Have Questions?

Type them into questions box!

"Why am I muted?"
Don’t worry. Everyone is muted except the presenter and host. Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

Benefits of ACS Membership

Chemical & Engineering News (C&EN)
The preeminent weekly digital and print news source.

NEW! ACS SciFinder
ACS Members receive 25 complimentary SciFinder® research activities per year.

NEW! ACS Career Navigator
Your source for leadership development, professional education, career services, and much more.

Contact ACS Webinars ® at acswininars@acs.org
“Safety content is always timely and important. Getting the message out is always a challenge and this ACS Webinar presented some good ideas on safety communication that I will apply at our institution.”

Fan of the Week

Henry Van Brocklin, PhD
Professor, Radiology and Biomedical Imaging, Chair, Chemistry and Environmental Safety Committee, University of California, San Francisco
ACS member for 36 years strong!

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Recordings are an exclusive ACS member benefit and are made available to registrants via an email invitation once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public on Thursdays from 2-3pm ET!

www.acs.org/acswebinars
What is ACS on Campus?

ACS visits campuses across the world offering FREE seminars on how to be published, find a job, network and use essential tools like SciFinder. ACS on Campus presents seminars and workshops focused on how to:

- Publish in top journals
- Find a job
- Effectively use research tools like SciFinder® and ACS ChemWorx
- Communicate your science
- Write grant proposals
- Build industry partnerships
- Prepare for a changing employment landscape

http://acsoncampus.acs.org

#HeroesofChemistry
ACS Heroes of Chemistry Award

The ACS Heroes of Chemistry Award is the Annual award sponsored by the American Chemical Society that recognizes talented industrial chemical scientists whose work has led to the development of successful commercialized products ingrained with chemistry for the benefit of humankind.

2018 Winners:

www.acs.org/heroes
An individual development planning tool for you!

https://chemidp.acs.org

Upcoming ACS Webinar!

www.acs.org/acswebinars

https://www.acs.org/content/acs/en/acs-webinars/technology-innovation/phase-separation.html
Resources from Industry Member Programs!

New from ACS Industry Member Programs

- **Industry Matters Newsletter**
 Exclusive interviews with industry leaders and insights to advance your career
 Preview & Subscribe: acs.org/indnews

- ![LinkedIn logo] (ACS Innovation Hub)
 Connect, collaborate, and stay informed about the trends leading chemical innovation

ACS Industry Member Programs

COMBATING CLIMATE CHANGE

WITH NEW NANOBUGS

THIS ACS WEBINAR WILL BEGIN SHORTLY...
Combating Climate Change with New Nanobugs: Teaching Bacteria to Eat Carbon Dioxide and Light with Quantum Dots

Prashant Nagpal
Department of Chemical and Biological Engineering
Renewable and Sustainable Energy Institute (RASEI)
Materials Science and Engineering
University of Colorado Boulder
www.colorado.edu/lab/nagpal

Antimicrobial Regeneration Consortium, ARC
www.amrconsortium.org

Presentation slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswebinars

This ACS Webinar is co-produced with the ACS Industry Member Programs
Combating Climate Change: Feasible?

CO₂ at 408 ppm: Highest in 3 million years
17/18 warmest years since 2000
800 million people: 11% of the world’s population vulnerable to climate change

Global carbon emissions 2018:
All-time high of 37.1bn tonnes

https://climate.nasa.gov/evidence
Combating Climate Change: Feasible?

70% of Earth’s oxygen comes from oceans...

By 2050, plastic > fish in oceans by weight

We produce ~381 million tonnes of plastic each year

The amount of plastic waste each year (381 million tonnes) is equivalent to the weight of how many people?

- Few thousand people
- Population of a large city
- Population of a large country
- Almost entire human population

* If your answer differs greatly from the choices above tell us in the chat!
Combating Climate Change: Feasible?

Answer: Almost entire human population

381 million tonnes = 381×10^9 kg

Assuming an average human weight of 75 kg

381 million tonnes = $381 \times 10^9 / 75 = 5.08$ billion people

or ~2/3 of entire human population

Solar Power

$\text{CO}_2, \text{H}_2\text{O}, \text{N}_2$

Inorganic Photocatalysts

Strong light absorption

High carrier mobility

Mixed products

Limited to simple products

Photosynthetic Organisms

Highly specific

Complex chemicals

Limited Absorption

Lengthy processes

QDs-microbes Nanobiohybrid

Strong light absorption

High carrier mobility

Highly specific

Complex chemicals

Fermentation

Valuable Chemicals: $\text{H}_2, \text{C}_x\text{H}_y, \text{C}_x\text{H}_y\text{O}_z, \text{NH}_3$

Low Selectivity

Alivov, Singh, Ding, Cerkovnik, *Nanopai*, Nanoscale, 6, 18039 (2014)

Low Efficiency

Ding, *Nanopai*, Nanoscale, 8, 17496 (2016)

High Efficiency, Selectivity?

How can we make Nanobugs

Challenges

- Quantum Dot (QD) uptake
- Site-specific QDs-enzyme binding
- Efficient electron transfer
- QDs Stability
- Low QDs Toxicity
- Balanced Electron Flux...

Ding, Nagpal*, Nanoscale, 8, 17496 (2016)
Living QD-A. vinelandii Nanobugs

- Gram-negative diazotroph
- Utilizes dinitrogen from air
- Can fix nitrogen aerobically

Choosing QDs: Material and Size

QDs + Purified MFN (1:1, 1 μM)
Argon Atmosphere
100 mM L-ASC, HEPES (pH 7.4)
400 nm LED Irradiation
TON ~ 10,000 (30 min)
Choosing QDs: Material and Size

QDs + Purified MFN (1:1, 1 μM)
Argon Atmosphere
100 mM L-ASC, HEPES (pH 7.4)
400 nm LED Irradiation
TON ~ 10,000 (30 min)

Choosing QDs: Material and Size

Choosing QDs: Material and Size

![Graph showing H₂ TON (mol/mol MFN) for CdS1, CdS2, CdS3, CdSe1, CdSe2, and CdSe3 with tuning band-edge with CdX1, CdX2, and CdX3.]

Tunable Band-edge

Selective QDs-Enzyme Coupling: Zn-Histidine

 ![Diagram showing CdS to CdS@ZnS (CZS) and MFN to His-MFN with Zn-NTA in IMAC.]

A. vinelandii DJ995
(7x Histidine at N-terminal)
Selective QDs-Enzyme Coupling: Zn-Histidine

CdSe@ZnS (CZSe)

QDs + Lysate
QDs + MFN

QDs + Cell Lysate
Argon Atmosphere
Light Irradiation

Yield increase significantly after ZnS coating
If a nanobug has ~10,000 copies of an enzyme of interest, and chosen QD has molecular weight of 120 g/mol, **how much QDs are required to make 1 mol of nanobugs?**

- 1200 kg of QDs
- 6.023×10^{24} kgs
- 120 kg
- Need more information

*If your answer differs greatly from the choices above tell us in the chat!

How much QDs are required to make a nanobug?

Answer: 1200 kgs

1 mol of nanobugs requires 10,000 mols of QDs (to saturate every enzyme)

Using QD molecular weight (120 g/mol)

To make 1 mol of nanobugs $= 10,000 \times 120 \text{g} = 1200 \text{ kgs}$
Tuning the Shell Thickness

![Graph showing photoluminescence spectra for different shell thicknesses.](image)

Effective Surface Passivation
Small Electron Transport Barrier

Ding, Nagpal*, Nanoscale, 8, 17496 (2016)

Light-driven QD-Enzyme Biocatalysis

Imidazole:
Competitively binds to zinc

Higher acidity:
Protonates histidine

![Graph showing net H₂ generation.](image)

\[2H^+ + 2e^- + nhv \rightarrow H_2\]
Light-driven Air-Water Reduction

\[
\text{N}_2 + 8\text{H}^+ + 8\text{e}^- + \text{nu} \rightarrow 2\text{NH}_3 + \text{H}_2
\]

Intracellular Uptake of QDs

Maintaining Cell Viability

MPA (-): Some toxicity

CYS (+-): Non-toxic

CA (+): Highly toxic

MPA (-): Toxic at high concentration

CYS (+-): Non-toxic

CA (+): Toxic even at low concentration
Light-driven Selective Catalysis by Nanobugs

MPA (-):
Low uptake
Toxicity at high conc.

CA (+):
High uptake
Highly Toxic

CYS (+/-):
Moderate uptake
Non-toxic

Expand the Absorption Spectrum

[Graphs showing extinction and photoluminescence spectra for different compounds]
Expand the Absorption Spectrum

A. vinelandii

NH₃ TON (mol / mol cells)

CZS1, CZS2, CZSe1, CZSe2, CZSe3, IPZS, CZTS

Nanobug Factories

NH₃ or H₂ TON (mol / mol cell)

TOF (s⁻¹) in 1 h:

8730 for NH₃
4350 for H₂

Total QY: ~ 13%

Nanobug Factories

Like Solar Cells

Nanobug Factories

Conversion Limited by Enzyme turnover
Max theoretical QY: 16-20%

Total QY: ~ 13%

Range of fuels, fertilizers, preservatives, bioplastics
Nanobugs utilize CO₂, air, and sunlight
Process can be scaled up efficiently
Tandem Cells for optimal utilization of sunlight

Nanobug Factories

- Range of fuels, fertilizers, preservatives, bioplastics
- Nanobugs utilize CO$_2$, air, and sunlight
- Process can be scaled up efficiently
- Tandem Cells for optimal utilization of sunlight

If we convert all emitted CO2/year (37.1 bn tonnes) using nanobugs, how much volume of nanobugs would it require?

Nanobugs TON (7.3×1010 mol PHB/mol cells/year)

- A small reservoir or pond
- A large lake
- A whole sea
- An entire ocean

*If your answer differs greatly from the choices above tell us in the chat!
Combating Climate Change with Nanobugs?

Answer: A large lake

37.1 bn tonnes = 37.1×10^{12} kg = $37.1 \times 10^{15}/44$ mol CO$_2$

= 8.43×10^{14} mol CO$_2$

Using PHB = $5 \times 10^8 \times 365$ days/2.5 day run/mol cells

TON (5×108 mol PHB/mol cells/run) = 7.3×10^{10} mol PHB/year

= $7.3 \times 10^{10} \times 4$ mol CO$_2$/year/mol cells (C$_4$H$_6$O$_2$)

Total mol cells required = 8.43×10^{14} / $7.3 \times 10^{10} \times 4$ = 2887 mol

Volume of 1 cell ~ 1 μm3 or 10^{-15} L

Total volume of cells reqd. = $1 \times 10^{-18} m^3 \times 2887 \times 6.023 \times 10^{23}$

= $1.74 \times 10^9 m^3$ = 1.74 km3

Approximately a large lake (e.g. Navajo Reservoir, Colorado, Lake Minnetonka or Calhoun, Minneapolis)

Combating Climate Change with Nanobugs

- Efficiency like solar-cells
- Scalable, low-cost fuel and chemical generation
- Easy to implement technology
- Sustainable Nanobug factories

Ding, *Nagpal*, Nanoscale, 8, 17496 (2016)

Acknowledgements

Nagpal Group members

Graduate Students:
- Sam Goodman (PhD., 2016)
- Yuchen Ding (Ph.D., 2017)
- Lee Erik Korshoj
- Partha Chowdhury (Ph.D. 2018)
- Ibrahim Saleh (Ph.D. 2019)
- Max Levy
- John R. Bertram
- Ameya Prabhune
- Shane Bassett

Postdocs:
- Dr. Yuchen Ding

Alumni:
- Dr. Vivek Singh
- Dr. Qi Charles Sun
- Dr. Sajida A. Khan
- Dr. Sepideh Afsari

Financial support:
- NSF CAREER Award
- W.M. Keck Foundation Research Award
- NSF MRSEC (DMR) IRG-II
- Army Research Office DURIP Award
- NSF-MRI
- NASA-TRISH
- DOE-BER

Upcoming ACS Webinar!

www.acs.org/acswebinars

Phase Separation of Multivalent Proteins

Recent Findings and New Frontiers

FREE | Thursday, November 14 at 2pm ET

https://www.acs.org/content/acs/en/acs-webinars/technology-innovation/phase-separation.html
Combating Climate Change with New Nanobugs: Teaching Bacteria to Eat Carbon Dioxide and Light with Quantum Dots

Presentation slides available now! Recordings are an exclusive ACS member benefit.
www.acs.org/acswебинары

This ACS Webinar is co-produced with the ACS Industry Member Programs

Resources from Industry Member Programs!

New from ACS Industry Member Programs

- Industry Matters Newsletter
 Exclusive interviews with industry leaders and insights to advance your career
 Preview & Subscribe: acs.org/indnews

- Connect, collaborate, and stay informed about the trends leading chemical innovation
 Join: bit.ly/ACSinnovationhub
“Safety content is always timely and important. Getting the message out is always a challenge and this ACS Webinar presented some good ideas on safety communication that I will apply at our institution.”

Fan of the Week

Henry VanBroeklin, PhD
Professor, Radiology and Biomedical Imaging, Chair, Chemistry and Environmental Safety Committee, University of California, San Francisco
ACS member for 36 years strong!

Be a featured fan on an upcoming webinar! Write to us @ acswebinars@acs.org

Contact ACS Webinars ® at acswebinars@acs.org
ACS Webinars does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars at acswininars@acs.org
Upcoming ACS Webinar!

www.acs.org/acswebinars

https://www.acs.org/content/acs/en/acs-webinars/technology-innovation/phase-separation.html