

1

We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week. WWW.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org

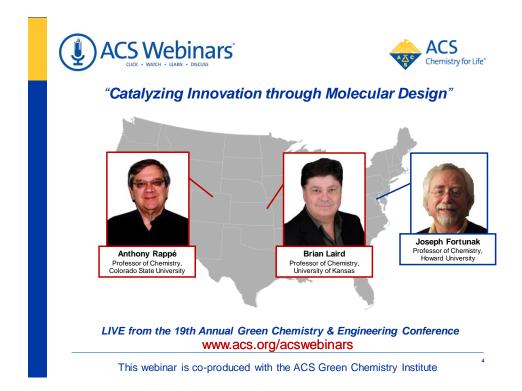
Upcoming ACS Webinars®

www.acs.org/acswebinars

Wednesday, July 22, 2015

"Panorama Nanotecnológico: Desarrollo de Sistemas Biológicos y la Nanomedicina" Spanish Language Broadcast

David Quintanar Guerrero, Professor of Engineering and Technology, Universidad Nacional Autónoma de México Lena Ruiz Azuara, President, Sociedad Química de México



Thursday, July 23, 2015

"The Creator's Code: The Six Essential Skills of Extraordinary Entrepreneurs"

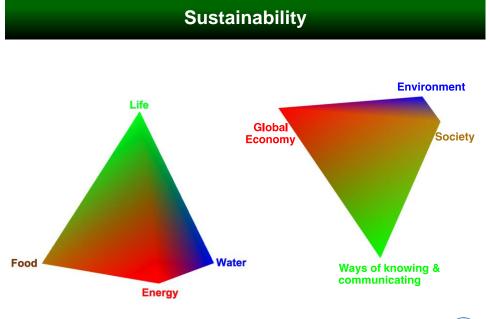
Amy Wilkinson, Author, Entrepreneur, and Strategic Advisor, Stanford Graduate School of Business Brian Morin, President & COO, Dreamweaver International

Contact ACS Webinars ® at acswebinars@acs.org

Catalysis Collaboratory for Light-activated Earth-Abundant Reagents

(aka C-CLEAR)

NSMDS: Computational design and synthetic exploitation of Earthabundant-sourced photocatalysts for carbon-heteroatom activation


- Catalytic processes
- Solar photon energy source (driving force, activation energy)
- Earth abundant materials
- Reduction in auxiliary agents

Goal: novel chemistry for pharmaceutical industry Enantioselectivity Saturated C-H bond activation

Approach:

Coordination chemistry (Shores) Transient absorption spectroscopy (Damrauer) Theory (Rappé) Organic synthetic methods development (Ferreira, Rovis)

Challenge

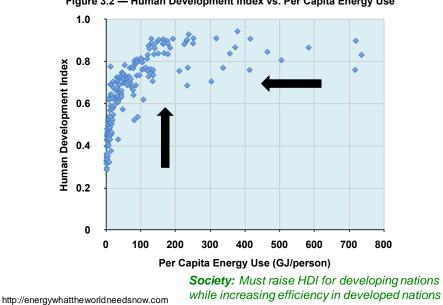


Figure 3.2 — Human Development Index vs. Per Capita Energy Use

12 Principles of Green Chemistry

- 1. Prevention Prevent rather than treat waste.
- Atom Economy Maximize the incorporation of all materials used in the process into the final product.
- 3. Less Hazardous Chemical Synthesis
- 4. Designing Safer Chemicals
- 5. Safer Solvents and Auxiliaries The use of auxiliary substances (solvents, separation agents, etc.) should be made unnecessary whenever possible.
- 6. Design for Energy Efficiency
- 7. Use of Renewable Feedstocks A raw material or feedstock should be renewable rather than depleting whenever technically and economically practical.
- 8. Reduce Derivatives Unnecessary derivatization (blocking group, protection/deprotection, temporary modification of physical/chemical processes) should be avoided whenever possible.
- 9. Catalysis Selective catalytic reagents are superior to stoichiometric reagents.
- 10. Design for Degradation
- 11. Real-time Analysis for Pollution Prevention

12. Inherently Safer Chemistry

Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press, 1998.

(c) 2010 Beyond Benign - All Rights Reserved.

Scale

Annual US petroleum production ~10⁹ metric tons

15% used in petrochemicals <0.1% used in pharmaceuticals

Annual US food consumption ~7x10⁷ metric tons

Annual US natural gas consumption ~5x10⁸ metric tons

30% for chemicals (~half for fertilizer)

Global Annual Revenue Chemical Shipments \$5.2 T Pharmaceuticals \$1 T Energy \$6 T

Pharma: small volume but high value

Selectivity

Waste/energy reduction \rightarrow

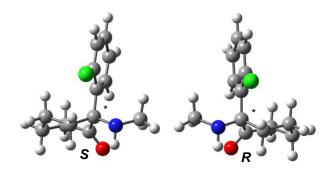
Catalysis → sub-stoichiometric reagents, less energy

Improved selectivity \rightarrow atom economy

- \rightarrow reduce auxiliary agents
- \rightarrow product control
 - reduce side products
- \rightarrow stereo control

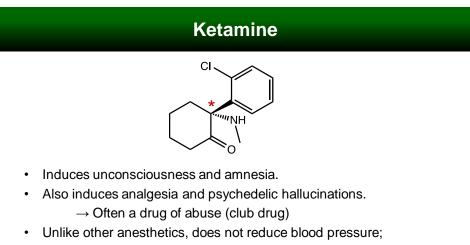
make the enantiomer you want

- reduce waste by 1/2
- improve product safety


increase pharmacodynamic understanding

Selectivity a key concept

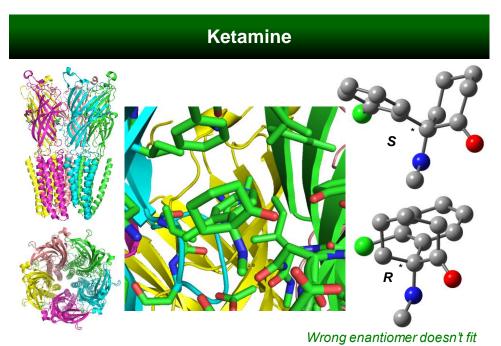
Stereoselectivity

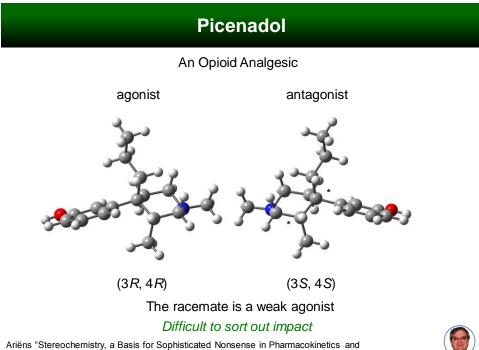


In general, stereoisomers possess different biological activity:

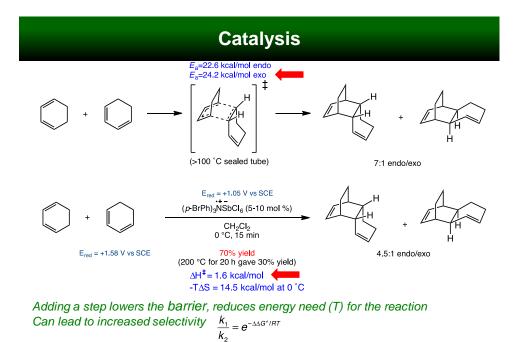
- most benign option: 50% waste
- alternatively, one isomer is active, the other provides (-) side effects
- isomers can have opposite effects

Need stereocontrol during discovery as well as production

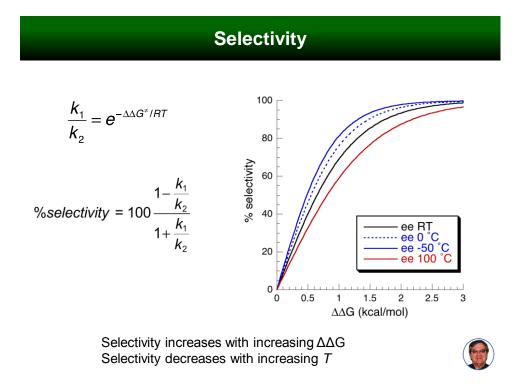

Ariëns "Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology" Eur. J. Clin. Pharmacol. 1984, 26, 663-668


- \rightarrow Important for critically ill surgery patients.
- S enantiomer associated with analgesic properties
- R enantiomer associated with psychedelic hallucinations

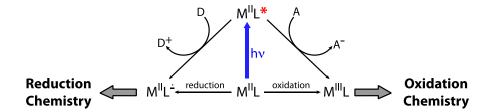
Ariëns "Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology" Eur. J. Clin. Pharmacol. 1984, 26, 663-668



Pan,J.; Chen, Q.; Willenbring, D.; Mowrey, D.; Kong, X. P.; Cohen, A.; Divito, C. B.; XU, Y.; Tang, P. "Structure of the pentameric ligand-gated ion channel GLIC Bound with anesthetic ketamine", Structure, 2012, 20, 1463.



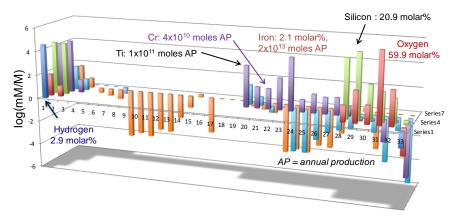
Clinical Pharmacology" Eur. J. Clin. Pharmacol. 1984, 26, 663-668



Klärner, F-.G.; Dogan, B.M.J.; Ermer, O.; Doering, W.E.; Cohen, M.P. *Angew. Chem. Int. Ed. Engl.* **1986**, *25*, 108. Bellville, D. J.; Wirth, D. W.; Bauld, N. L. *J. Am. Chem. Soc.* **1981**, *103*, 718-720.

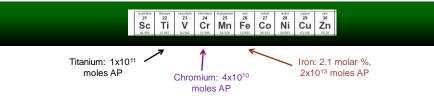
8

Photoredox Catalysis


Compared to "photovoltaics + electrochemistry", photoredox catalysis has the potential for increased efficiency & product selectivity

Reviews:

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. "Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis" *Chem. Rev.* **2013**, *113*, 5322-5363. Douglas, J. J.; Nguyen, J. D.; Cole, K. P.; Stephenson, C. R. J. "Enabling novel photoredox reactivity via photocatalyst selection" *Aldrichimica Acta*, **2014**, *47*, 15-25. Xuan, J.; Xiao, W.- J. "Visible-Light Photoredox Catalysis", *Angew. Chem. Int. Ed., Engl.* **2012**, *51*, 6828.


Abundance

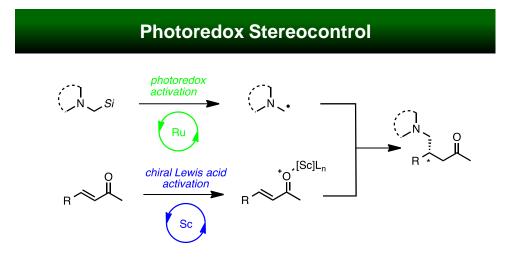
Aspirational Goal: Ti and Fe

Data from: Carmichael, R. S., Ed., CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, FL, 1989.

Compared to 2nd and 3rd row analogues, 1st row transition metal complexes:

- \rightarrow are more abundant (the metals, anyway)
- \rightarrow are more reactive (weaker bonds)
- \rightarrow undergo redox in 1 e⁻ increments (lower barriers)
- \rightarrow are electron spin active
- \rightarrow have low-lying photo-inactive excited states

Solutions? Approaches?

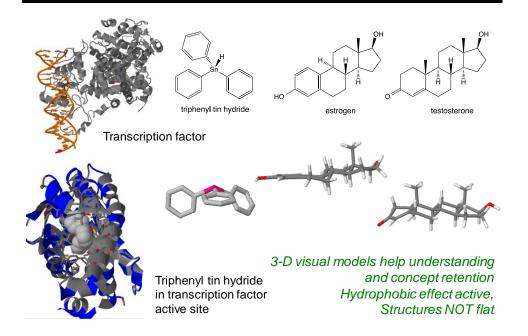

- \rightarrow learn how to control (use to our advantage) spin
- → associated molecular magnetism, spin-crossover applications
- \rightarrow involve the ligands in redox events

1st Row Metals in Catalysis Reviews:

Special Issue: "Earth Abundant Metals in Homogeneous Catalysis" Accounts of Chemical Research 2015, 48, 886-1775.

Chirik, P. J. "Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands" Acc. Chem. Res. 2015, 48, 1687-1695.

Hennessy, E. T.; Liu, R. Y.; Iovan, D. A.; Duncan, R. A.; Betley, T. A. "Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates" *Chem. Sci.*, **2014**, *5*, 1526-1532.



Tandem photocatalysis achieves stereocontrol

Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. "Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis" *J. Am. Chem. Soc.* **2015**, *137*, 2452.

Wang,C.; Zheng,Y.; Huo, H.; Rçse, P.; Zhang, L.; Harms, Hilt, K. G.; Meggers, E. "Merger of Visible Light Induced Oxidation and Enantioselective Alkylation with a Chiral Iridium Catalyst" Chem. Eur. J. 2015, 21, 7355.

Models & Modeling (pictures)

Electronic Structure Theory

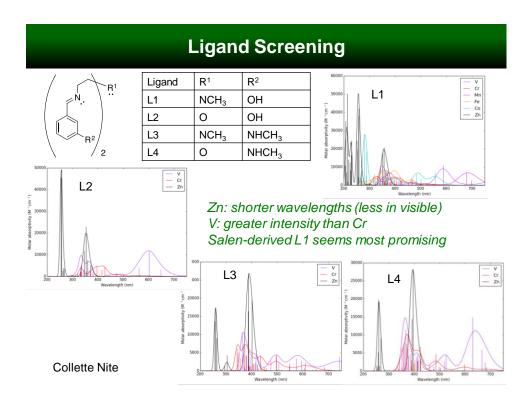
Modeling is internally calibrating

experiment \rightarrow theoretical model \rightarrow suggest experiment

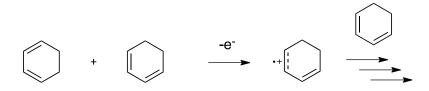
Catalysts

structure where are the unpaired electrons

Transition States


structure reaction path where are the unpaired electrons

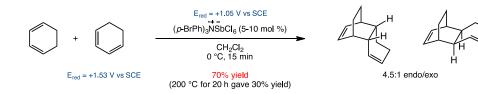
Excited States


what do the spectra look like peak positions intensities where does the excited electron come from and go to APFD DFT model using a 6-311+g(d) basis

Theory versus Experiment 100000 Cu_L21 Cu_L21_exp Ni_L21_Singlet Ni_L21_Triplet Ni_L21_exp 80000 Molar absorptivity (M⁻¹ cm⁻¹) 60000 40000 20000 0 700 300 Wavelength (nm) 600 400 600 400 500 Only qualitative agreement, but useful

Electrochemical Oxidation Diels-Alder Reactions of Electron-Rich Dienophiles

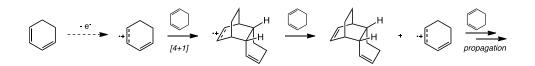
Electrode	Potential (V)	Diels-Alder product (%)	Polymer (%)	M _w 2 nd fraction/3 rd fraction
Pt	1.5	Trace	43.7	900/2000
Pt	1.7	Trace	51.2	550/1200
graphite	1.7	13.1	4.4	1200/ND


0.4 M 1,3-cyclohexadiene, 0.08M Bu₄N⁺BF₄⁻ in CH₂Cl₂

No useful selectivity/control

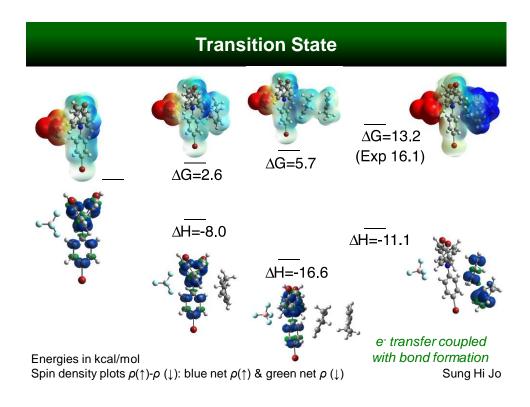
Nigenda, S. E.; Schleich, D. M.; Narang, S. C.; Keumi, T. J. Electrochem. Soc. 1987, 2465-2470.

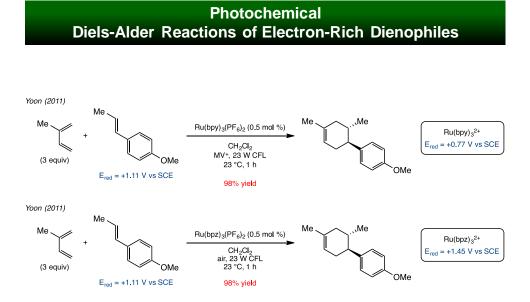
Chemical Oxidation Diels-Alder Reactions of Electron-Rich Dienophiles



Uphill, but happens at low T, not high T

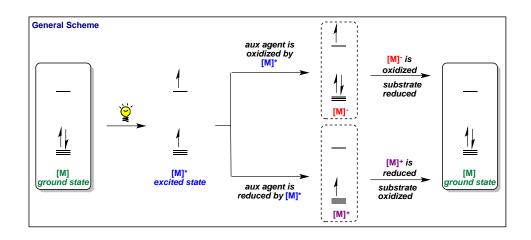
Bellville, D. J.; Wirth, D. W.; Bauld, N. L. J. Am. Chem. Soc. 1981, 103, 718-720.


Proposed Mechanism



Radical chain

Bellville, D. J.; Wirth, D. W.; Bauld, N. L. J. Am. Chem. Soc. 1981, 103, 718-720.



$[Ru(bpy)_3]^{2+}$ + methyl viologen (MV) or stronger oxidant + O₂

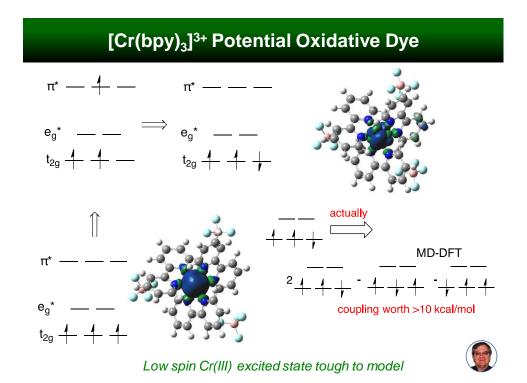
Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350-19353.

Outer-Sphere Photocatalysis

Auxiliary agent beats redox potential lifetime issues

Review: Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322-5363.

Emissive States


Metal	Lifetime (ns)	Emission λ _{max} (nm)
Cr(III)	69,000	729
Fe(II)	0.81	???
Ru(II)	600	613, 627
Os(II)	19	715

[M(bpy)₃]ⁿ⁺ in H₂O

Low spin Cr(III) excited state provides long lifetime

Creutz, C.; Chou, M.; Netzel, T. L.; Okumura,M.; Sutin, N. "Lifetimes, Spectra, and Quenching of the Excited States of Polypyridine Complexes of Iron(11), Ruthenium(II), and Osmium(11)" J. Am. Chem. Soc. 1980, 102 1309-1319

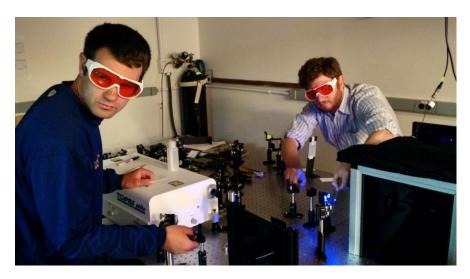
McDaniel, A. M.; Tseng, H-.W.; Damrauer, N. H.; Shores, M. P. "Synthesis and Solution Phase Characterization of Strongly Photooxidizing Heteroleptic Cr(III) Tris-Dipyridyl Complexes" Inorg. Chem. 2010, 49, 7981–7991.

Questions for C-CLEAR

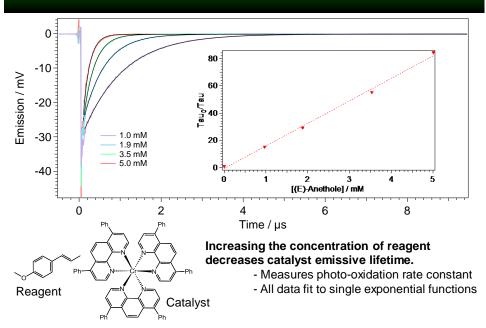
(aka Catalysis Collaboratory for Light-activated Earth-Abundant Reagents)

- · Can a first row metals be used in photoredox catalysis?
- Can the longer lifetime of Cr(III) be exploited to eliminate auxiliary agent?
- Can stereocontrol be achieved?
- · Can differentiated (novel) reactivity be observed?

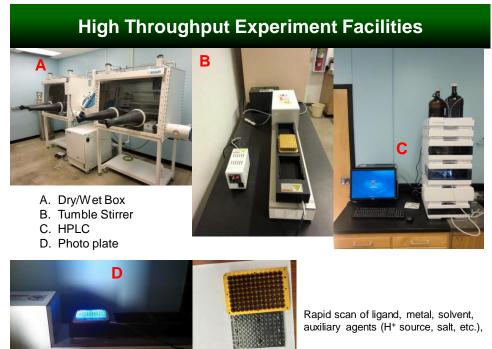
Catalyst Synthesis

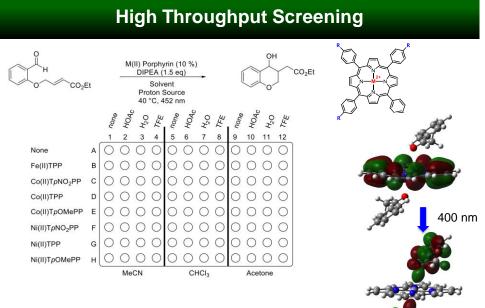

David Boston, Robert Higgins

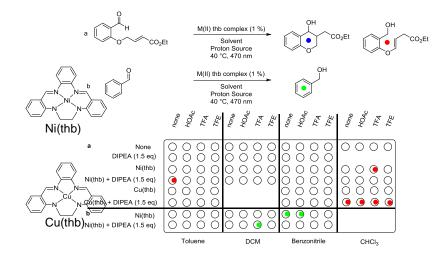
Photocatalyst Screening



Suzie Stevenson

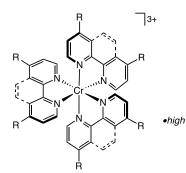

Time-Resolved Spectroscopy


Sam Shepard, Steve Fatur

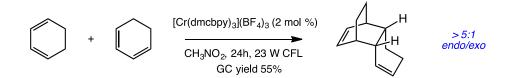


Kyle Ruhl

Crystal Structure: H. Krupitsky, Z. Stein, I. Goldberg "Structural patterns in clathrates and crystalline complexes of zinc-tetra(4-chlorophenyl)porphyrin and zinc-tetra(4fluorophenyl)porphyrin" J. Inclusion Phenomena and Molecular Recognition in Chemistry 1994/1995, Volume 20, Issue 3, pp 211-232


Reduction of Aldehydes with Nickel and Copper Complexes

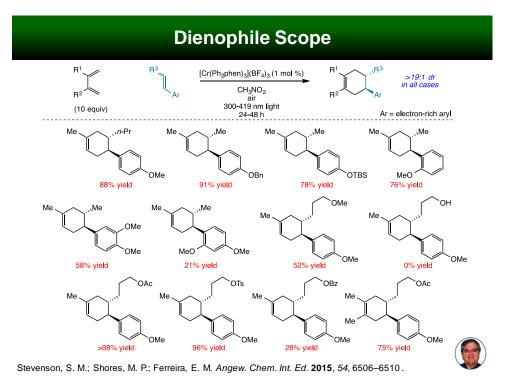
Photooxidizing Cr(III) Complexes

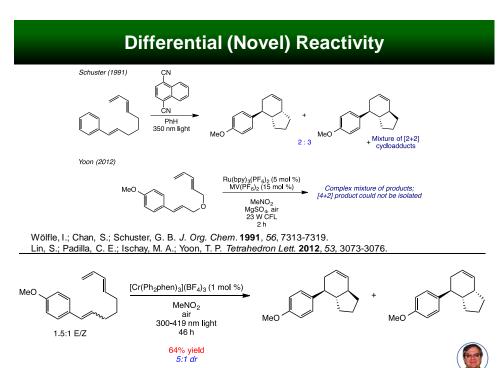


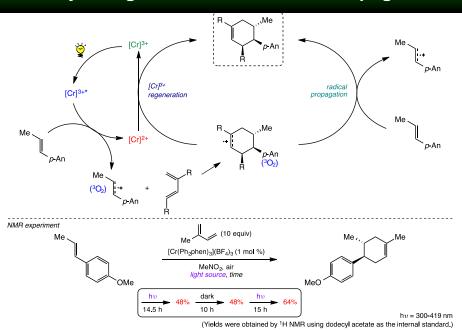
	l	Ru(bpy) ₃ 2+
•absorb visible light	λ _{max} 300-420 nm	452
•long excited state lifetimes	τ _{obs} * (μs) 425-8	1.1
excited state reduction potentials	[M]*/[M] ⁻ (V vs. SCE) 1.4-1.84	+0.77

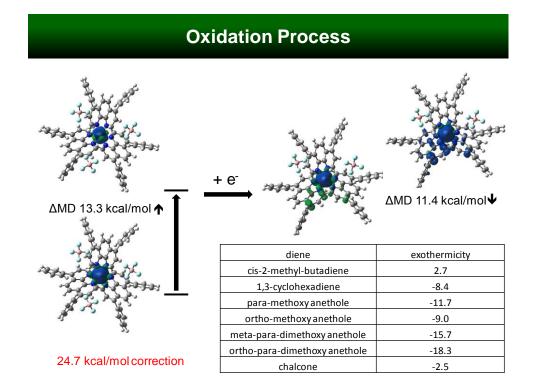
McDaniel, A. M.; Tseng, H.; Damrauer, N. H.; Shores, M. P. *Inorg. Chem.* **2010**, *49*, 7981-7991. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. *Chem. Rev.* **2013**, *113*, 5322-5363.

Dimerization of Cyclohexadiene


Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. "Photooxidizing Chromium Catalysts for Promoting Radical Cation Cycloadditions," *Angew. Chem. Int. Ed.* **2015**, *54*, 6506–6510 .




(Yields in parenthesis were obtained with a 23 W CFL as the light source.)


Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Angew. Chem. Int. Ed. 2015, 54, 6506-6510.

Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Angew. Chem. Int. Ed. 2015, 54, 6506-6510 .

Catalyst Regeneration vs. Radical Propagation

Summary

So far 1st row transition metal photocatalysis gives:

- product selectivity
- energy reduction
- reagent reduction
- diastereoselectivity

Can a first row metals be used in photoredox catalysis? yes

Can the longer lifetime of Cr(III) be exploited to eliminate auxiliary agent?

yes

Can stereocontrol be achieved? diastereocontrol yes

Can differentiated (novel) reactivity be observed? yes

NSMDS: Sustainable Chemical Innovations by an Integrated Design Approach

Industry-driven, resource-efficient, cost-competitive

Brian Laird (PI) Ward Thompson, Jon Tunge, R.V. Chaudhari & Bala Subramaniam (co-PIs)

The University of Kansas Center for Environmentally Beneficial Catalysis (CEBC)

KU NSMDS: Project Faculty Team

Molecular-Scale Modeling:

Brian Laird (PI) Computational materials science and applied statistical mechanics

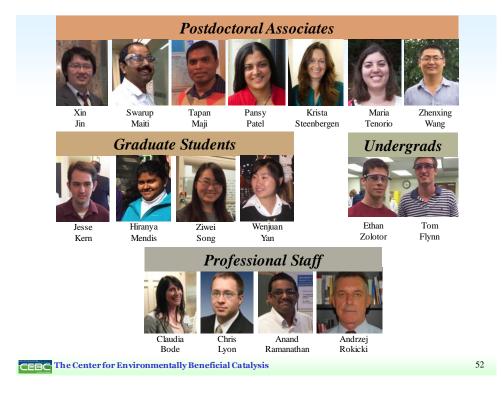
Ward Thompson (co-PI) Theoretical chemical dynamics and nanostructured materials

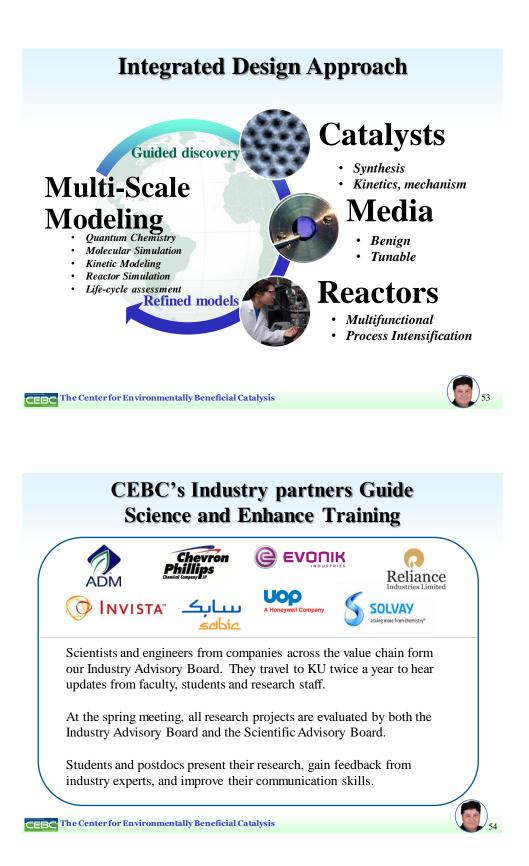
Catalysis and Reaction Engineering

Bala Subramaniam (co-PI) Green catalysis, reaction media, reactor engineering, life-cycle analysis (LCA)

Ø

R.V. Chaudhari (co-PI) Multiphase catalytic reactors, catalyst design, reaction kinetics


Synthesis of Organic Materials:

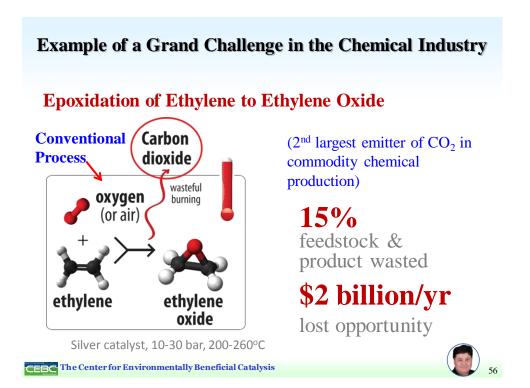


Jon Tunge (co-PI) Organic synthesis, catalyst design, reaction mecha<u>nisms</u>

CEBC The Center for Environmentally Beneficial Catalysis

51

Leveraging Resources at CEBC


CENTER FOR ENVIRONMENTALLY BENEFICIAL CATALYSIS The University of Kansas

Mission: Invent cleaner, safer, energy-efficient technologies for commodity chemicals that protect the planet and human health.

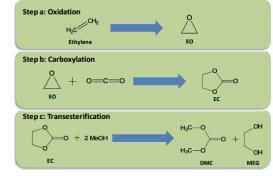
\$31 million in R&D total

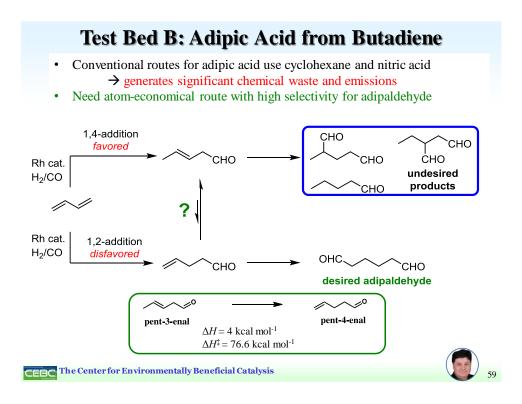
- 22 industry partners total
- **44** inventions
- 12 patents
- ~35 students & postdocs

Project Goal: Apply integrated design approach to *grand challenges* in the chemical industry

Test bed A: Non-phosgene CO₂-based route to dimethyl carbonate (DMC)

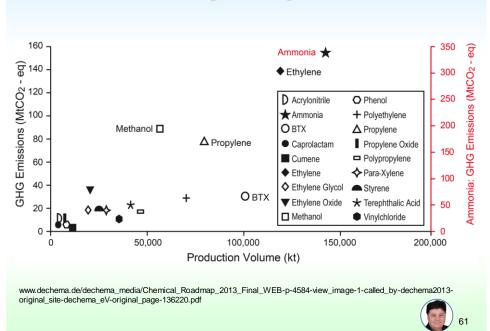
Test bed B: Cleaner, atom-economical route for butadiene to adipic acid

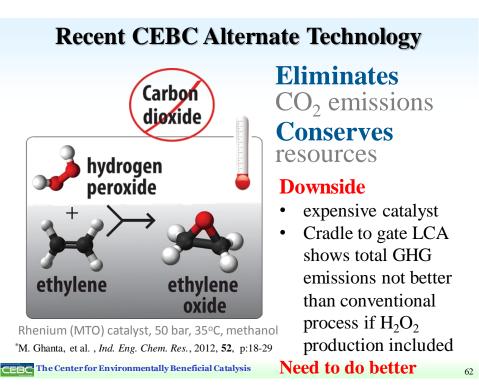

Test Bed A: Non-phosgene Route from Ethylene to DMC

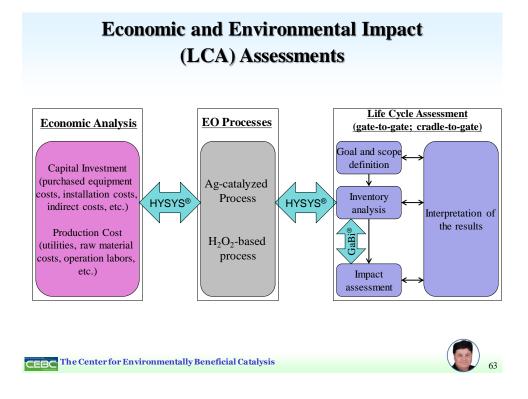

Develop a novel *atom economical, non-phosgene* catalytic route for making DMC from ethylene, CO_2 and methanol using the following steps:

Step 1: Ethylene to ethylene oxide (EO) using methanol as a solvent

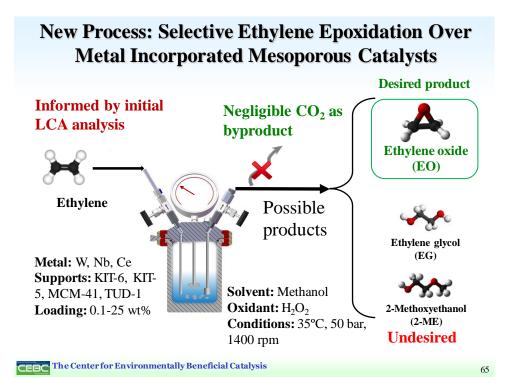
Step 2: Carboxylation of EO to ethylene carbonate (EC) using CO₂

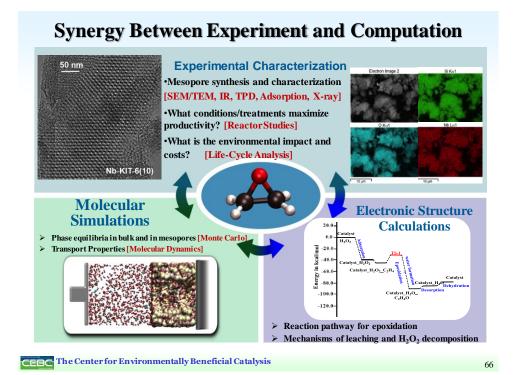

Step 3: Transesterification of EC using methanol to DMC

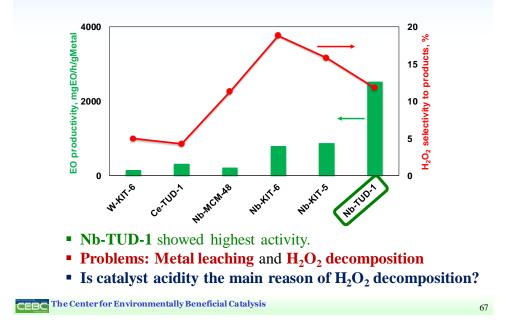


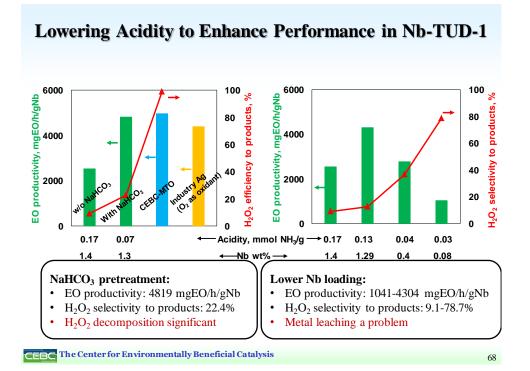

Integrated Catalyst Design in Action Epoxidation of ethylene to ethylene oxide

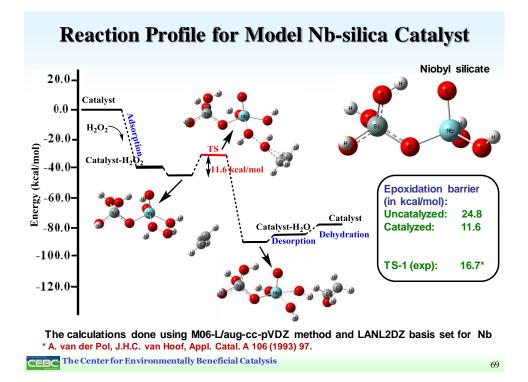
GHG Emissions of Top 18 Large-Volume Chemicals

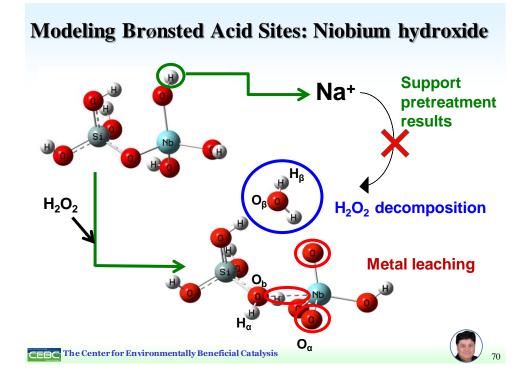

CEBC H₂O₂ Process can be Cost-competitive


Economics already on par with conventional process, and projected to cost **17%** less with use of the following:

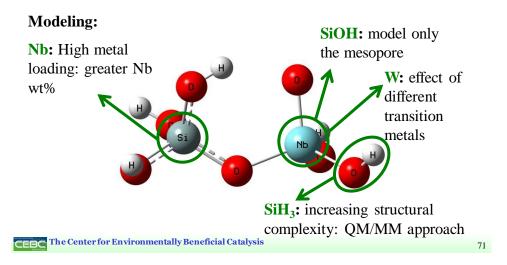

M. Ghanta, *et al.*, *Ind. Eng. Chem. Res.*, 2012, **52**, p:18-29

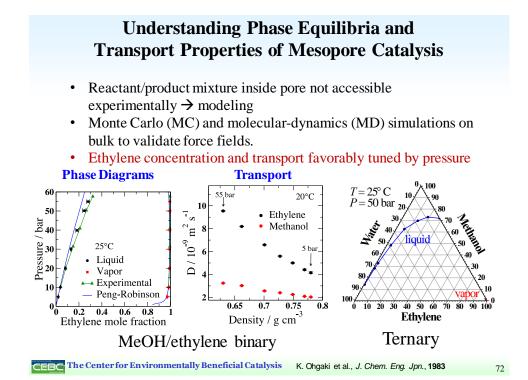


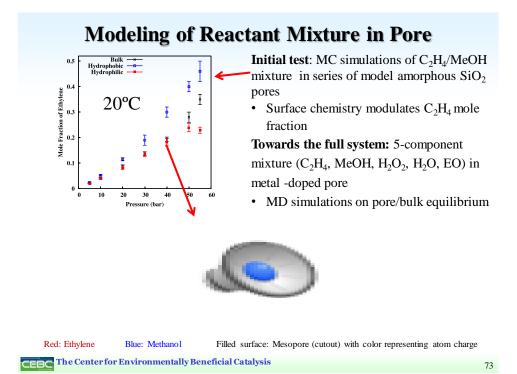




Mesoporous Catalysts are Active but Decompose H₂O₂

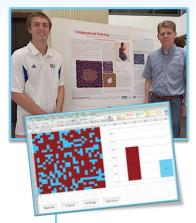





Ongoing and Future Work

Experiment:

- To counter metal leaching: use CH₃OH as solvent for H₂O₂
- · Explore other coordination motifs for Nb catalyst


Education and Outreach: Adding Value to Our NSF-RET Program

44 participants since 2009, 12/summer includes science teachers and undergrads training to become teachers cebc.ku.edu/research-experience-teachers

- NSMDS funding adds 2 undergrads to the 6week program. Students gain insights from RET participants about how to communicate science and turn research into lessons/lab activities
- Teachers in the RET program gain technical advice from undergrads and learn about green chemistry and engineering from faculty to include in the new lessons they create for their students

CEBC The Center for Environmentally Beneficial Catalysis

While working with Prof. Thompson, an undergrad developed an algorithm about entropy (i.e., "coin flip" spreadsheet)

Community Outreach

Carnival of Chemistry

Graduate students and staff from NSMDS team hosted hands-on activities for >500 children and their families at KU's annual Carnival of Chemistry. Activities highlighted how catalysts work and how green engineering can reduce environmental impact of chemical manufacturing.

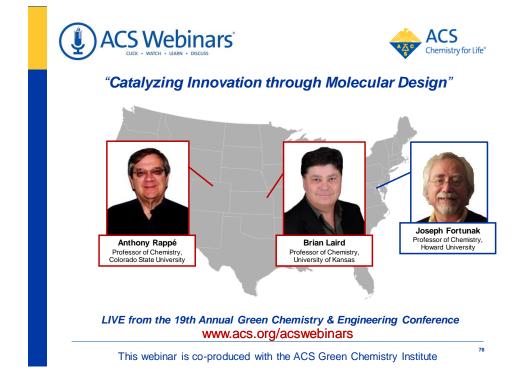
Concluding Remarks

• *Emerging feedstocks* (biomass, shale gas) provide exciting challenges for developing novel technologies with reduced environmental footprints

- Potential game changers for the US chemicals industry

- Multi-scale approach that benefits from expertise of chemists and engineers to concurrently address all process elements (catalyst, reaction mechanisms, reactors, etc.) expedites discovery of *resource-efficient* technologies
- Quantitative *sustainability assessments* (economic, LCA) are powerful tools in guiding R&D toward practically viable processes
- *University/Industry/Government partnerships* that engage stakeholders across the entire value chain key for timely technology commercialization with emerging feedstocks

CEBC The Center for Environmentally Beneficial Catalysis



Thank You!

The Center for Environmentally Beneficial Catalysis

77

ACS Webinars[®] does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

79