We will begin momentarily at 2pm ET

Slides available now! Recordings available as an exclusive ACS member benefit.
www.acs.org/acswebinars

Contact ACS Webinars® at acswebinars@acs.org

Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host.
Thank you and enjoy the show.

Contact ACS Webinars® at acswebinars@acs.org
Have you discovered the missing element?

Find the many benefits of ACS membership!

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Let’s get Social...post, tweet, and link to ACS Webinars during today’s broadcast!

facebook.com/acswebinars

@acswebinars

Search for “acswebinars” and connect!

How has ACS Webinars® benefited you?

“ACS Webinars stand out to me as especially enjoyable and I value them for enhancing my understanding.”

Fan of the Week
Howard Paris
Materials and Process Engineer
Zodiac Aerospace

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Learn from the best and brightest minds in chemistry! Hundreds of webinars presented by subject matter experts in the chemical enterprise.

Recordings are available to current ACS members one week after the Live broadcast date. www.acs.org/acswebinars

Broadcasts of ACS Webinars® continue to be available to the general public LIVE every Thursday at 2pm ET!
Upcoming ACS Webinars

Thursday, September 22, 2016

Chemistry of Longevity: Rapamycin's Secret Past and Potential for a Longer Life

Matt Kaeberlein, Professor of Pathology, University of Washington
Bethany Halford, Senior Editor, Chemical & Engineering News

Tuesday, September 20, 2016 SPECIAL BROADCAST

Becoming 'Award Ready'

Amanda Bryant-Friedrich, Dean of College of Graduate Studies, University of Toledo
Les McQuire, Global Program Team Director, Novartis Pharmaceutical Corporation
Amber F. Charlebois, SUNY-College at Geneseo and 2016 Chair, ACS Women Chemists Committee

Contact ACS Webinars ® at acswebinars@acs.org
Upcoming ACS Webinars
www.acs.org/acswebinars

Wednesday, September 28, 2016 SPECIAL BROADCAST

Who Will Win the #ChemNobel? Predicting the 2016 Nobel Laureate(s) in Chemistry
Carmen Drahl, Freelance Science Journalist
Stu Cantrill, Nature Chemistry
Alexander Spokoyny, UCLA
Lauren Wolf and Matt Davenport, C&EN

Thursday, September 29, 2016

Dealing with Reactive Drug Metabolites in Drug Discovery
Deepak Dalvie, Research Fellow, Pfizer
F. Peter Guengerich, Professor of Biochemistry and the Director of the Center in Molecular Toxicology, Vanderbilt University

Contact ACS Webinars ® at acsw einars@acs.org

“Unveiling the Mysteries Behind HPLC and GC Resolution: From Theory to Practice in 30 minutes”

Lee Polite
President and Laboratory Director, Axion Analytical Labs, Inc. and Axion Training Institute, Inc.

Bryan Tweedy
Manager, Career and Professional Resources, American Chemical Society

Slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars

This ACS Webinar is being co-produced by ACS Professional Education
Unveiling the Mysteries Behind
HPLC and GC Resolution

Lee N. Polite, Ph.D.
President and Founder
Axion Analytical Labs, Inc.
Axion Training Institute, Inc.

HPLC and GC – Separation Sciences

• HPLC and GC are the most widely used chemical analysis techniques in the world.

• Historically, HPLC and GC have been seen as very different techniques (one flow liquids, the other gasses; one has packed columns, the other does not; one vaporizes the other dissolves, etc.)

• Although the instrumentation and applications are significantly different, the underlying science is the same: Separation

• This separation is based finding the set of conditions where the analytes (compounds of interest) have different affinities for the stationary phase versus the mobile phase.
HPLC and GC – Separation Sciences

- The goal of chromatography is to separate pure compounds from a mixture.

- Why do we separate?
 - We separate to identify (Qualitative Analysis)
 - We separate to quantify (Quantitative Analysis)
 - Sometimes we separate to purify (Prep-Scale)

- But the first step is always to separate!

Chromatographic separations are based on the partitioning or differential migration of molecules between two phases: The mobile phase and the stationary phase.
How familiar are you with Separations Science?

• I have never used a GC or HPLC
• I am familiar with GC or HPLC but can always gain more experience
• I work with GC or HPLC on weekly basis but am always interested in learning more.
• I could give a webinar on GC and HPLC separations science

HPLC and GC – Separation Sciences

• At first it may seem difficult to fully understand separations in HPLC and GC, but...

• There are ONLY 3 parameters that affect HPLC and GC separations

• If you set those 3 parameters properly, you are guaranteed a separation.

• As an added bonus, they are the same 3 parameters that dictate separations in all types of chromatography (GC, HPLC, Reversed Phase, Normal Phase, Ion Exchange, Supercritical Fluid Chromatography, etc.)
HPLC and GC – Separation Sciences

- **And here's the best part**: YOU are in charge of those 3 parameters, so YOU are in charge of the separation.

- **So let's take a closer look** at these 3 parameters and how to set them properly.

Master Resolution Equation

\[
R_s = \left(\frac{k}{1+k} \right) \cdot \left(\frac{\alpha - 1}{\alpha} \right) \cdot \frac{\sqrt{N}}{4}
\]

<table>
<thead>
<tr>
<th>Capacity (Solvent Strength)</th>
<th>Selectivity (Stationary & Mobile Phases)</th>
<th>Efficiency (Lc, Dp, μ)</th>
</tr>
</thead>
</table>

- Resolution is a function of three factors: k, α, & N
- All three factors are necessary to achieve a separation.
- These are the only three factors necessary to achieve a separation!
Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT.

What is the definition of good resolution? It should be greater than or equal to:

- 0.50
- 0.70
- 1.00
- 1.50
- All of the values
Different Resolution Values

![Graph showing resolution values from 0.40 to 1.50 with corresponding peaks.

GC Master Resolution Equation

\[R_s = \left(\frac{k}{1 + k} \right) x \left(\frac{\alpha - 1}{\alpha} \right) x \frac{\sqrt{N}}{4} \]

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Capacity / Retention Factor</th>
<th>Selectivity</th>
<th>Efficiency (“Peak Skinniness”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R>1.50</td>
<td>1 < k < 5</td>
<td>(\alpha > 1.05)</td>
<td>Avg ~ 20,000 Max ~ 400,000</td>
</tr>
<tr>
<td></td>
<td>(k = (t_r-t_0)/t_0)</td>
<td>(\alpha = k_B/k_A)</td>
<td>(N = 5.545 \times \left(\frac{t_r}{W_{hr}} \right)^2)</td>
</tr>
<tr>
<td>Lower Temp</td>
<td>Change Stationary Phase</td>
<td></td>
<td>↑ Column Length (Lc)</td>
</tr>
<tr>
<td>by 25°C</td>
<td>~ Doubles k</td>
<td></td>
<td>↓ Column Diameter (Dc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↓ Film Thickness (Df)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimize Flow Rate ((\mu))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check Column Installation</td>
</tr>
</tbody>
</table>

Note:
- Lower Temp by 25°C ~ Doubles k
HPLC Master Resolution Equation

\[
R_s = \left(\frac{k}{1 + k} \right) x \left(\frac{\alpha - 1}{\alpha} \right) x \frac{\sqrt{N}}{4}
\]

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Capacity / Retention Factor</th>
<th>Selectivity</th>
<th>Efficiency (“Peak Skinness”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R>1.50</td>
<td>1 < k < 5</td>
<td>(\alpha > 1.2)</td>
<td>Avg ~ 5,000 Max ~ 25,000</td>
</tr>
<tr>
<td>(k = \frac{t_r - t_0}{t_0})</td>
<td>(\alpha = \frac{k_B}{k_A})</td>
<td>(N = 5.545 \times \left(\frac{t_r}{W_h} \right)^2)</td>
<td></td>
</tr>
</tbody>
</table>

Weaken Mobile Phase ↑%H2O by 10% ~ 2-3 x \(k \)

Change: Mobile Phase Stationary Phase pH, Temp, buffer, additive, etc.

↑ Column Length (Lc)
↓ Particle Diameter (Dp)
Optimize Flow Rate (\(\mu \))
Min. Extra Col. Volume

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

How can you imagine using the master resolution equation in your own life?

- To develop a method from scratch.
- To optimize the speed or resolution of a current method.
- To troubleshoot a current separation problem.
- To impress my friends at the next cocktail party.
Use Resolution Equation to Cut Analysis Time

Original HPLC Method Takes 20 minutes!

Column: 25 cm with 5 um particles

Optimized HPLC Method is Only 30 Seconds!

Column: 5 cm with 3.5 um particles

Why Do We Need Such Short Analysis Times?

• Run more samples per day

• Generate More Timely Results

• Allow for more quality control (blanks, spike recoveries, duplicates, etc.)

• Enable real-time analysis
Case Study: Cellulosic Ethanol (Renewable Energy)

- Pretreatment (key step) historically takes 30-40 minutes, leading to higher costs, lower conversion and higher levels of degradents.

- New Technology (Sweetwater Energy, Inc.) accomplishes that step in less than 10 seconds!

- Hurray for the good guys, but now analytical becomes a challenge: Either give results too late to do anything about them, or optimize methods for high speed results.

- DOE “optimized method” took 10 minutes (reduced from 55 minutes!), but that is still 600 seconds.

- Solution: 20 second HPLC analysis

Fast HPLC of HMF and Furfural

Agilent 1200SL HPLC
Diode Array Detector @ 280nm
Zorbax Eclipse Plus C18 – 50mm x 4.6 mm x 3.5 um
Flow Rate = 5.0 ml/min
375 Bar

0.01% Furfurals in Less Than 20 Seconds
Combined HPLC and GC Master Resolution Equation

\[R_s = \left(\frac{k}{1 + k} \right) x \left(\frac{\alpha - 1}{\alpha} \right) x \frac{\sqrt{N}}{4} \]

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Capacity / Retention Factor</th>
<th>Selectivity</th>
<th>Efficiency (“Peak Skinniness”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R>1.50</td>
<td>(1 < k < 5)</td>
<td>(\alpha > 1.2) (\alpha > 1.05)</td>
<td>Avg ~ 5K / 20K Max ~ 25K / 400K</td>
</tr>
<tr>
<td></td>
<td>(k = \frac{(t_r - t_0)}{t_0})</td>
<td>(\alpha = \frac{k_B}{k_A})</td>
<td>(N = 5.545 x \left(\frac{t_r}{W_h} \right)^2)</td>
</tr>
<tr>
<td></td>
<td>Weaken Mobile Phase Decrease Temperature</td>
<td>Change: Stationary Phase Mobile Phase pH, Temp, buffer, additive, etc.</td>
<td>(\uparrow) Column Length (Lc) (\downarrow) Particle Diameter (D_p) (\downarrow) Column Diameter (D_c) (\downarrow) Film Thickness (D_f) Optimize Flow Rate (\mu) Min. Extra Col. Volume</td>
</tr>
</tbody>
</table>

Thanks...from the Axion (Summer) Team
The Axion Summer Interns...Get Famous!

Axion’s Hands-On HPLC and GC Training Facility

Axion has provided chromatography training to every major pharmaceutical, chemical and petroleum company in the US, as well as most of the larger government labs.

Axion offers comprehensive Hands-On HPLC and GC training courses at its downtown Chicago location for anyone interested in honing their chromatography skills.

From beginner to near-expert in four days!
Thank You for Attending!

For more information on GC & HPLC Training Courses Visit:

http://AxionLabs.com/courses/

Facebook.com/axionlabs

ACS Webinars

“Unveiling the Mysteries Behind HPLC and GC Resolution:
From Theory to Practice in 30 minutes”

Lee Polite
President and Laboratory Director, Axion Analytical Labs, Inc. and Axion Training Institute, Inc.

Bryan Tweedy
Manager, Career and Professional Resources, American Chemical Society

Slides available now! Recordings are an exclusive ACS member benefit.

www.acs.org/acswebinars

This ACS Webinar is being co-produced by ACS Professional Education
Upcoming ACS Webinars
www.acs.org/acswebinars

Thursday, September 22, 2016

Chemistry of Longevity: Rapamycin's Secret Past and Potential for a Longer Life

Matt Kaeberlein, Professor of Pathology, University of Washington
Bethany Halford, Senior Editor, Chemical & Engineering News

Tuesday, September 20, 2016 SPECIAL BROADCAST

Becoming 'Award Ready'

Amanda Bryant-Friedrich, Dean of College of Graduate Studies, University of Toledo
Les McQuire, Global Program Team Director, Novartis Pharmaceutical Corporation
Amber F. Charlebois, SUNY-College at Geneseo and 2016 Chair, ACS Women Chemists Committee

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars
www.acs.org/acswebinars

Wednesday, September 28, 2016 SPECIAL BROADCAST

Who Will Win the #ChemNobel? Predicting the 2016 Nobel Laureate(s) in Chemistry

Carmen Drahl, Freelance Science Journalist
Stu Cantrill, Nature Chemistry
Alexander Spokoyny, UCLA
Lauren Wolf and Matt Davenport, C&EN

Thursday, September 29, 2016

Dealing with Reactive Drug Metabolites in Drug Discovery

Deepak Dalvie, Research Fellow, Pfizer
F. Peter Guengerich, Professor of Biochemistry and the Director of the Center in Molecular Toxicology, Vanderbilt University

Contact ACS Webinars ® at acswebinars@acs.org
“Unveiling the Mysteries Behind HPLC and GC Resolution: From Theory to Practice in 30 minutes”

Lee Polite
President and Laboratory Director,
Axion Analytical Labs, Inc. and
Axion Training Institute, Inc.

Bryan Tweedy
Manager, Career and Professional Resources
American Chemical Society

Slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars

This ACS Webinar is being co-produced by ACS Professional Education

How has ACS Webinars® benefited you?

“ACS Webinars stand out to me as especially enjoyable and I value them for enhancing my understanding.”

Fan of the Week
Howard Paris
Materials and Process Engineer
Zodiac Aerospace

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org
Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly news source.

NEW! Free Access to ACS Presentations on Demand®
ACS Member only access to over 1,000 presentation recordings from recent ACS meetings and select events.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

Upcoming ACS Webinars

www.acs.org/acswebinars

Thursday, September 22, 2016

Chemistry of Longevity: Rapamycin’s Secret Past and Potential for a Longer Life

Matt Kaeberlein, Professor of Pathology, University of Washington
Bethany Halford, Senior Editor, Chemical & Engineering News

Tuesday, September 20, 2016 SPECIAL BROADCAST

Becoming ‘Award Ready’

Amanda Bryant-Friedrich, Dean of College of Graduate Studies, University of Toledo
Les McQuire, Global Program Team Director, Novartis Pharmaceutical Corporation
Amber F. Charlebois, SUNY-College at Geneseo and 2016 Chair, ACS Women Chemists Committee

Contact ACS Webinars ® at acswebinars@acs.org