We will start momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after three weeks.

www.acswebinars.org
Contact ACS Webinars ® at acswebinars@acs.org

Have Questions?
Type them into questions box!

Contact ACS Webinars ® at acswebinars@acs.org

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.
Have you discovered the missing element?

www.acs.org/2joinACS
Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
Like us on Facebook!

facebook.com/acswebinars

How has ACS Webinars® benefited you?

“Presentations on ACS Webinars are sufficiently rigorous to be of interest to professional chemists but not so technically detailed to weed out all but the professionals in the field.”

Fan of the Week
Arnold Shugarman, Ph.D.

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Hungry for a brain snack?

See all the ACS Webinets at youtube.com/acswebinars

“ACS Webinets™ are 2 minute segments that bring you valuable insight from some of our most popular full length ACS Webinars®.”
Beginning in 2014 all recordings of ACS Webinars will be available to current ACS members two weeks after the Live broadcast date.

Live weekly ACS Webinars will continue to be available to the general public.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars

Thursday, November 20, 2014
“Optimizing Potency for Nevirapine: The Drug that Saved Children from AIDS ”

Dr. Rebecca Anderson, Freelance Medical Writer and Author
Dr. Joseph Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org
Slides available now! Recordings will be available to ACS members after three weeks.

www.acswebinars.org

Contact ACS Webinars ® at acswebinars@acs.org
Cannabis Chemistry 101: Review

- History of Cannabis
 - Legal status in the US

- Endocannabinoid System
 - Therapeutic benefits

- Chemical Complexity
 - Phytochemical constituents
 - Potential contaminants
 - Matrix complexity

- Biosynthetic Pathways
 - Formation of cannabinoids

- Cannabinoid Reactions
 - Degradation/Decarboxylation

- Opportunities for Analytical Chemistry
 - Application of modern technologies
 - Ensure consumer safety
 - Research opportunities

Role of Analytical Chemistry

- Ensuring Consumer Safety
 - Confirm products are free from contamination
 - Assist in determining proper dosage

- Optimization of Cultivation Practices
 - Monitoring nutrient uptake
 - Early identification of phenotypes

- Design and Development of Marijuana Infused Products (MIPs)
 - Optimization of extractions and processes
 - Quantitation required for product labeling
Audience Poll

What is typically the most abundant cannabinoid found in cannabis?

- THC (Tetrahydrocannabinol)
- CBD (Cannabidiol)
- THCA (Tetrahydrocannabinolic Acid)
- CBDA (Cannabidiolic Acid)

Analytes and Analytical Techniques

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analytical Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabinoids</td>
<td>TLC, GC, HPLC, UPLC, CC (SFC)</td>
</tr>
<tr>
<td>Terpenes</td>
<td>GC</td>
</tr>
<tr>
<td>Water (Residual Moisture)</td>
<td>Gravimetric, Water Activity</td>
</tr>
<tr>
<td>Heavy Metals</td>
<td>AA, ICP, ICP-MS, TXRF</td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOCs)</td>
<td>Headspace GC, GC/MS</td>
</tr>
<tr>
<td>Mycotoxins</td>
<td>ImmunoAffinity (IA) Assays</td>
</tr>
<tr>
<td>Microbiological Contaminants</td>
<td>Cultures, qPCR</td>
</tr>
<tr>
<td>Pesticides/Plant Growth Regulators</td>
<td>LC/MS, GC/MS</td>
</tr>
</tbody>
</table>
Mycotoxins

- **Four Key Aflatoxins: B₁, B₂, G₁, G₂**
 - Produced by some Aspergillus molds
 - Results in liver damage

- **Ochratoxin A**
 - Produced by some Aspergillus and Penicillium molds
 - Results in kidney damage and immune suppression

- **Found in many commodities**

ImmunoAffinity (IA) Assays

- **Monoclonal Antibody Based Affinity Chromatography**
 - Extracted sample is loaded on to the column
 - Sample is flushed through the column
 - Mycotoxins are selectively bound to the antibodies
 - Additional constituents are passed through to waste
 - Mycotoxins are collected selectively for analysis
Mycotoxin Testing

Mycotoxin concentrations can be measured with a digital fluorometer. Provides total aflatoxin and total ochratoxin concentrations.

Analysis with LC or LC/MS/MS delivers additional sensitivity and specificity, providing separation and quantitation of the individual mycotoxins.

X-ray Fluorescence (XRF) Spectroscopy

- An X-ray quantum hits an inner shell electron in a (sample) atom. The electron is removed leaving the atom in an excited state (1).
- A electron from a higher orbital will drop down to fill the space. (2)
- The energy difference between the inner and outer shell is balanced by the emission of a photon quantum (fluorescence radiation, 3).
- These transitions are instantaneous. Fluorescence emissions are specific to individual elements, with intensities proportional the concentration of those elements.

Courtesy of Bruker-AXS
X-ray Fluorescence (XRF) Spectroscopy

- Each element shows a specific line pattern in a spectrum depending on the orbitals involved
 - L→K transition = Kα line
 - M→K transition = Kβ line
 - M→L transition = Lα line
 - N→L transition = Lβ line

- The higher the atomic number, the more "shells" (generally speaking)

Each element has its own set of "fingerprints"

Courtesy of Bruker-AXS

Quantitative Elemental Analysis

TXRF - Total reflection X-ray Fluorescence Spectroscopy

- Provides quantitative multi-element microanalysis
- Lower limits of detection in ppb range
- Meets USP requirements established for pharmaceutical products (USP 232/233)

Courtesy of Bruker-AXS
Quantitative Elemental Analysis

Cannabis Bud

Quantitative Elemental Analysis

- QC Testing for Soil, Fertilizers and Water During Cultivation
- Better Understand Nutrient Uptake by Plants
- Identify of Heavy Metal Contamination

Hemp Extract Based Product – Sourced out of China

<table>
<thead>
<tr>
<th>Element</th>
<th>USP Limits (ppm)*</th>
<th>Measured Conc.(ppm)</th>
<th>Limits of Detection (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr (Chromium)</td>
<td>2.5</td>
<td>ND</td>
<td>0.013</td>
</tr>
<tr>
<td>Mn</td>
<td>0.191</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Fe (Iron)</td>
<td>0.169</td>
<td>ND</td>
<td>0.006</td>
</tr>
<tr>
<td>Ni (Nickel)</td>
<td>0.15</td>
<td>ND</td>
<td>0.006</td>
</tr>
<tr>
<td>Cu (Copper)</td>
<td>10</td>
<td>0.123</td>
<td>0.005</td>
</tr>
<tr>
<td>Zn</td>
<td>0.31</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>5</td>
<td>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>As (Arsenic)</td>
<td>0.15</td>
<td>ND</td>
<td>0.003</td>
</tr>
<tr>
<td>Rb</td>
<td>0.907</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.41</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Mercury concentration higher than acceptable limits

* Limits established for administration of pharmaceuticals by inhalation – United States Pharmacopeia USP 232/233
Volatile Organic Compounds (VOCs)

- Propane
- Ethanol
- iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Diethyl Ether
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol
- Propane
- n-Butane
- Iso-Butane
- 1-Propanol
- Methanol
- n-Butane
- Pentane
- Hexane
- Diethyl Ether
- iso-Propanol

Headspace Gas Chromatography

- **Measurement of Volatile Organic Compounds (VOCs)**
 - Measure residual solvents from cannabis extractions
 - Includes common extraction solvents: butane, propane, ethanol, etc..
 - Vial is heated to volatilize organic compounds
 - Sample is collected from the headspace above the bulk
 - Sample is injected for Gas Chromatographic (GC) analysis
Headspace Gas Chromatography: VOCs

Terpenes

Linalool

Limonene

Terpinolene

Myrcene

trans-Ocimene

α-Pinene

Camphene

Geraniol
Gas Chromatography: Terpenes

Gas Chromatography: Cannabinoids

THCA - Heat decarboxylation
THC - oxidation
CBN - oxidation

200-400°C
Liquid Chromatography

- **High Performance Liquid Chromatography (HPLC)**
 - Maintains the quantitative information of the acid and neutral cannabinoids

- **UltraPerformance Liquid Chromatography (UPLC)**
 - Ultra High Pressure Liquid Chromatography (UHPLC)
 - Faster and more efficient than HPLC

Both methodologies use organic solvents to achieve the separation and quantitation of analytes

Convergence Chromatography

- **UltraPerformance Convergence Chromatography System (UPC²)**

- Based on the theory of Supercritical Fluid Chromatography (SFC)
 - Uses liquid CO₂ as the primary mobile phase

- Reduces the hazardous waste generated relative to conventional liquid chromatography

- Captures quantitative information on both acid and neutral (decarboxylated) form of the cannabinoids

- Amenable to non-polar solvents, ideal for analysis of analytes in lipid-rich matrices
Analysis of Cannabis Flower

UltraPerformance Convergence Chromatography (UPC²)

Decarboxylation

Temperature: 260°F
Decarboxylation

Audience Poll

Which United States President was NOT a hemp farmer?

☐ George Washington
☐ Thomas Jefferson
☐ James Buchanan
☐ James Madison
Marijuana Infused Products

- Marijuana Infused Products (MIPs)
 - Becoming increasingly important to the industry
 - Provides delivery formats for patients that do not want to smoke cannabis
 - Some states allow, by regulation, only derivative products to be available

Cannabis Extractions

- Supercritical Fluid Extractions (SFE) using liquid CO$_2$
 - Safest Extraction Option: Non-toxic, non-flammable, environmentally neutral
 - Maintains terpene-rich extract profile
 - Extract can be used as the basis for many products
SFX Work Flow

Purification of Individual Cannabinoids

Hemp Extract

Purified CBD

Purified CBDA
Summary

- Analytical chemistry will play a key role in the expanding cannabis industry, with a primary focus on ensuring patient/consumer safety

- The complexity of cannabis, as a natural product, with the potential for a variety of contaminants provides a number of analytical challenges that requires multiple analytical techniques to understand more fully

- The current trends for increased acceptance of cannabis as a legitimate industry provides the opportunity for the application of current analytical technologies to address these challenges

References for Additional Information

Thank You!

www.ProVerdeLabs.com

Cannabis Chemistry 201

Slides available now! Recordings will be available to ACS members after three weeks.

www.acswebinars.org
Contact ACS Webinars ® at acswebinars@acs.org
Upcoming ACS Webinars

www.acs.org/acswebinars

Thursday, November 20, 2014

“Optimizing Potency for Nevirapine: The Drug that Saved Children from AIDS ”

Dr. Rebecca Anderson, Freelance Medical Writer and Author
Dr. Joseph Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org

Thursday, November 13, 2014

“Surviving and Succeeding in Grad School”

Dr. Saundra McGuire, Director Emerita of the Center of Academic Success, Louisiana State University
Patricia Simpson, Director of Academic Advising and Career Services, University of Illinois Urbana-Champaign

Cannabis Chemistry 201

Slides available now! Recordings will be available to ACS members after three weeks.

www.acswebinars.org

Contact ACS Webinars ® at acswebinars@acs.org
How has ACS Webinars® benefited you?

“Presentations on ACS Webinars are sufficiently rigorous to be of interest to professional chemists but not so technically detailed to weed out all but the professionals in the field.”

Fan of the Week
Arnold Shugarman, Ph.D.

Be a featured fan on an upcoming webinar! Write to us @ acswебinars@acs.org

Contact ACS Webinars® at acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org
Thursday, November 13, 2014

“Surviving and Succeeding in Grad School”

Dr. Saundra McGuire, Director Emerita of the Center of Academic Success, Louisiana State University
Patricia Simpson, Director of Academic Advising and Career Services, University of Illinois Urbana-Champaign

Thursday, November 20, 2014

“Optimizing Potency for Nevirapine: The Drug that Saved Children from AIDS”

Dr. Rebecca Anderson, Freelance Medical Writer and Author
Dr. Joseph Fortunak, Professor of Chemistry, Howard University

Contact ACS Webinars ® at acswebinars@acs.org