We will begin momentarily at 2pm ET

Slides available now! Recordings will be available to ACS members after one week.

www.acs.org/acswebinars

Contact ACS Webinars ® at acswebinars@acs.org

Have Questions?

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Type them into questions box!

Contact ACS Webinars ® at acswebinars@acs.org
Have you discovered the missing element?

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Let’s get Social…post, tweet, and link to ACS Webinars during today’s broadcast!

facebook.com/acswebinars

@acswebinars

Search for “acswebinars” and connect!

How has ACS Webinars® benefited you?

“The content of The Next Generation of Circuitry left my mind invigorated, my thoughts racing, my creativity dancing! So many doors and possibilities simultaneously opened in my mind.”

Fan of the Week

Valarie Thomas, PhD
Senior Research Scientist,
Akervall Technologies, Inc.

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Learn from the best and brightest minds in chemistry!
Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members one week after the Live broadcast date. www.acs.org/acswebinars

Broadcasts of ACS Webinars® continue to be available to the general public LIVE every Thursday at 2pm ET!

www.acs.org/acswebinars
Upcoming ACS Webinars®
www.acs.org/acswebinars

Thursday, March 24, 2016

“Basking in Energy: A Look into Polymer Solar Cells”
Co-produced with ACS Chemistry Champions Competition

Tierra Range, Senior and a 2015 winner of the Chem Champs Competition, Centenary College of Louisiana
Chris McCarthy, Social Media Manager, American Chemical Society

Thursday, March 31, 2016

“Modified Release Formulations for Solubility Starved Compounds”
Session 3 of the 2016 Drug Design and Delivery Symposium

Mengwei Hu, Principal Scientist, Discovery Pharmaceutical Sciences, Merck & Co.
John Morrison, Senior Research Investigator, Bristol-Myers Squibb

Contact ACS Webinars ® at acswebinars@acs.org

2016 Material Science Series

Ever since the Model-T first rolled off the production line in 1908, the world of transportation has never been the same. Join us as we examine the science behind innovations that will drive the world for the next 100 years.

Thursday, April 7, 2016

Chemistry of Go: Sustainable Agro Biofuels
Session 4 of the 2016 Material Science Series

Dr. Jennifer Holmgren, Chief Executive Officer, LanzaTech
Mark Jones, Executive External Strategy and Communications Fellow, Dow Chemical

The 2016 Material Science Series is co-produced with ACS Industry Member Programs and C&EN
2016 Material Science Series
“Chemistry of Hello: Lithium Ion Batteries”

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

The 2016 Material Science Series is co-produced with ACS Industry Member Programs and C&EN

Accelerating Breakthrough Discoveries
www.wildcatdiscovery.com

Chemistry of Hello: Lithium Ion Batteries
Challenges and Opportunities for Personal Electronics Applications

Dee Strand, Wildcat Discovery Technologies
The Dreaded

My battery won’t even last a day.

Talk fast, my phone’s dying!

OH NO... I forgot to charge my phone!

The battery on those new phones aren’t very good.

The battery doesn’t last very long anymore...

Today’s Agenda

- How does the lithium ion battery work?
- Why won’t my battery last all day?
- Why has my battery performance decreased in my old phone?
- Why isn’t my new phone much better than my old phone?
- Can I put in a better battery?
- How do we fix the problem?
How does a lithium ion battery work?

A passivation (Solid Electrolyte Interphase or SEI) layer is required on the anode

- Carbonate electrolytes are not stable at the anode potentials (close to 0 V vs. Li)
- Formed during first few cycles in situ

Terminology/Units

- **Charge** (on an e⁻ or a Li⁺): unit of Coulombs
- **Current** – measure of charge passing a point per unit time: unit of Amperes (or Amps)
- **Amp-hour** (Ah) – measure of charge passing at steady current in 1 hour
- **Capacity** – amount of “charge” per unit weight or volume
 - For a material: unit of Ah/kg or mAh/g
- **Cathode capacity**
 - How much Li⁺ can it provide to move back and forth?
- **Anode capacity**
 - How much Li⁺ can it hold or accommodate from the cathode?
- **C-rate**
 - Full charge or discharge of a cell in a particular amount of time
 - 1 C = 1 hour
 - 10 C = 1/10 hour
 - C/10 = 10 hours
Terminology/Units

- **Energy** = area under discharge curve
 - $= V \times \text{mAh/g}$
 - $= \text{Wh/kg}$

- **How can we increase cell energy?**
 - Increase capacity (x-axis)
 - Increase voltage (y-axis)

Why doesn’t my battery last all day?

- How much energy can I store in the space that I have?

Current Collectors:
- Goal is to make as thin and light as practically possible

Separator:
- Goal is to make as thin as practically possible

Cathode:
- More Li$^+$ per unit volume
- Higher voltage
- Increased density
- Thicker electrodes
- *Goal is to pack more cathode into the battery volume*

Anode:
- More Li$^+$ per unit volume
- Lower voltage
- Increased density
- Thicker electrodes
- *Goal is to use less of the battery volume for anode*
Why doesn’t my battery last all day?

- How much energy can I store in the space that I have?

Audience Survey Question

Why doesn’t my cell phone battery last all day?

- It’s difficult to make thick, dense electrodes work well
- We need cathode materials that contain more lithium
- We need anode materials that can hold more lithium
- Cell phone apps expand to use available battery capacity
Why has my battery performance decreased in my old phone?

- Loss of lithium due to reaction of electrolyte with active material
- Continuous formation of SEI results in gradual loss of lithium to move back and forth

Why has my battery performance decreased in my new phone?

- Plenty of lithium, but becomes more difficult to move it
- Impedance rise in the cell due to SEI formation or other problem
What might make my phone last longer?

- Don’t leave it in a hot car in Arizona
- Don’t charge the phone outside in Michigan in the winter
- Keep your battery charged about 50%
- Don’t drop your phone

Why isn’t my new phone much better than my old phone?

- Your new phone most certainly has a **better battery** in it than your old phone
 - Higher capacity
 - Higher voltage

- But **WHAT ELSE** does it have?
 - Bigger display
 - Brighter display
 - More processors
 - You use it differently....

Phone features expand to exploit battery improvements
Can I put in a better battery?

- Need to be careful here
- Battery management systems (BMS) are very sophisticated
 - Prevent overcharge, undercharge
 - Control charging rates
 - Monitor state of charge and battery health
 - Etc.
- The BMS and the battery are a “matched set”
- Not all batteries are equal
 - Even if the specifications are the same

How do we fix the problem?

- Inorganic Chemistry
 - Cathode materials with more accessible lithium
 - Example: High Ni layered oxides

LiMO₂ → Li₁₋ₓMO₂ ⟷ LiM₂O₄-type spinel ⟷ M₂O₄-type spinel ⟷ MO rock salt

\[
\text{Li}_{0.33}\text{Ni}_{0.8}\text{Co}_{0.15}\text{Al}_{0.05}\text{O}_2
\]

Seong-Min et al., Chem. Mater. 2013, 25, 337-351
How do we fix the problem?

- Inorganic chemistry, formulation science
 - Anode materials with high lithium capacity and low volumetric changes
 - Example: Si based anodes

![Graphite Anode and Conventional Cathode comparison](image)

- Organic chemistry
 - Electrolytes that are stable on active materials
 - Example: SEI formation on anode

![Electrolyte and SEI formation images](image)
Wildcat’s Value Proposition

- Wildcat uses unique high throughput technology to accelerate battery R&D for others
- Projects include new or improved cathodes, anodes, electrolytes, and binders
- Wildcat’s value proposition is to accelerate time to market for new cell technologies and to reduce R&D costs

High Throughput Research: Value Proposition

High Throughput = High Success Probability

Cathode
- Base Composition
- Crystal Structure
- Dopants
- Coatings
- Particle Size & Distribution
- Surface Functionality
- Slurry
- Binder
- Drying Process
- Linear Carbonate
- Active Material Pair
- Formation Process

Anode
- Slurry
- Linear Carbonate
- Active Material Pair
- Formation Process

Coating
- Conductive Additive
- Thickness
- Cyclic Carbonate
- Capacity Match
- Voltage Range

Particle
- Additive Ratio
- Density
- Co-Solvents
- Electrolyte Quantity
- C-Rate

Additives
- AM:Binder Ratio
- Mixing Method
- Pressing Process
- Additives
- Pulse Protocols

Separator
- Particle Size & Distribution
- Current Collector
- Electrolyte
- Separator Properties
- Temperature

Electrolyte
- Electrolyte Quantity
- Active Material Pair
- Electrolyte
- Assembly
- Testing
“What is a TR50 company? It is a business whose innovations force other businesses to alter their strategic course.”

www.wildcatdiscovery.com

2016 Material Science Series
“Chemistry of Hello: Lithium Ion Batteries”

Slides available now! Recordings will be available to ACS members after one week

The 2016 Material Science Series is co-produced with ACS Industry Member Programs and C&EN
2016 Material Science Series

Ever since the Model-T first rolled off the production line in 1908, the world of transportation has never been the same. Join us as we examine the science behind innovations that will drive the world for the next 100 years.

Thursday, April 7, 2016
Chemistry of Go: Sustainable Agro Biofuels
Session 4 of the 2016 Material Science Series

Dr. Jennifer Holmgren, Chief Executive Officer, LanzaTech
Mark Jones, Executive External Strategy and Communications Fellow, Dow Chemical

The 2016 Material Science Series is co-produced with ACS Industry Member Programs and C&EN.

Upcoming ACS Webinars®
www.acs.org/acswебinars

Thursday, March 31, 2016
"Modified Release Formulations for Solubility Starved Compounds"
Session 3 of the 2016 Drug Design and Delivery Symposium

Mengwei Hu, Principal Scientist, Discovery Pharmaceutical Sciences, Merck & Co.
John Morrison, Senior Research Investigator, Bristol-Myers Squibb

Contact ACS Webinars® at acswебinars@acs.org
2016 Material Science Series
“Chemistry of Hello: Lithium Ion Batteries”

Dee Strand
Chief Scientific Officer,
Wildcat Discovery Technologies

Mark Jones
Executive External Strategy and Communications Fellow,
Dow Chemical

Slides available now! Recordings will be available to ACS members after one week
www.acs.org/acswebinars

The 2016 Material Science Series is co-produced with ACS Industry Member Programs and C&EN

How has ACS Webinars® benefited you?

“The content of The Next Generation of Circuitry left my mind invigorated, my thoughts racing, my creativity dancing! So many doors and possibilities simultaneously opened in my mind.”

Valarie Thomas, PhD
Senior Research Scientist,
Akervall Technologies, Inc.

Fan of the Week

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars®

www.acs.org/acswebinars

Thursday, March 24, 2016
“Basking in Energy: A Look into Polymer Solar Cells”
Co-produced with ACS Chemistry Champions Competition

Tierra Range, Senior and a 2015 winner of the Chem Champs Competition, Centenary College of Louisiana

Chris McCarthy, Social Media Manager, American Chemical Society

Thursday, March 31, 2016
“Modified Release Formulations for Solubility Starved Compounds”
Session 3 of the 2016 Drug Design and Delivery Symposium

Mengwei Hu, Principal Scientist, Discovery Pharmaceutical Sciences, Merck & Co.

John Morrison, Senior Research Investigator, Bristol-Myers Squibb

Contact ACS Webinars ® at acswebinars@acs.org