We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week.

www.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org

Have Questions?

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Type them into questions box!

Contact ACS Webinars ® at acswebinars@acs.org
Have you discovered the missing element?

www.acs.org/2joinACS

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
Let’s get Social...post, tweet, and link to ACS Webinars during today’s broadcast!

facebook.com/acswebinars
@acswebinars
Search for “acswebinars” and connect!

How has ACS Webinars® benefited you?

“ACS Webinars has benefited me to broaden my research area on Green Chemistry, at least starting from now I will start digging into green chemistry and its implementation in Environmental Engineering. Safe chemistry is Green Chemistry.”

Fan of the Week
Aafaq Ur Rehman,
Graduate Research Assistant,
School of Civil and Environmental Engineering

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Learn from the best and brightest minds in chemistry!
Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members one week after the Live broadcast date. www.acs.org/acswebinars

Broadcasts of ACS Webinars continue to be available to the general public LIVE every Thursday at 2pm ET!

www.acs.org/acswebinars
Upcoming ACS Webinars

www.acs.org/acswebinars

Thursday, November 19, 2015
“Prodrugs in Drug Discovery”

John Higgins, Senior Principal Scientist and Network Technology Lead, Merck
Nicholas Meanwell, Executive Director, Discovery Chemistry, Bristol-Myers Squibb

Thursday, December 3, 2015
“Chemistry & the Economy: Global Outlook 2016”

Paul Hodges, Chairman of International eChem (iC)

Contact ACS Webinars ® at acswebinars@acs.org

“The Chemistry of Addiction”

Anthony Rappé
Professor of Chemistry,
Colorado State University

Darren Griffin
Professor of Genetics,
University of Kent, UK

Slides available now! Recordings will be available to ACS members after one week

www.acs.org/acswebinars

Contact ACS Webinars at acswebinars@acs.org
“Despite the importance of numerous psychosocial factors, at its core, drug addiction involves a biological process: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction.”

Neuronal synaptic transmission involves:
• neurotransmitter presynaptic release
• receptor binding, binding site release,
• and neurotransmitter degradation/reuptake

Drug molecules “look like” natural substrates bind to receptor, transporter, or enzyme active sites
Impact of a drug depends upon:
Strength of binding, which depends upon:
- shape & positioning of functional groups
- hydrogen bonding
- salt bridges
- π-stacking
- π-cation interactions
- hydrophobic contacts
- conformational rigidity
- Ability to pass through hydrophobic blood-brain barrier

Addiction / Substance Abuse

- **Tolerance** = decrease in potency with repeated administration of same dose.
 - **Cross-tolerance** = tolerance to one drug in a class confers tolerance to others in that class.
- **Dependence** = withdrawal symptoms when drug use is terminated.
- **Addiction** = persistent use, even in the face of physical, psychological or social harm.

Psychological factors
Physiological changes
Chemical contributions

Drug Tolerance

Progressively decreasing responsiveness to a drug

Three Basic Mechanisms:

1. **Metabolic Tolerance**
 - enzyme (e.g. cyt p450) production increased leading to greater metabolism, leading to more drug needing to be administered for same effect

2. **Cellular-Adaptive** (pharmacodynamic)
 - neurons adapt to continued presence of the drug either by reducing the number of receptors or by decreasing the sensitivity of the receptors to the drug

3. **Behavioral Conditioning**
 - tolerance can be induced when a drug is administered in the presence of usual predrug cues

Drugs of Abuse

What makes for the difference between someone who can drink or dabble in illicit drugs without developing dependence (or many negative consequences) versus someone who becomes an addict?

- Stress level
- genetic background
- other biological factors
- environment
- social context in which drug use is occurring
Reward Circuit

Involved in addictive processes
Dopamine rich regions
Prefrontal cortex
Involved in planning complex cognitive behaviors

“pleasure center”

Hypothalamus is not shown
Is also involved in emotion

Signals project outward via neurons

Overview of Synaptic Transmission

Dendrite
Nucleus
Axon
Myelin sheath
Glial cells
Synapse
The glutamate receptor is thought to be responsible for which of the following:

- generic nerve transmission
- inhibitory action
- excitatory transmission (learning)
- reward response
- primary stress nerve transmission
Neurotransmitters

- Acetylcholine: generic nerve transmission
- Dopamine: reward response
- Gamma aminobutyric acid (GABA): inhibitory action
- Norepinephrine: primary stress nerve transmission
- Glutamate: excitatory transmission (learning)
- Serotonin: blocks unneeded nerve impulses

Addictive substances produce structural changes in neurons

Addiction: the changes are substance-dependent

Observable Plasticity

Chronic exposure leads to time-dependent reorganization and structure of the of a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors at nucleus accumbens (NAc) medium spiny neuron (MSN) synapses

Mechanisms of Transcriptional and Epigenetic Regulation by Drugs of Abuse

Drugs of abuse act through synaptic targets such as reuptake mechanisms, ion channels and neurotransmitter (NT) receptors to alter intracellular signaling cascades.

This leads to activation or inhibition of transcription factors (TFs) and other nuclear targets.
Δ-FosB Transcription Factor

ΔFosB accumulates in nucleus accumbens and dorsal striatum (brain regions important for addiction) after repeated use of many drugs of abuse.

Similar accumulation of ΔFosB occurs after compulsive running, which suggests that ΔFosB may accumulate in response to many types of compulsive behaviors.

AP-1 DNA complex
AP-1 a heterodimer of JUN and FOS proteins (ΔFosB a truncated variant)

Why Chronic Use?

In general, speed of reward delivery contributes to effectiveness of reward. Rats learn first and run fastest in the portions of a maze that are closest to the reward.

In choosing between an immediate and a delayed reward; the immediate reward is preferred to the delayed reward even when the delayed reward is better.

Photo Credit: George Thomas (Creative Commons)
If speed of delivery matters, which mode of delivery will be slowest:

- Chewing
- Intranasal
- Smoking
- Intravenous injection

Why Chronic Use? (Cont’d)

Reward rate plays a role in Addiction:
Heroin — which is highly addictive — enters the brain more rapidly but activates the same receptor as the less addictive morphine.

Administration Method Matters:
Nicotine reaches the brain faster (and is more addictive) when tobacco is smoked than when the leaf is chewed or when nicotine itself is given by the transdermal nicotine patch.

Smoked or intravenous cocaine reaches the brain faster than intranasal or oral routes, this contributes to their greater addictive potency.

"Smoking Crack" by Oaktown Crack Comics. - http://oaktowncrack.com/Smoking_Crack/index.html
Cocaine Timeline

5000 BCE Evidence of Coca chewing in South America
15th Century Coca plantations are operated by Incas in Peru
1859 German graduate student Albert Niemann isolates cocaine from coca leaves
1862 Merck produces 1/4 pound of Cocaine
1883 Merck produces 3/4 pound of Cocaine
1884 Freud publishes On Coca in which he recommends the use of cocaine to treat a variety of conditions including morphine addiction
1884 Merck produces 3,179 pounds of Cocaine
1886 Merck produces 158,352 pounds of Cocaine
1886 Coca-Cola is first introduced by John Pemberton, containing cocaine laced syrup and caffeine.
1914 The United States Congress passes Harrison Narcotics Act, outlawing the sale of narcotics and stimulants, such as cocaine, without a prescription

Timeline based on www.erowid.org (search x timeline)

Alcohol Timeline

6000 BCE Neolithic tribes make wine from fermented berries
2200 BCE Cuneiform tablet recommends beer as a tonic for lactating women
1800 BCE Beer is produced in quantity in northern Syria
625 Mohammed orders followers to abstain from alcohol
800 Arabs discover distillation of alcohol process
1100 Alcohol distillation is documented by the medical school at Salerno, Italy
Middle Ages

1525-1550 Distillation of grain alcohol in Europe follows the earlier distillation of wine
1600 – 1625 Excessive use of distilled spirits first becomes apparent in England
During the reign of James I, numerous writers describe widespread drunkenness from beer and wine among all classes. Alcohol use is tied to every endeavor and phase of life, a condition that continues well into the eighteenth century
1643 Britain imposes an excise tax on distilled spirits. Along with a tax of alcohol came the development of the moonshine trade.
1920-1933 Prohibition (of alcohol) begins in the United States

Timeline based on www.erowid.org (search x timeline)
Timeline

Discovery

Enhancement

Problems Recognized

Banned

Taxed

Concentrate
- selective breeding
- isolation
- distillation

Increase potency
- alter structure

Pharmacokinetics

Capillaries
- Tiny, cylindrical blood vessels
- Have small pores (between 90 and 150 angstroms), which are larger than most drugs
- Allow transport of drugs regardless of lipid-solubility
- Blood & protein are too big for pores; drugs that bind to plasma proteins cannot pass through

Blood-Brain Barrier
- The brain must protect neurons from toxins
- But the brain has a great need for nutrients and oxygen (it has a high blood flow), which increases the risk of toxic danger
- Solution = the blood-brain barrier (BBB)
- Capillaries in brain do not allow drugs to pass as easily as capillaries in rest of body

Hydrophobicity helps
Pharmacodynamics (Receptors for Drug Action)

- **Receptor** = large biomolecule; site(s) where naturally occurring compounds (transmitters or modulators) produce biological effect
- Hundreds of receptor types known (http://gpcr.scripps.edu/index.html)
- Neurotransmitters can be specific to certain receptors, but a drug may be more specific than the endogenous neurotransmitter
- Drugs form reversible interactions with specific receptors:
 - salt bridges
 - π-stacking
 - hydrogen bonds
 - π-cation interactions
- Receptor protein changes conformation (shape) & response occurs

Binding Results in 1 of 3 Actions:
1. Binding to site of normal endogenous neurotransmitter initiates similar cellular response (agonistic action).
2. Binding to nearby site to facilitate transmitter binding (allosteric action).
3. Binding to receptor site, blocks access of transmitter to binding site (antagonistic action).

Addictive Processes

Substances of Abuse
A. **Sedatives** (benzodiazepines)
B. **Opiate-based painkillers**
C. **Stimulants**
 - Caffeine
 - Nicotine
 - Cocaine
 - Amphetamines
D. **Alcohol**

Non-chemical Addictions
- Gambling
- Tanning beds
- Food (Sugar/Fats)
Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Which of the following is NOT an opioid-based drug that is commonly abused:

- Vicodin
- OxyContin
- Oxytocin
- Percocet
Heroin (Diacetylmorphine)

- Rapidly crosses blood-brain barrier; smoked or injected.
- Metabolized to monoacetylmorphine, morphine, and codeine.

![Heroin and metabolites](image)

More hydrophobic than morphine

Other opioids of abuse:
- Oxycodone (In OxyContin)
- Hydrocodone
- In Vicodin

Opioid Receptor-Morphine Salt Bridge

![Opioid receptor with morphine salt bridge](image)

Salt bridge
Psychostimulants, Examples

- **Amphetamines**: *d* or *l*
- **Methylphenidate** (*Ritalin*)
- **Ephedrine, ma-huang** (*Ephedra vulgaris*)
- **Cocaine** (*Erythroxylum coca*)
- **Cathinone** (*Catha edulis*) khat, tscaht, miraa

Cocaine

A stimulant of the central nervous system, an appetite suppressant, and a topical anesthetic.

It is a serotonin–norepinephrine–dopamine reuptake inhibitor (also known as a triple reuptake inhibitor (TRI)), which mediates functionality of these neurotransmitters.

It acts simultaneously as a reuptake inhibitor for
- serotonin (5-HT)
- norepinephrine (noradrenaline, NA)
- and dopamine (DA)

by blocking the action of
- serotonin transporter (SERT),
- norepinephrine transporter (NET)
- and dopamine transporter (DAT)

Leading to increased extracellular concentrations of these neurotransmitters and, therefore, an increase in serotonergic, noradrenergic or adrenergic, and dopaminergic neurotransmission.

DAT action is what is addictive
Methamphetamine increases synaptic levels of the neurotransmitters
dopamine
serotonin (5-HT)
norepinephrine/noradrenaline,
has α and β adrenergic agonist effects.

Norepinephrine is responsible for methamphetamine’s alerting, anorectic, locomotor and sympathomimetic effects.

Dopamine stimulates locomotor effects, psychosis, and perception disturbances.

Serotonin (SHT) is responsible for delusions and psychosis.

Methamphetamine’s effects are similar to cocaine but its onset is slower and the duration is longer. Racemic amphetamine and d-amphetamine have similar chemical properties and actions to methamphetamine but are less potent.
Nicotine

- One of the 3 most widely used psychoactive drugs.
- Most preventable cause of disease and premature death.
- Current use fell from ~50 percent in 1965 to ~25 percent in 1998.
- Average starting age for people is declining; 9 out of 10 are addicted by age 21.

- Occupies and activates nicotinic cholinergic sites.
 (Ionotropic)
- Low doses stimulate the receptors.
- High doses block the receptors.
- Causes release of:
 - Dopamine (reinforcement?)
 - Acetylcholine and glutamate (memory?)

Nicotine – Occupies and activates nicotinic cholinergic sites. (Ionotropic)

- Low doses stimulate the receptors.
- High doses block the receptors.
- Causes release of:
 - Dopamine (reinforcement?)
 - Acetylcholine and glutamate (memory?)

Nicotine receptors that respond to n or m as well as acetylcholine

Acetylcholine receptors that respond to n or m as well as acetylcholine
Acetylcholine binding protein+nicotine

Sedatives / Barbiturates / Benzodiazepines

Alcohol, Barbiturates & Benzodiazepines are GABA receptor allosteric agonists
Bind to nearby sites and facilitate GABA, “flooding” neurons with Cl⁻, inhibiting neural actions

Valium (Diazepam)
Alcohol (ethanol) disrupts/interferes with the action of which of the following receptors:

- GABA and Glutamate
- Serotonin
- Opioid
- Cannabinoid
- All of the above

Alcohol, Pharmacodynamics

Alcohol disturbs synaptic activity of neurotransmitters (especially glutamate and GABA) and various intracellular transduction processes.

- **Glutamate Receptors**
 - Ethanol inhibits responsiveness of NMDA receptors to glutamate.
 - Exacerbated by enhancement of inhibitory GABA transmission.
 - Acamprosate (structural analog of glutamate) used to maintain abstinence in alcohol-dependent patients.

- **GABA Receptors**
 - Ethanol activates GABA-mediated increase in chloride ion flow → neural inhibition.
 - Results in sedation, muscle relaxation, inhibition of cognitive and motor skills, antianxiety effects.
 - Ultimately leads to augmentation of dopaminergic projections from VTA to nucleus accumbens (reward circuits).

- **Opioid Receptors**
 - Alcohol-dependent people may have (genetic) dysfunction in brain’s opioid system.
 - Ethanol may trigger opioid release, triggering DA response in reward circuitry.
 - Naltrexone (opioid antagonist) may reduce alcohol craving.
Alcohol, Pharmacodynamics

Serotonin Receptors
- Chronic alcohol use augments serotoninergic activity.
 - Serotonin dysfunction may play a role in some types of alcoholism.
- Emphasis in 5-HT$_2$ and 5-HT$_3$ receptors (located on dopaminergic neurons in nucleus accumbens).
- Serotonin reuptake-inhibiting antidepressants (e.g., setraline [Zoloft]) more effective in reducing drinking in lower-risk alcohol males.

Cannabinoid Receptors
- Chronic alcohol use stimulates formation of endogenous cannabinoid transmitter anandamide.
 - Leads to down regulation of cannabinoid receptors, disinhibiting nucleus accumbens.
 - Cessation of drinking \rightarrow hyperactive endocannabinoid reaction \rightarrow alcohol craving

Cannabinoids & Endocannabinoids
- The term anandamide is derived from the Sanskrit word for bliss (ananda).
- Anandamide is an endogenous cannabinoid agonist; interestingly, it is only a weak agonist at its receptors (likely due to conformational flexibility).
Cannabinoids and Opioids Share Several Pharmacological Properties

- **Analgesia**, Sedation, Catalepsy, Hypotension, Hypothermia
- Indeed, cannabinoids and opioids can therapeutically be used together (e.g., for analgesia for a “morphine-sparing effect”).
- Stimulation of the CB1 receptor activates mesolimbic dopamine reward pathway; sharing a common action with such drugs as cocaine, morphine, and alcohol.
- Exposure to one abusing drug (THC) can precipitate relapse to another (cocaine).
- A cannabinoid antagonist blocks or prevents relapse to other drugs (alcohol, cocaine, or heroin).
- Thus, CB-1 receptors are thought to be involved in opioid-induced reward.

Lazenka, M F; Selley, D E; Sim-Selley, L J Neuropharmacology 2014, 77 224-233.

Similarities between Cannabinoid and Opioid Systems

Natural agonists are weaker acting than exogenous agonists. Natural agonists are conformationally more flexible than exogenous agonists.
Chemistry of Addiction

- **Neuronal synaptic transmission involves** neurotransmitter presynaptic release, receptor binding, neurotransmitter binding site release, and neurotransmitter degradation/reuptake

- **Drug molecules “look like” natural substrates** bind to receptor, transporter, or enzyme active sites

- **Impact of drug depends upon:**
 - Strength of binding, which depends upon:
 - shape & positioning of functional groups
 - hydrogen bonding, salt bridges
 - π-stacking, π-cation interactions
 - hydrophobic contacts
 - conformational rigidity
 - Ability to pass through hydrophobic blood-brain barrier

- **Addiction correlates with neuroplasticity and ΔFosB accumulation** which involves chronic use, at least partially due to rapid reward.

Acknowledgements:

The materials for this presentation accrued from the development effort for a Chemistry of Addictions course envisioned for Chemistry majors as well as CSU's Psychology Department's Concentration in Addiction Counseling students. The course is in its 4th year.

Initial development was carried out by Michael Gardner, a Hendrix College undergraduate at the time and now 4th year Medical Student at the University of Arkansas for Medical Sciences.

Support for the development effort was provided by the Department of Chemistry and the College of Natural Sciences.
“The Chemistry of Addiction”

Anthony Rappé
Professor of Chemistry,
Colorado State University

Darren Griffin
Professor of Genetics,
University of Kent, UK

Slides available now! Recordings will be available to ACS members after one week

Contact ACS Webinars at acswebinars@acs.org

Upcoming ACS Webinars®

Thursday, November 19, 2015
“Prodrugs in Drug Discovery”

John Higgins, Senior Principal Scientist and Network Technology Lead, Merck
Nicholas Meanwell, Executive Director, Discovery Chemistry, Bristol-Myers Squibb

Thursday, December 3, 2015
“Chemistry & the Economy: Global Outlook 2016”

Paul Hodges, Chairman of International eChem (leC)

Contact ACS Webinars® at acswebinars@acs.org

"The Chemistry of Addiction"

Anthony Rappé
Professor of Chemistry,
Colorado State University

Darren Griffin
Professor of Genetics,
University of Kent, UK

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

Contact ACS Webinars at acswebinars@acs.org

How has ACS Webinars® benefited you?

"ACS Webinars has benefited me to broaden my research area on Green Chemistry, at least starting from now I will start digging into green chemistry and its implementation in Environmental Engineering. Safe chemistry is Green Chemistry."

Fan of the Week

Aafaq Ur Rehman,
Graduate Research Assistant,
School of Civil and Environmental Engineering

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

www.acs.org/2joinACS
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, November 19, 2015
“Prodrugs in Drug Discovery”

John Higgins, Senior Principal Scientist and Network Technology Lead, Merck
Nicholas Meanwell, Executive Director, Discovery Chemistry, Bristol-Myers Squibb

Thursday, December 3, 2015
“Chemistry & the Economy: Global Outlook 2016”

Paul Hodges, Chairman of International eChem (ieC)

Contact ACS Webinars ® at acswebinars@acs.org