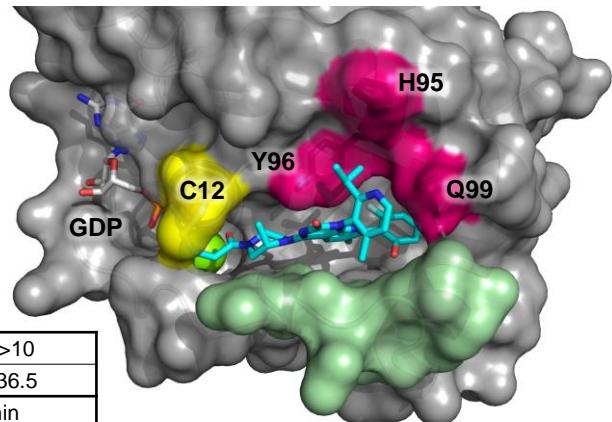
44

AMGEN

SOTORASIB INHIBITS SIGNALING AND IMPAIRS VIABILITY ONLY IN KRAS *p.G12C* MUTANT CELL LINES



adherent '2D' cell culture conditions

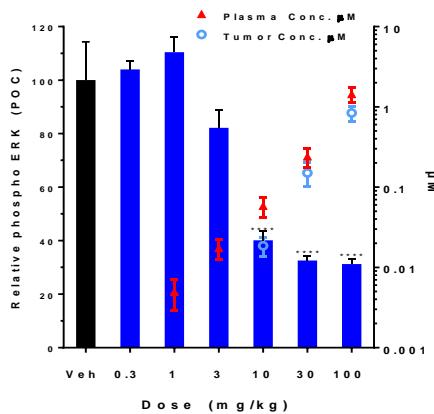

45

AMGEN

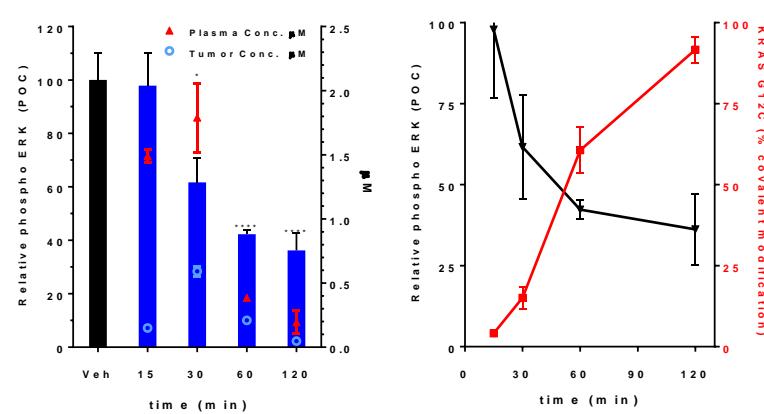
IN VITRO & PHARMACOKINETIC PROFILE OF SOTORASIB

$G12C \ k_{inact}/K_i = 9,900 \text{ M}^{-1}\text{s}^{-1}$

X-ray structure of KRAS^{G12C}-GDP + sotorasib


KRAS^{G12C} protein $t_{1/2} \sim 22 \text{ h}$
(stable-isotope labeling)

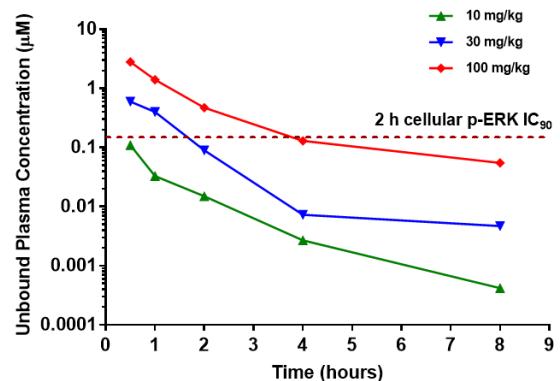
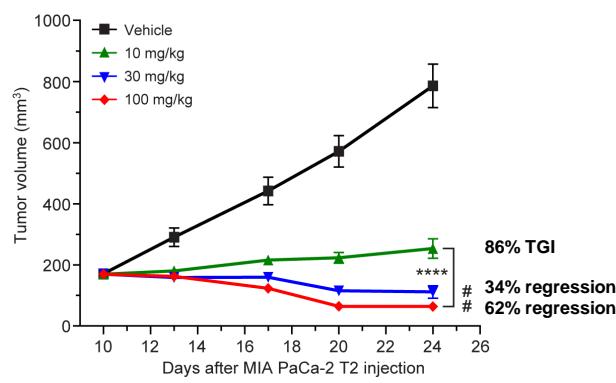
AMGEN


Cell	p-ERK 2 h IC ₅₀ MIA PaCa-2 A549 (μM)	0.070 >10
	Viability 72 h IC ₅₀ MIA PaCa-2 A549 (μM)	0.005 36.5
in vitro ADME	5 mM GSH t _{1/2} (min)	200 min
	MuLM RLM DLM HLM (μL/min/mg)	21 18 16 17
	Mu R D H hep CL _{int} (μL/min/10 ⁶ cells)	36 25 11 9
	PPB Mu R D Hu (0.25 μM, UC, f _u)	0.06 0.05 0.17 0.09
	Solubility (mg/mL, PBS FaSSIF FaSSGF)	0.05 0.07 2.4
	Mouse CL (L/h/kg) V _{ss} (L/kg) t _{1/2} (h) %F	1.6 0.74 0.3 31
in vivo (10 mpk)	Rat CL (L/h/kg) V _{ss} (L/kg) t _{1/2} (h) %F	3.4 2.0 0.5 30
	Dog CL (L/h/kg) V _{ss} (L/kg) t _{1/2} (h) %F	2.2 0.73 0.4 34

SOTORASIB INHIBITS ERK1/2 PHOSPHORYLATION IN KRAS *p.G12C* TUMORS (MIA PACA-2 T2); INHIBITION CORRELATES W/ OCCUPANCY

Single dose (2 h time-point)

Single dose (10 mg/kg; time-course)

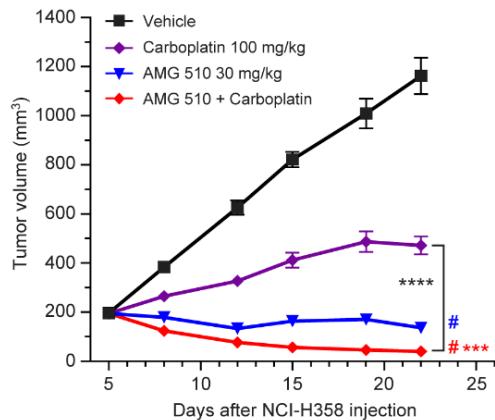
* p<0.05, ***p<0.0001 by One-Way Anova followed by Dunnett's post hoc

47

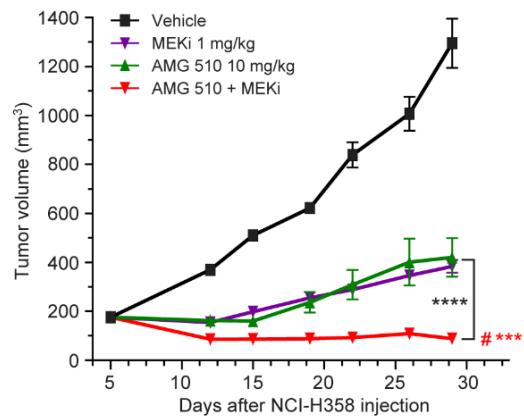
AMGEN

SOTORASIB DOSED ORALLY ONCE DAILY RESULTS IN REGRESSION OF KRAS *p.G12C* TUMOR XENOGRAFTS

Sotorasib exposure >IC₉₀ for 2+ hours results in tumor regression


**** p < 0.0001 comparisons of vehicle to treatment group by Dunnett's
p<0.05 regression by paired t-test

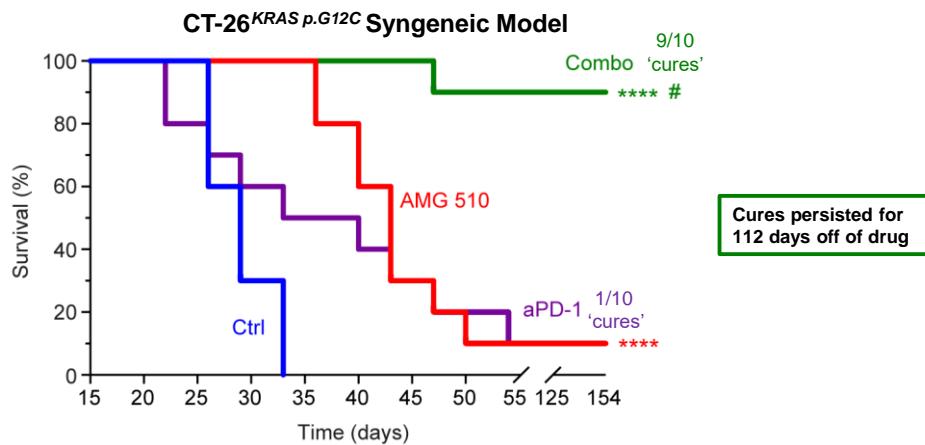
48


AMGEN

ASSESSING THE POTENTIAL OF SOTORASIB IN COMBINATION WITH CYTOTOXIC & TARGETED AGENTS

Sotorasib (AMG 510) + carboplatin

Sotorasib + MEK inhibitor


*** P < 0.001 combination treatment compared to each single agent by Dunnett's

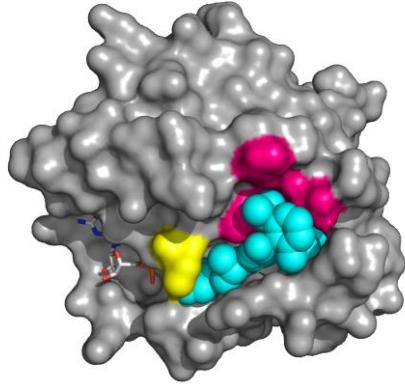
P < 0.001 regression by paired t-test

Results from all treatment groups were significant compared with vehicle (**** P < 0.0001 by Dunnett's)

49
AMGEN

SOTORASIB + IMMUNE CHECKPOINT INHIBITION RESULTS IN DURABLE CURES IN A CT-26^{KRAS p.G12C} SYNGENEIC MODEL

AMG 510 was dosed orally once daily at 100 mg/kg; anti-PD-1 29F.1A12 was administered once every 3 days for a total of 3 injections by IP


Canon, et al., *Nature* 2019, 575, 217–223

50

**** p < 0.0001 comparisons of vehicle to treatment groups by Mantel-Cox. # p<0.005 combination vs AMG 510 or anti-PD-1

AMGEN

DISCOVERY OF THE FIRST CLINICAL KRAS^{G12C} INHIBITOR

A Phase 1, Study Evaluating the Safety, Tolerability, PK, and Efficacy of AMG 510 in Subjects With Solid Tumors With a Specific KRAS Mutation.

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our [Disclaimer](#) for details.

ClinicalTrials.gov Identifier: NCT03600883

Recruitment Status: **Recruiting**
First Posted: **July 26, 2018**
Last Update Posted: **November 26, 2018**
[See Contacts and Locations](#)

[Study Details](#) [Tabular View](#) [No Results Posted](#) [Disclaimer](#) [How to Read a Study Record](#)

Study Description

Brief Summary:
Evaluate the safety and tolerability of AMG 510 in adult subjects with KRAS p.G12C mutant solid tumors.
Estimate the maximum tolerated dose (MTD) and/or a biologically active dose (e.g. recommended phase 2 dose [RP2D]) within investigated subject population groups.

Condition or disease Advanced KRAS p.G12C Mutant Solid Tumors	Intervention/treatment Drug: AMG 510	Phase Phase 1
--	---	----------------------

In June 2018, **Sotorasib (AMG 510)** became the first KRAS^{G12C} inhibitor to enter human clinical testing. For more information, visit clinicaltrials.gov

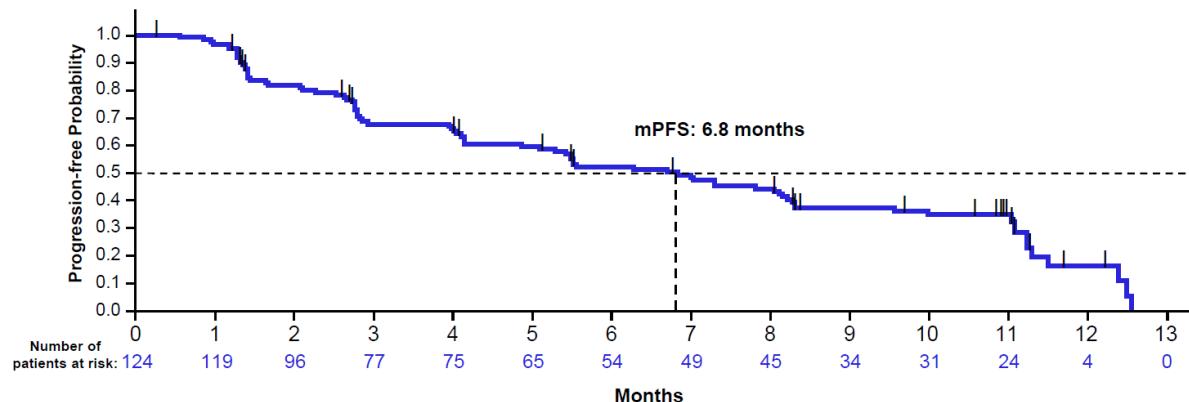
AMGEN

51

Depth of Tumor Response

clinicaltrials.gov identifier: NCT03500883

Tumor shrinkage of any magnitude was observed in 81% of patients (101/124)
Median percentage of best tumor shrinkage among all responders was 60%


Graph excluded 3 patients without post-baseline measurement in target lesions.
CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease; NE: not evaluable.

IASLC | 2020 World Conference on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Progression-Free Survival

Median progression-free survival was 6.8 months (95% CI: 5.1, 8.2)

IASLC | 2020 World Conference on Lung Cancer Singapore
JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

FOCUSED EFFORT ON A KEY ONCOGENE HAS YIELDED A NEW APPROACH

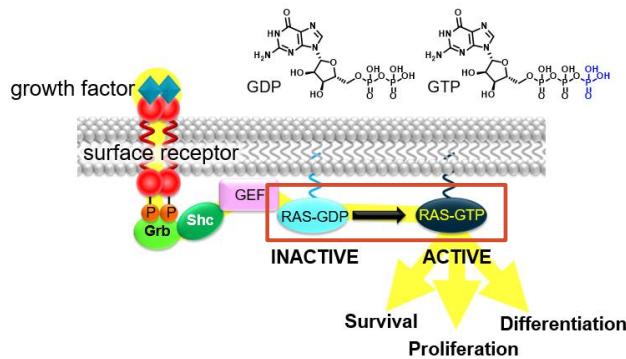



Table 1 | Activation of RAS signalling pathways in different tumours

Defect or mutation	Tumour type	Frequency (%)
RAS mutation	Pancreas	90 (K)
	Lung adenocarcinoma (non-small-cell)	35 (K)
	Colorectal	45 (K)
	Thyroid (Follicular)	55 (H, K, N)
	Thyroid (Undifferentiated papillary)	60 (H, K, N)
	Seminoma	45 (K, N)
	Melanoma	15 (N)
	Bladder	10 (H)
	Liver	30 (N)
	Kidney	10 (H)
	Myelodysplastic syndrome	40 (N, K)
	Acute myelogenous leukaemia	30 (N)

Downward, J. Nat. Rev. Cancer 2003, 3, 11–22

Nearly 50% of all cancers demonstrate oncogenic mutations of the Ras signalling pathway

A STRUCTURAL VIEW OF “DRUGGING THE UNDRUGGABLE”

Sotorasib (AMG 510) is the first direct KRAS^{G12C} inhibitor to enter human clinical testing (NCT03600883)

AMGEN

55

ACKNOWLEDGEMENTS

Medchem

Victor Cee
Brian Lanman
Jen Allen
John Allen
Albert Amegadzie
Kate Ashton
Shon Booker
Jeff Chen
Ning Chen
Chris Fotsch
Mike Frohn
Guy Goodman
Dave Kopecky
Longbin Liu
Patricia Lopez
Jon Low
Vu Ma
Ana Minatti
Tom Nguyen
Nobuko Nishimura
Alex Pickrell
Tony Reed

PKDM

Youngsook Shin
Aaron Siegmund
Nuria Tamayo
Chris Tegley
Mary Walton
Hui-Ling Wang
Ryan Wurz
May Xue
Kevin Yang

Oncology Research

Rusty Lipford
Karen Rex
Pragathi Achanta
Tara Arvedson
Jude Canon
Keegan Cooke
Kevin Gaida
Tyler Holt
Julie Lofgren
Tao Osgood
Anne Saiki
Ji-Rong Sun

Laurie Volak
Charlie Knutson
Loren Berry
Yuping Chen
Joel Esmay
Sally Franey
Mike Hayashi
Andrew Hui
Abhi Iyer
Brett Janosky
Neelima Koppada
Xingwen Li
Jingzhou Liu
Steven Louie
Jim Meyer
Joon Nam
Robert Ortiz
Roger Pham
Ronya Primack
John Roberts
Wale Rufai
Marcus Soto

DSD

Mylo Wagner
Dohan Weeraratne
Yan Bin Yu
Yihong Zhou
Sean Zhu

PD

David Bauer
Jim Brown
Ted Judd
Michele Kubryk
Rob Rzasa

Discovery Technologies

Roman Shimanovich
Prashant Agarwal

CBSS

John McCarter
Tisha San Miguel
Ting Song

Molecular Engineering

Mike Bartberger
Sean Han
Simon Hedley
Van Luu
Sam Mboggo
Jason Tedrow
Laura Woolls

Biologics

Steve Thibault
Trace Tsuruda
Zhulun Wang

Carmot

Dan Erlanson
Stig Hansen
Ray Fucini
Jeff Iwig
Joon Won Jeong

CBS

Beth Hinkle
Katsu Ishida

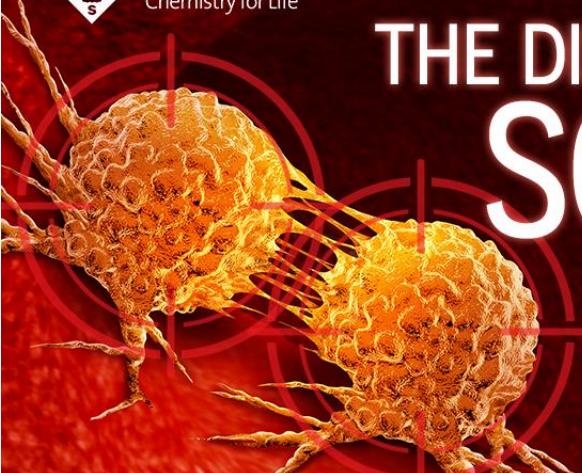
Legal

Joe Reidy

Clinical

Haby Henary
PK Morrow

AMGEN


56

ACS Chemistry for Life®

ACS Publications Most Trusted. Most Cited. Most Read. aaps® ACS Technical Division Medicinal Chemistry (MEDI)

THE DISCOVERY OF SOTORASIB (AMG 510)

FIRST-IN-CLASS INVESTIGATIONAL COVALENT INHIBITOR OF KRAS G12C

FREE Webinar | TODAY at 2pm ET

ACS Webinars

CLICK • WATCH • LEARN • DISCUSS

ASK YOUR QUESTIONS AND MAKE YOUR COMMENTS IN THE QUESTIONS PANEL NOW! [57](#)

ACS Webinars

CLICK • WATCH • LEARN • DISCUSS

ORGANIZERS

Annette Balk

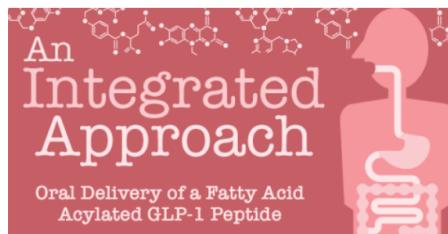
AstraZeneca

Lorraine Clark

ACS Publications

Patrice L. Jackson-Ayotunde
Univ. of Maryland
Eastern Shore

Anirban Mahapatra
ACS Publications


Nicholas Meanwell
Bristol-Myers Squibb

John Morrison
The Janssen
Pharmaceutical
Companies of Johnson & Johnson

Nurulain Zaveri
Astra Therapeutics

Date: Wednesday, March 31, 2021 @ 2-3:30pm ET

Speaker: Stephen Buckley, Novo Nordisk

Moderator: Aktham Aburub, Eli Lilly and Company

[Register for Free!](#)

What You Will Learn:

- Challenges associated with delivering peptides such as GLP-1 via the oral route
- Necessary strategy to employ to effectively overcome these challenges and develop an oral GLP-1 peptide drug product (oral semaglutide)
- Detailed mechanistic understanding of how semaglutide is absorbed upon oral administration

ACS

Chemistry for Life®

CO-PRODUCED WITH

ACS Technical Division
Medicinal Chemistry (MEDI)

aaps
American Association of
Pharmaceutical Scientists

ACS Publications
Most Trusted. Most Cited. Most Read.

SPEAKERS FROM

Bristol-Myers Squibb

esk GlassSmithline

CARMOT
THERAPEUTICS

Pfizer

HEPTARES
therapeutics

Genentech
A Member of the Roche Group

MERCK

MONASH
University

<https://www.acs.org/content/acs/en/acs-webinars/drug-discovery.html>

58

The Discovery of Sotorasib (AMG 510): First-in-Class Investigational Covalent Inhibitor of KRAS G12C

Brian Lanman
Director Research,
Medicinal Chemistry, Amgen, Inc.

Ariamala Gopalsamy
Director, Interim Head of Boston Oncology
Chemistry, AstraZeneca

Presentation slides are available now! The edited recording will be made available as soon as possible.

www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Medicinal Chemistry, American Association of Pharmaceutical Scientists, and ACS Publications

59

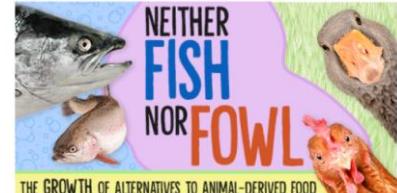
Date: Wednesday, March 3, 2021 @ 2-3pm ET
Speaker: Robert Migliorini, Exxon Mobil Corporation
Moderator: Bryan Tweedy, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- Learn about the major sections of a contract and common types of IP related agreements, including confidentiality/non-disclosure, material transfer, and more
- Understand the various type of IP agreements, the business and technical use of each type of agreement and the important provisions for each type of IP agreement
- Know the appropriate type of IP agreement to put in place prior to working with an outside party

Co-produced with: ACS Professional Education


Date: Wednesday, March 10, 2021 @ 11am-12pm ET
Speakers: Zafra Lerman, Malta Conferences Foundation / Peter Hotchkiss, Organisation for the Prohibition of Chemical Weapons / Vaughan Turekian, National Academies' Policy and Global Affairs Division
Moderator: Lori Brown, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- How the OPCW works with the governments of 193 countries to prevent the use of chemical weapons
- How the US National Academies' Policy and Global Affairs office mobilizes experts and networks around the world to increase the use of evidence to advance local, national and global policy and capacity
- How the Malta Conferences uses science diplomacy to overcome cultural, religious, and political barriers in the Middle East

Co-produced with: ACS External Affairs & Communications

Date: Thursday, March 11, 2021 @ 1-2pm ET
Speakers: Julie Mann, PURIS Holdings, LLC / Joshua March, Artemys Foods / Andrew Ivey, Big Idea Venture
Moderator: Christopher Gregson, Greenstalk Food Consulting LLC

[Register for Free!](#)

What You Will Learn:

- A better understanding of the most significant transformation of the food industry in decades
- The challenges of formulating plant-based products or using cell cultures to "grow" meat
- How it will affect peoples' dietary choices in the future

Co-produced with: The Science History Institute and Chemical & Engineering News

www.acs.org/acswebinars

60

ACS Webinars®

CLICK • WATCH • LEARN • DISCUSS

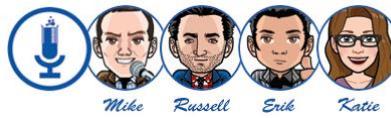
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public several times a week generally from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.

www.acs.org/acswebinars


61

CLICK • WATCH • LEARN • DISCUSS

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Mike Russell Erik Katie

Contact ACS Webinars® at acswebinars@acs.org

62

HOW TO PROTECT YOUR INTELLECTUAL PROPERTY WHEN COLLABORATING WITH OTHERS

Date: Wednesday, March 3, 2021 @ 2-3pm ET
Speaker: Robert Migliorini, Exxon Mobil Corporation
Moderator: Bryan Tweedy, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- Learn about the major sections of a contract and common types of IP related agreements, including confidentiality/non-disclosure, material transfer, and more
- Understand the various type of IP agreements, the business and technical use of each type of agreement and the important provisions for each type of IP agreement
- Know the appropriate type of IP agreement to put in place prior to working with an outside party

Co-produced with: ACS Professional Education

SCIENCE AS A DIPLOMATIC TOOL

Date: Wednesday, March 10, 2021 @ 11am-12pm ET
Speakers: Zafra Lerman, Malta Conferences Foundation / Peter Hotchkiss, Organisation for the Prohibition of Chemical Weapons / Vaughan Turekian, National Academies' Policy and Global Affairs Division
Moderator: Lori Brown, American Chemical Society

[Register for Free!](#)

What You Will Learn:

- How the OPCW works with the governments of 193 countries to prevent the use of chemical weapons
- How the US National Academies' Policy and Global Affairs office mobilizes experts and networks around the world to increase the use of evidence to advance local, national and global policy and capacity
- How the Malta Conferences uses science diplomacy to overcome cultural, religious, and political barriers in the Middle East

Co-produced with: ACS External Affairs & Communications

NEITHER FISH NOR FOWL THE GROWTH OF ALTERNATIVES TO ANIMAL-DERIVED FOOD

Date: Thursday, March 11, 2021 @ 1-2pm ET
Speakers: Julie Mann, PURIS Holdings, LLC / Joshua March, Artemys Foods / Andrew Ivey, Big Idea Venture
Moderator: Christopher Gregson, Greenstalk Food Consulting LLC

[Register for Free!](#)

What You Will Learn:

- A better understanding of the most significant transformation of the food industry in decades
- The challenges of formulating plant-based products or using cell cultures to "grow" meat
- How it will affect peoples' dietary choices in the future

Co-produced with: The Science History Institute and Chemical & Engineering News

www.acs.org/acswebinars

63