We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week.

www.acs.org/acswebinars

Contact ACS Webinars ® at acswbinars@acs.org

Have Questions?

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Type them into questions box!

Contact ACS Webinars ® at acswbinars@acs.org
Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
Let’s get Social...post, tweet, and link to ACS Webinars during today’s broadcast!

facebook.com/acswebinars

@acswebinars

Search for “acswebinars” and connect!

How has ACS Webinars® benefited you?

"Advanced Pyrotechnics: Flash, Sound, and Smoke was the best ACS Webinar I have seen to date. Excellent. Fast, relevant and well organized. Also had real, approachable chemistry, but not too detailed."

Fan of the Week
Kirk Boyer
Component/Supplier Quality Engineer
Tektronix Component Solutions

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
All recordings of ACS Webinars® will be available to current ACS members one week after the Live broadcast date.

Live weekly ACS Webinars® will continue to be available to the general public.

Contact ACS Webinars ® at acswebinars@acs.org
Upcoming ACS Webinars®

www.acs.org/acswebinars

Thursday, June 25, 2015
“Accelerating CNS Positron Emission Tomography (PET) Ligand Discovery”
Lei Zhang, Senior Principal Scientist, Pfizer Inc.
David Donnelly, Senior Research Investigator, Bristol-Myers Squibb

Thursday, July 7, 2015
“The Entrepreneurial Chemist: Bridging the Bench and the Boardroom”
Tashni-Ann Dubroy, Chemist and Entrepreneur, Tea and Honey Blends
Steven Isaacman, CEO and Founder, PHD Biosciences

Contact ACS Webinars ® at acswebinars@acs.org

Past ACS Webinars®
The ACS Webinars Archive Explodes with Insight!

“Chemistry of Fireworks”
www.acs.org/content/acs/en/acs-webinars/popupular-chemistry/chemistry-of-fireworks.html

“Advanced Pyrotechnics: Flash, Sound, and Smoke”
www.acs.org/content/acs/en/acs-webinars/popupular-chemistry/advanced-fireworks.html

*Access to these recordings is an exclusive benefit for ACS Members.

Contact ACS Webinars ® at acswebinars@acs.org
Advanced Pyrotechnics 2: Ignition, Sensitivity, and Analysis of Energetic Materials

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars
Contact ACS Webinars ® at acswebinars@acs.org

Advanced Pyrotechnics 2:
Ignition, Sensitivity, and Analysis of Energetic Materials

DON'T MOVE, or I'll fill you full of 98% lead, 1% antimony, 0.75% silver, 200 parts per million nickel, trace amounts of cobalt, and other components below their respective detection limits!

Wait a minute! Are these values CERTIFIED??!

Analytical Chemists in the Wild West

Chris Mocella
ACS Webinar, June 2015
Review: Basics of Pyrotechnics

- Oxygen source (oxidizer) + electron source (fuel) → Products + Energy
- Energy Output =
 - Light (color)
 - Sound
 - Pressure
 - Motion
 - “The effect”

Ingredients for Pyrotechnic Mixes

- **Oxidizing Agents** (oxygen rich, occasionally fluorine)
- **Fuels** (organic, metallic, other)
- **Color ingredient**
- **Intensifier**
- **Binder** (small %, can also act as a fuel)

- Charcoal + KNO₃ + Sulfur = Black Powder
- Light a match → CO₂, H₂O, K₂O, N₂, SO₂, “soot”, and **ENERGY!**
Principles of Ignition

- **Ignition**: The ability to ignite/initiate the material using an external stimulus (with respect for stability of the material in the absence of the stimulus)
- For ignition to occur, a material must be heated to its ignition temperature, where the reaction will initiate and propagate
- The stimulus can be heat or flame, spark, as well as friction or impact, or some manner of transferring energy from the stimulus to the material, heating the chemicals
- What happens when sufficient stimulus is applied?

Ignition: Complexity and Propagation

- Upon sufficient stimulus, the materials will undergo a complex sequence of events, such as crystalline changes, melting, boiling, decomposition, interaction of liquid/vapor phases or fleeting decomposition products.
- These complex products and interactions take place on the materials and also in any visible flame.
- If the necessary activation energy has been applied, the reactions occur, more heat is evolved to give stimulus to unreacted material, propagating the reaction.
Ignition: Physical States

- **Requirement for ignition:** either the oxidizer or fuel to be in a liquid or vapor state to allow interaction
- Many oxidizers are ionic solids (KNO₃), and the “looseness” of the lattice is important in determining reactivity:
 - Increased temperature, the vibrational motion of the lattice increases
 - Liquid fuel components can more easily diffuse into the lattice, even if the oxidizer is still solid, and begin to interact below the melting or decomposition temperature

Audience Survey Question

Tammann Temperature is significant because?

- It is approximately two times the melting point in kelvin
- It is temperature at which the mobility and reactivity of the molecules in a liquid state become appreciable
- It has 70% of the vibrational freedom present at the melting point and can cause ignition in a reaction
- It is ideal temperature for ignition of any material
Tammann Temperature

- Prof G. Tammann proposed that this diffusion is significant at “halfway” to the melting point (the “Tammann temperature”) and has 70% of the vibrational freedom present at the melting point → often sufficient for reaction leading to ignition
- KNO$_3$ melts at 334 °C (607 K), but the Tammann temperature is 30.5 °C (303.5 K), just a hot day in August!

<table>
<thead>
<tr>
<th>Oxidizer</th>
<th>Formula</th>
<th>Melting point, °C</th>
<th>Melting point, K</th>
<th>Tammann temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium nitrate</td>
<td>NaNO$_3$</td>
<td>307</td>
<td>580</td>
<td>17</td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>KNO$_3$</td>
<td>334</td>
<td>607</td>
<td>31</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>KClO$_3$</td>
<td>356</td>
<td>629</td>
<td>42</td>
</tr>
<tr>
<td>Strontium nitrate</td>
<td>Sr(NO$_3$)$_2$</td>
<td>570</td>
<td>843</td>
<td>149</td>
</tr>
<tr>
<td>Barium nitrate</td>
<td>Ba(NO$_3$)$_2$</td>
<td>592</td>
<td>865</td>
<td>160</td>
</tr>
<tr>
<td>Potassium perchlorate</td>
<td>KClO$_4$</td>
<td>610</td>
<td>883</td>
<td>168</td>
</tr>
<tr>
<td>Lead chromate</td>
<td>PbCrO$_4$</td>
<td>844</td>
<td>1117</td>
<td>286</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>Fe$_2$O$_3$</td>
<td>1565</td>
<td>1838</td>
<td>646</td>
</tr>
<tr>
<td>Magnesium metal</td>
<td>Mg</td>
<td>651</td>
<td>924</td>
<td>189</td>
</tr>
</tbody>
</table>

Sensitivity Analysis

- An energetic material must be sensitive to ignition if it is to be of any use
- But the safe handling and storage of the material must be of highest importance
- Understanding a material’s sensitivity is extremely important for storage and use, and therefore full sensitivity testing should be run on any new composition as a standard matter of course

- Thermal sensitivity
- Electrical/spark sensitivity (including static electricity)
- Impact sensitivity
- Friction sensitivity
Ignition Sensitivity Curve

A specified level of energy is applied – does ignition occur?
→ Ignition is a statistical event, therefore sensitivity is statistical

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Which of the following are viable Pyrotechnic Sensitivity Tests?

- Impact, sample, static, reference, and shock
- Zap, pow, boom, kapow, and bam
- Friction, thermal, booster, acceptor, and shock
- Impact, friction, electrostatic, thermal, and shock
- Audio, visual, scratch & sniff, tactile, and tongue
Types of Sensitivity Tests

Thermal Sensitivity

- At what temperature does the system ignite?
- Probably the best understood of all phenomenon
- Measured through DTA, DSC, time-to-ignition studies

Nitrocellulose – DSC and Time-To-Ignition Study
Spark Sensitivity

- Usually measured with a needle electrode (cathode) that approaches a sample sitting on a grounded surface (anode).
- The energy of the spark is controlled by varying capacitance and voltage and is measured in Joules: \(J = \frac{1}{2} CV^2 \).
- Humans generate \(\sim 15-20 \text{ mJ} \) (0.020 J) of energy, enough to ignite some compositions and many organic solvents (acetone, ethyl ether, methanol, etc).
- Conductive materials (metals) tend to increase the spark sensitivity of compositions.
- Adding non-conductive materials (diatomaceous clay) can reduce the spark sensitivity (but also adversely affect the performance).

Spark Sensitivities

<table>
<thead>
<tr>
<th>Composition</th>
<th>Ignition Energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX</td>
<td>> 4.5</td>
</tr>
<tr>
<td>Mg/NaNO₃/binder 55/40/5</td>
<td>> 4.5</td>
</tr>
<tr>
<td>Si/KNO₃ 50/50</td>
<td>> 0.45 < 4.5</td>
</tr>
<tr>
<td>Al/KClO₄ 22.5/77.5</td>
<td>> 0.04 < 0.45</td>
</tr>
<tr>
<td>Mg/BaO₂/Binder 12/86/2</td>
<td>> 0.001 < 0.045</td>
</tr>
<tr>
<td>B/MoO₃ 25/75</td>
<td>0.00025</td>
</tr>
</tbody>
</table>

Source: J.M. Jenkins (UK); Lecture Notes (1980)
Static Electricity

- Every effort should be made to eliminate static electricity from the manufacturing and storage processes!

Friction Sensitivity

- A very important test, as many chances for friction to occur appear in production: mixing, pouring, pressing – generation of hot spots or interaction of materials at a chemical level
- Grittiness of the material can increase sensitivity (sometimes desired, sometimes not)
- Rotary friction – yields numerical value
- Sliding surface – yields a fire/no-fire result at a specific force
Rotary Friction Sensitivities

<table>
<thead>
<tr>
<th>Composition</th>
<th>Ignition Energy (ft-lb²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM 28 Incendiary</td>
<td>19</td>
</tr>
<tr>
<td>Barium Nitrate 40</td>
<td></td>
</tr>
<tr>
<td>Potassium Perchlorate 10</td>
<td></td>
</tr>
<tr>
<td>Mg/Al Alloy 50</td>
<td></td>
</tr>
<tr>
<td>SW522 Smoke</td>
<td>52</td>
</tr>
<tr>
<td>Potassium Perchlorate 20</td>
<td></td>
</tr>
<tr>
<td>Potassium Nitrate 20</td>
<td></td>
</tr>
<tr>
<td>Aluminum 20</td>
<td></td>
</tr>
<tr>
<td>Zinc Dust 40</td>
<td></td>
</tr>
<tr>
<td>M22 Flash Mixture</td>
<td>74,357</td>
</tr>
<tr>
<td>Magnesium (200/325) 75</td>
<td></td>
</tr>
<tr>
<td>Teflon 10</td>
<td></td>
</tr>
<tr>
<td>Viton 15</td>
<td></td>
</tr>
</tbody>
</table>

Source: Aikman, et al; PEP 12, p.17 (1987).

Impact Sensitivity

- The DOT and DoD use the Bureau of Explosives (BoE) impact machine to determine impact sensitivity.
- A specified weight is dropped from a specified height a specified number of times.
- Cannot re-use a non-ignited sample (pressed).
- Usually reported in 10% or 50% ignition values, or minimum observed.
- Generation of “hot spots” in the material.
Impact vs. Friction Sensitivity

<table>
<thead>
<tr>
<th>% Comp. Zr/KClO₄</th>
<th>Impact Sens. Height of 50% Explosion (cm)</th>
<th>Friction Sens. Pistil Load upto which Insensitive (Kgf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/90</td>
<td>115</td>
<td>36.0</td>
</tr>
<tr>
<td>20/80</td>
<td>106.5</td>
<td>36.0</td>
</tr>
<tr>
<td>30/70</td>
<td>106.25</td>
<td>36.0</td>
</tr>
<tr>
<td>40/60</td>
<td>90.0</td>
<td>14.4</td>
</tr>
<tr>
<td>50/50</td>
<td>92.5</td>
<td>10.8</td>
</tr>
<tr>
<td>60/40</td>
<td>99.1</td>
<td>5.4</td>
</tr>
<tr>
<td>70/30</td>
<td>92.5</td>
<td>4.8</td>
</tr>
<tr>
<td>80/20</td>
<td>103.0</td>
<td>3.6</td>
</tr>
<tr>
<td>90/10</td>
<td>94.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Factors Affecting Sensitivity

- Homogeneity
- Particle morphology and size
- Grain size of blended material
- Residual moisture or organic solvent
- Formula and percent composition
- Presence of grit, foreign material, acids, bases
- Chemical incompatibility (acids, moisture, etc)

- Changes to ANY ONE of these will affect sensitivity
- Be warned of static electricity!
Instrumental Analysis

- Modern instruments and methods have provided pyrotechnicians with substantial new abilities and a wealth of information.

Ability to Study and Analyze:
- Chemical makeup and purity
- Ignition processes
- Sensitivity to ignition
- Micro-structure of solids and mixture layouts
- Thermal/barometric behavior and output
- Reaction products
- Quantification of visual and auditory effects
- Effects of external stimuli (environment, time) on compositions
Some Instrumentation and Techniques

- Differential Thermal Analyzer (DTA)
- Differential Scanning Calorimeter (DSC)
- Spark Sensitivity Device
- Impact/Shock Sensitivity Device
- Friction Sensitivity Device
- Microscopy
- Particle Size Analyzer
- Fourier-Transform Infrared Spectrometer (FTIR)
- Ultraviolet-Visible Spectrometer (UV-Vis)
- Thermogravimetric Analyzer
- X-Ray Crystallography
- X-Ray Diffraction
- Gas chromatography
- Atomic Emission Spectroscopy
- Optical Emission Spectroscopy
- Raman Spectroscopy
- Nuclear Magnetic Resonance (NMR)
- X-Ray Fluorescence Spectroscopy
- Moisture analysis
- Calorimeter
- Barometer
- Voltameter
- Liquid Chromatography
- Mass Spectrometry
- Atomic Absorption Spectroscopy
- Flame Ionization Detector
- Footcandle Light Meter
- Volume Unit Meter
- Densitometer
- Ion-Mobility Spectrometry
- Neutron Diffraction Crystallography
- Pyrolysis Effluent Gas Detection (EGD)
- Melting point apparatus

Emission Spectroscopy Uses

- Quantifying color output of colored compositions
- But remember: the human eye is not an electronic spectrometer, it is much more complicated!
- What looks like a fantastic green on the computer may be “rather meh…” to the human eye, or vice-versa.

- Optical Emission Spectroscopy (OES) - determination of purity of compounds, including identification of impurities with quantification
 - Extra sodium causing too much yellow to overpower, too much strontium in the barium compound, etc.
Red Flare Emission Spectrum

Green Flare Emission Spectrum
Microscopy

- “Looking small”
- Using microscopes to enhance visualization material that may not be visible with the naked eye
- Optical - standard magnifying glass/microscope
- Electron – using a beam of electrons to illuminate the specimen
 - TEM – transmission electron microscope (older) – maps the resulting diffracted electrons to form the image
 - SEM – scanning electron microscope (modern) – analyzes resulting emissions to determine map of the target
- Scanning – using a physical probe to scan the surface
 - STM – scanning tunneling microscopy
 - ATM – atomic force microscopy

KNO₃ under a Microscope
SEM Of Thermite - Al/Fe$_2$O$_3$

Optical/SEM of Activated Charcoal
Thermoanalysis

- Study of the thermal properties of compositions is exceedingly valuable to the pyrotechnician:
 - Ignition temperature/time-to-ignition
 - Burning temperature
 - Calorimetry
 - Differential Thermal Analysis (DTA)
 - Differential Scanning Calorimetry (DSC)
 - Thermal Gravimetry (TG)
 - Evolved Gas Analysis (EGA)
 - Pyrolysis – Analysis of effluent gas
Ignition Temperature

- Measured temperature of ignition of a composition
- Decomposition or activation of materials to allow interaction
 - Release of oxygen/oxidizer
 - Fuel in a state to be oxidized

- Rate of heat release must be sufficient to sustain further burning
- Measured by direct heat application (when did it burn?), DTA, or DSC

DTA

- Differential Thermal Analysis – measures the difference in temperature between an analyte and reference sample (that just gets hot at a steady rate)
- Endotherm – analyte not increasing in temperature with reference
- Exotherm – analyte hotter than reference
Thermogram of Potassium Nitrate

- 130 °C – rhombic to trigonal crystalline transition (requires energy/heat)
- 334 °C - melting

Thermogram of Sulfur

- 105 °C – rhombic to monoclinic crystalline change
- 119 °C – melting
- 180 °C – fragmentation of liquid S8 into smaller units
- 450 °C – vaporization
Thermogram of Black Powder

105/119 °C – Solid phase transition and melting of sulfur (overlap)
130 °C – rhombic to trigonal crystalline transition
334 °C – potassium nitrate melting, followed by exotherm (ignition)
→ Release of oxygens from KN major player in ignition

Conclusion: Analyzing your Composition

- Microscopy
- Suite of sensitivity tests
- Thermal analysis / ignition temperatures
- Functional analysis (did it work?)
- Analysis of desired output:
 - Color – spectroscopy
 - Light/Obscuration – photometry/light meter
 - Gas generation – TGA/gas analyzer
 - Sound – sound level meter/loudness meter
- Chemical analysis/Forensics – Chromatography/mass spec, IR, UV-Vis, Raman, x-ray fluorescence, x-ray diffraction, &c
Safety!

- All pyrotechnic compositions are sensitive to some form of stimulus: heat/flame, spark, shot, friction, shock
- Every effort needs to be made to handle materials safely
- Do not experiment with chemicals that you do not understand!

Other Resources

- A.A. Shidlovskiy, *Principles of Pyrotechnics*
- J.A. Conkling, C.J. Mocella, *Chemistry of Pyrotechnics*
- Journal of Pyrotechnics, Pyrotechnic Chemistry
- American Pyrotechnics Association
- Pyrotechnics Guild International
- Local hobbyist clubs
What is your favorite memory of a fireworks show?

• Independence Day (U.S.)
• Bonfire Night/Guy Fawkes Night (U.K)
• Setting off snappers and bottle rockets as a kid
• New Year / Chinese New Year
• [Can’t tell you, we bent some laws doing it, but it was AWESOME!]

Thanks For Attending!
“Advanced Pyrotechnics 2: Ignition, Sensitivity, and Analysis of Energetic Materials”

Slides available now! Recordings will be available to ACS members after one week

www.acs.org/acswebinars

Contact ACS Webinars® at acswebinars@acs.org

Past ACS Webinars®
The ACS Webinars Archive Explodes with Insight!

“Chemistry of Fireworks”
www.acs.org/content/acs/en/acs-webinars/popular-chemistry/chemistry-of-fireworks.html

“Advanced Pyrotechnics: Flash, Sound, and Smoke”
www.acs.org/content/acs/en/acs-webinars/popular-chemistry/advanced-fireworks.html

*Access to these recordings is an exclusive benefit for ACS Members.

Contact ACS Webinars® at acswebinars@acs.org
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, June 25, 2015
“Accelerating CNS Positron Emission Tomography (PET) Ligand Discovery”
Lei Zhang, Senior Principal Scientist, Pfizer Inc.
David Donnelly, Senior Research Investigator, Bristol-Myers Squibb

Thursday, July 7, 2015
“The Entrepreneurial Chemist: Bridging the Bench and the Boardroom”
Tashni-Ann Dubroy, Chemist and Entrepreneur, Tea and Honey Blends
Steven Isaacman, CEO and Founder, PHD Biosciences

Contact ACS Webinars ® at acswebinars@acs.org

“Advanced Pyrotechnics 2: Ignition, Sensitivity, and Analysis of Energetic Materials”

Chris Mocella
Chemist and Co-Author of “The Chemistry of Pyrotechnics”

Darren Griffin
Professor of Genetics, University of Kent, UK

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org
How has ACS Webinars® benefited you?

"Advanced Pyrotechnics: Flash, Sound, and Smoke was the best ACS Webinar I have seen to date. Excellent. Fast, relevant and well organized. Also had real, approachable chemistry, but not too detailed."

Fan of the Week
Kirk Boyer
Component/Supplier Quality Engineer
Tektronix Component Solutions

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

facebook.com/acswebinars
@acswebinars
youtube.com/acswebinars

Search for “acswebinars” and connect!
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars® at acswebinars@acs.org
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, June 25, 2015
“Accelerating CNS Positron Emission Tomography (PET) Ligand Discovery”
Lei Zhang, Senior Principal Scientist, Pfizer Inc.
David Donnelly, Senior Research Investigator, Bristol-Myers Squibb

Thursday, July 7, 2015
“The Entrepreneurial Chemist: Bridging the Bench and the Boardroom”
Tashni-Ann Dubroy, Chemist and Entrepreneur, Tea and Honey Blends
Steven Isaacman, CEO and Founder, PHD Biosciences

Contact ACS Webinars ® at acswebinars@acs.org