Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host.
Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org

@AmericanChemicalSociety

@AmerChemSociety

https://www.linkedin.com/company/american-chemical-society

Contact ACS Webinars ® at acswebinars@acs.org
Check out the ACS Webinar Library!
An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Library is divided into 6 different sections to help you more easily find what you are searching.

[Professional Development](#) View the Collection
Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what cannot be taught in the lab.

[Technology & Innovation](#) View the Collection
From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.

[Drug Design and Delivery](#) View the Collection
The Drug Design Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insights on how to possibly overcome your own roadblocks.

[Culinary Chemistry](#) View the Collection
Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don’t forget to come back for a second helping.

[Popular Chemistry](#) View the Collection
Feeling burdened by all that molecular weight? Listen to experts expound on the amazing side of current hot science topics. Discover the chemistry of radishes, how viruses have affected human history, or the molecular breakdown of a hangover.

[Business & Entrepreneurship](#) View the Collection
How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry whether you are looking to start a business or desire a priceless industry-wide perspective.

[Learn from the best and brightest minds in chemistry!](#)
Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

[Edited Recordings](#)
are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

[Live Broadcasts](#)
of ACS Webinars® continue to be available to the general public several times a week generally from 2-3pm ET!

[Collection of the best recordings](#)
from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.
From ACS Industry Member Programs

- **Industry Matters Newsletter**
 ACS Member-only weekly newsletter with exclusive interviews with industry leaders and insights to advance your career.
 Preview & Subscribe: acs.org/indnews

- **ACS Innovation Hub**
 Connect, collaborate, and stay informed about the trends leading chemical innovation
ACS Career Navigator: Your Home for Career Services

Whether you are just starting your journey, transitioning jobs, or looking to brush up or learn new skills, the ACS Career Navigator has the resources to point you in the right direction.

We have a collection of career resources to support you during this global pandemic:

- Professional Education
- Virtual Career Consultants
- ACS Leadership Development System
- Career Navigator LIVE!
- ChemIDP
- College to Career
- ACS Webinars
- Virtual Classrooms

Visit www.ACS.org/COVID19-Network to learn more!
ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

ACS Bridge Program

Are you thinking of Grad School?

If you are from an underrepresented racial or ethnic group, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:
• A FREE common application that will highlight your achievements to participating Bridge Departments
• Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge

Email us at bridge@acs.org
ACS Department of Diversity Programs
Advancing ACS’s Core Value of Diversity, Inclusion & Respect

We believe in the strength of diversity in all its forms, because inclusion of and respect for diverse people, experiences, and ideas lead to superior solutions to world challenges and advances chemistry as a global, multidisciplinary science.

Contact Us:
https://app.suggestionox.com/r/DI_R
Diversity@acs.org

@ACSDiversity
ACS Diversity
acsvoices.podbean.com/

www.acs.org/diversity

www.polyacs.org

POLY WORKSHOPS
http://polyacs.net/workshops

SUSTAINABLE POLYMERS
October 17 - 20, 2021
Safety Harbor, Resort and Spa
Safety Harbor, FL USA
Organizers: Mihaylo, Gipp, and Robertson

CONTROLLED RADICAL POLYMERIZATION
November 14 – 17, 2021
Hilton Daytona (Formerly the DownTown Doubletree)
Daytona, SC USA
Organizers: Mattijsson, Stasiuk, Lack, and Summitt

SILICON-CONTAINING POLYMERS AND COMPOSITES
December 1 - 4, 2021
Orms San Diego
San Diego, CA USA
Organizers: J. Furges, C. Hartmann-Thompson, H. Goo, and B. Bunnell

Workshop Chair: Marc Mihaylo (mihaylo@chem.ucr.edu) or
Contact: Great Plains Polymer Group

www.polyacs.org
Advancing Polymer Science with Organic Catalysts

Presentation slides are available now! The edited recording will be made available as soon as possible. www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Polymer Chemistry.

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Do you have experience in using organic catalysis?

• Yes, I’m expert level!
• Yes, I have used them a lot
• Yes, but only a little
• No, I have never tried
Advancing Polymer Science with Organic Catalysts

Presentation slides are available now! The edited recording will be made available as soon as possible.

www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Polymer Chemistry.

New Organocatalysts and Processes for the Synthesis of Functional Materials

Advancing Polymer Science with Organic Catalysts
Sept. 15, 2021
Robert Waymouth, Stanford University
New Organocatalysts and Processes for the Synthesis of Functional Materials

Advances in Catalyst Design Continue to Drive Innovation in Polymer Science

Ring-Opening Polymerization of Lactones: Metal Catalysts

\[\text{ROH} + \text{O} \text{O} \xrightarrow{\text{catalyst}} \text{R'O O O H} \]

MOR, \(M = \text{Li, Na, K} \)
- \(\text{Al(OR)}_3 \)
- \(\text{Sn(O}_2\text{CR)}_2 \)

Kricheldorf, Jerome Pencek, Duda

Spassky, Feijen

Coates

Tolman, Hillmyer

Proposed Mechanism
Organocatalytic Polymerization

- Phosphines (2002)
- DMAP
- N-Heterocyclic Carbenes (NHCs) (2002)
- Thiourea-Amines (2005)
- Phosphazenes (2007)
- Amidines and Guanidines (2006)
- Breslow (1958)

Zhang, Hedrick Waymouth, Nat. Chem. 2016, 1047

Synthesis of Cyclic Polyesters via NHC Catalysts

1. THF, 25 °C, 5-120 s
2. CS₂

[laclide]ₙ = 0.6 M

- Highly Active
- Controlled
- Mn tracks % conversion
- Low PDIs
- Forms large ring cyclics

Mₙ (Da)	time (s)	M/Cat	conv (%)	PDI
28574 | 120 | 200 | 92 | 1.22
33957 | 120 | 100 | 94 | 1.24
28648 | 15 | 30 | 92 | 1.24
11742 | 12 | 200 | 30 | 1.14
12044 | 5 | 100 | 29 | 1.16
13566 | 5 | 30 | 29 | 1.11
5855 | 5 | 200 | 7 | 1.20

Mₙ tracks conversion, but non-zero intercept

Culkin, Szhony, Hedrick, Waymouth ACIEE, 2007, 2627
Jeong, Waymouth, et al, JACS, 2009, 4884
Mechanistic Anomalies: Zwitterionic Polymerization

(1) chain-growth with chain transfer
 Mn constant with conv., PDI = 2.0

(2) "living"
 Mn increase with conv., PDI = 1.0
 first-order kinetics

\[k_p = 48.7 \text{ (M}^{-1}\text{s}^{-1}) \]
\[k_i = 0.274 \text{ (M}^2\text{s}^{-1}) \]
\[k_c = 0.0575 \text{ (s}^{-1}) \]
\[k_d = 0.208 \text{ (s}^{-1}) \]

Kinetic Model of Zwitterionic Polymerization

- initiation: slow, second order in \([M]\)
- propagation fast
- cyclization slow

\[
\begin{align*}
\frac{d[Z_1]}{dt} &= \frac{k_1 k_2 [I] [M]^2}{k_1 + k_2 [M]} \\
\frac{d[I]}{dt} &= k_i [I] [M]^2 - k_2 [I] [M]^2 - k_1 ([I]_0 [Z_n]) \\
\frac{d[M]}{dt} &= 2k_i [I] [M]^2 + (k_p [M] + k_d ([Z_n])
\end{align*}
\]

where

\[[Z_n] = ([I]_0 - [I]) \]

Bifunctional Thiourea Catalysis for Lactide Polymerization

<table>
<thead>
<tr>
<th>[M]/[I]</th>
<th>Time</th>
<th>Conv %</th>
<th>DP</th>
<th>Mn, GPC</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>24 h</td>
<td>97</td>
<td>21</td>
<td>5200</td>
<td>1.08</td>
</tr>
<tr>
<td>50</td>
<td>32 h</td>
<td>98</td>
<td>53</td>
<td>12300</td>
<td>1.05</td>
</tr>
<tr>
<td>100</td>
<td>48 h</td>
<td>97</td>
<td>103</td>
<td>23000</td>
<td>1.05</td>
</tr>
<tr>
<td>200</td>
<td>105 h</td>
<td>98</td>
<td>215</td>
<td>42000</td>
<td>1.05</td>
</tr>
<tr>
<td>500</td>
<td>144</td>
<td>95</td>
<td>-^e</td>
<td>-^e</td>
<td>-^e</td>
</tr>
</tbody>
</table>

* a 5 mol% 1; [LA] = 1 M in CH₂Cl₂; ^b determined by 1H NMR; ^c degree of polymerization * not soluble in THF.

• Solvent Effect: Polymerization Observed in CH₂Cl₂, CHCl₃, toluene
 - No polymerization observed in THF, DMF

Chain Extension: No Transesterification

Minimal Transesterification

\[
\begin{align*}
\text{RO} \left[\begin{array}{c} O \end{array} \right]_n \rightarrow & \text{cat (5\%)} \\
1 \text{ week, RT} & \rightarrow \\
\text{RO} \left[\begin{array}{c} O \end{array} \right]_n &
\end{align*}
\]

Mn = 21,300; PDI of 1.06

Chain extension

\[
\begin{align*}
\text{RO} \left[\begin{array}{c} O \end{array} \right]_n & \rightarrow \text{cat (5\%)} \\
48 \text{ h, RT} & \rightarrow \\
\text{RO} \left[\begin{array}{c} O \end{array} \right]_n &
\end{align*}
\]

DP of 103 (PDI of 1.05) additional 100 equiv of lactide

DP of 215 (PDI of 1.05)
Origin of High Selectivity?

$K = 39$
C_6D_6

can’t measure by 1H NMR

K probably less than 5

DFT (Hans Horn, Julia Rice (IBM) Anthony De Crisci (Stanford)

Development of Fast AND Selective Catalysts

- Selective OR Fast Catalysts (2005)

- Selective AND Fast Catalysts

Origin of High Selectivity?

measured by 13C NMR

$K = 35$

CH_2Cl_2

$K = 24$

CH_2Cl_2

$K = 5$

CH_2Cl_2

• Higher Binding constant for s-trans lactones vs. s-cis esters:

 • catalyst highly selective for opening lactone vs. transesterification

Urea Anions: Efficient Catalysts for Polymer Synthesis

Lohmeier, Hedrick Waymouth, Macro. 2006, 8574

100 equiv.

CH$_2$Cl$_2$

120 hours, 78% conv

(M$_n$/M$_\theta$ = 1.04 @ 78% conv.)

3 equiv.

1 equiv. KOMe

THF

10 min, 94% conv

A New Catalyst Platform Tailored for Continuous Flow Processes

A New In-Flow Catalyst Switch for Rapid Generation of Multiblock Copolymers

poly(CL)_{25}-block-poly(TMC)_{25}-block-poly(L-LA)_{25}

r = 3.5 seconds, M_nGPC = 12 kDa, D = 1.08.
Programmed Library Generation in Flow Reactor

Automated, programmed generation of 100 separate VL-b-PLA diblock copolymers generated in 10 minutes

Length of each block ranging from 10 to 46 in increments of four monomer repeat units

Polycarbonates: Synthetic Multifunctional Polymers

Degradable Polycations: Synthesis and Mechanism

Degradation: Selectivity for DKP

Model S1: random at any point in chain;
\(\frac{k_0}{k_6} = 10^6 \)
\(k_6 \gg k_5 = 0.0412 \text{ min}^{-1} \)

Model S2: degradation from chain-end;
\(\frac{k_0}{k_6} = 10^6 \)
\(k_6 \gg k_5 = 1.44 \text{ min}^{-1} \)

Model S3: random at any point in chain;
\(k_5 = k_6 = 0.483 \text{ min}^{-1} \)

Degradation: Influence of Structure

\[\text{Degradable Polycations: A Mechanism of mRNA Release} \]

mRNA delivery: cell culture

Using new amphipathic materials we were able to transfect mRNA and elicit the expression of Green Fluorescent Protein (HeLa cells)

- OROP and functionalized monomers allows for rapid screening for function
- Expression levels are higher than commercial Lipofectamine
- Non-toxic

McKinlay, Vargas, Blake, Hardy, Kanada, Contag, Wender, Waymouth, "Charge-altering Releasable Transporters (CARTs) for the delivery and release of messenger RNA in living animals" Proc. Natl. Acad. Sci., 2017, E448

To Express mRNA, mRNA Must Escape Endosome

Confocal Microscopy
- Allows for independent imaging of transporter and cargo on a cell-by-cell basis

Fluorophores
- Dansyl: attached to transporter
- GFP: indicates expression has occurred
- Dextran: stains endosomes
- Cy5: attached to mRNA

Conditions: HeLa cells, 10:1 +/- charge ratio, 4 hours following treatment
Broad Chemical Space

- Functional initiators
- New lipids
- New charge altering polycations
- Fluorophores / Dyes

mRNA delivery with CARTs into T lymphocytes

- Combinatorial library: CART mixtures (2:1) High throughput screen
- >99% transfection efficiencies in many cultured cell types
- Low lymphocyte transfection

Background

Jurkat Cells

- 80% transfection using hybrid and mixed lipid CARTs
- 8-fold increase over D13:A11 and Lipo

Lipid-mixed CARTs enhance mRNA delivery into:

- T cells and B cells (primary and immortalized)

McKinlay, C.; Vargas, J. et al. PNAS 2017, 114, E448

McKinlay, C.; Benner, N. et al. PNAS 2018, 115, E5859
mRNA expression is effective via multiple routes of administration in vivo

Intramuscular

Intravenous (tail-vein)

Topical

Biodistribution of mRNA expression influenced by mode of administration

The Plague Year

See: “the Plague Year”. Lawrence Wright, The New Yorker, Jan 4&11, 2021
The CART-mRNA Approach to COVID 19 Vaccination:
Deliver the message, cells make the vaccine
Levy, Waymouth and Wender labs

mRNA vaccines are quick and inexpensive to make, produce RBD and elicit immune response

RNA encoding RBD Protein Fragment

CART-mRNA-RBD plus adjuvant

CART-mRNA-RBD plus adjuvant

In vivo cell machinery

RBDs only

Immune system

RBD Antibodies & Effector cells

CV exposure

CV clearance

The CART-mRNA Approach to COVID 19 Vaccination:
Levy-Waymouth-Wender labs

CART-mRNA-RDB elicits a protective immune response

Sera from immunized mice (IM in red, IV in blue, n=5) was harvested on Day 28. Serum from blood donors (n=13) who were vaccinated with the Pfizer/BioNTech mRNA vaccine was collected either within 7 days before (pre boost, black) or 15±4 days after the boost (post boost, green) was tested for the ability to inhibit RBD/ACE-2 binding using a commercially available surrogate Virus Neutralization Test.

• Neutralizing antibody levels of immunized mice are comparable to those achieved in vaccinated humans

New Organocatalysts and Processes for the Synthesis of Functional Materials

Advances in Catalyst Design Continue to Drive Innovation in Polymer Science

Dr. Tim Blake, Rebecca McClellan, Keith Armstrong, Conor Galvin, Summer Ramsay-Burroughs, Vince Pane, Caleb Jadrich, Dan Marron, Dr. Trevor Del Castillo, Dr. Blaine McCarthy Jim Zhang, Yuan Jia, Isaac Appelbaum

Collaborators

Dr. James Hedrick (IBM)
Dr. Nathaniel Park (IBM)

Prof. Paul Wender (Stanford)
Prof. Ron Levy (Stanford)
Prof. Grant Rotskoff (Stanford)
Prof. Catherine Blish (Stanford)
Prof. Eric Kool (Stanford)
Dr. Ole Haalbeth (Stanford)

Prof. Jeff Glenn (Stanford)
Prof. V. Sebastiani (Stanford)

Prof. Dick Zare (Stanford)
Prof. Craig Criddle (Stanford)

National Science Foundation
National Institute of Health
Adelson Medical Research Foundation
The Leukemia and Lymphoma Society
NASA
IBM
EVONIK
Cancer TNT Program (Stanford)
SPARK Program (Stanford)
ChEM-H (Stanford)
Center For Molecular Analysis and Design (Stanford Chemistry)
Team Expertise and Background

Polymers synthesis
Gene delivery

Prof. Robert M. Waymouth
Bob has pioneered the metal-free synthesis of biocompatible polymers, which are now used in many therapeutic indications, including antimicrobials, gene and drug delivery agents.

Drug and Gene delivery

Prof. Paul A Wender
Paul’s work is directed at using chemistry and synthesis to address unsolved problems in medicine, including drug delivery, a cure for HIV/AIDS, cancer immunotherapy, Alzheimer’s disease and antibiotic resistance.

Clinical Oncology

Prof. Ronald Levy
Ron researches how the immune system can be harnessed to fight cancer. His work has led to personalized anticancer drugs, inventing an antibody-based drug, Rituxan, that is widely used to treat lymphoma.

Stanford Team

Dr. Timothy R. Blake
Dr. Rebecca McClellan
Dr. Blaine McCarthy
Dr. Trevor Del Castillo
Dr. Ralph Lange
Summer Ramsay-Burrough
Yuan Jia
Isaac Applebaum

Dr. Colín McKinlay
Dr. Jessica Vargas
Dr. Nancy Benner
Harry Rahn
Zhijian Li
Gillian Sun
Dr. Steven Stanton

Using organic catalysts for step growth polymerization and depolymerisation

Prof. Andrew P. Dove
Step-Growth vs Chain Growth Polymerisation

Step-Growth

- $n = 1$
- $n = 2$
- $n = 3$
- $n = 4$
- $n = 5$
- $n = 6$

Chain-Growth

- $n = 1$
- $n = 2$
- $n = 3$
- $n = 4$
- $n = 5$
- $n = 6$

Polymer structure is distinct from polymerisation process
Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

What do you think is the biggest remaining challenge to overcome for organic catalysis in polymer science?

- Reaction scope
- Increasing reactivity
- High temperature operation
- Better stereoselectivity
- Other (Tell us more in the chat!)

Organocatalytic Polycondensation

Basterretxea, Jehanno, Mercerreyes, Sardon. *ACS Macro Lett.* 2019, 8, 1055-1062
Thermal Stability is Commonly a Problem

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD)

+ methane sulfonic acid (MSA)

37.4 kcal.mol⁻¹ more stable than TBD and MSA

TBD:MSA

TBD:MSA isochemical degradation @180 °C

TBD isochemical degradation @100 °C

Thermally stable organocatalysts

Basterretxea, Jehanno, Mercerreyes, Sardon. ACS Macro Lett. 2019, 8, 1055-1062
Basterretxea, Gabirondo, Jehanno, Zhu, Flores, Muller, Etxeberria, Mecerreyes, Coulembier, Sardon, ACS Sustainable Chem. Eng. 2019, 7, 4103-4111
Lower Temperature Step-Growth

Thiol-ene Additions in Polymer Chemistry

Radical Alkene

Radical Alkyne

Nucleophilic Alkene

Nucleophilic Alkyne
Nucelophilic Thiol-yne Addition

Speed and Selectivity

The Importance of Stereochemistry in Polymers

Optical Isomerism

Example: Polypropylene

- *Isotactic*: ~80% crystallinity; $T_m = 176 ^\circ C$
- *Syndiotactic*: ~30% crystallinity; $T_m = 130 ^\circ C$
- *Atactic*: amorphous, no defined T_m

Geometric Isomerism

Natural rubber (cis-1,4-polyisoprene)

- Elastic, $E = 2$ MPa

Gutta Percha (trans-1,4-polyisoprene)

- Brittle, $E = 80$ MPa

Step-Growth Thiol-yne Addition

cis: 20:80 trans: 71:29

Stereochemistry Dependent Mechanical Properties

Stereochemistry in Naturally-Sourced Monomers

Organocatalytic Thiol-ene Step-Growth

Organocatalytic Step-Growth Polymerisation

Mini-synopsis

- Organocatalysis can be used for a wide range of step-growth polymerisations – the frequently used ones and many more!
- Using organic salts, the thermal stability can be significantly increased to allow higher temperature operation for longer
- Using organocatalyzed nucleophilic thiol-yne addition chemistry, high levels of stereoselectivity can be obtained with which to control polymer properties.

Plastic Waste

Overview of Plastic Recycling Options

Organocatalytic Circular Economy Approaches

Organocatalytic Depolymerisation

Higher Temperature Stability

Depolymerise and Repolymerise

Not all polymers can be recycled...

\[
\begin{align*}
\text{BPA} + \text{Phosgene} &\rightarrow \text{Polycarbonate} \\
\text{BPA} + \text{Carbon Dioxide Gas} &\rightarrow \text{Waste Plastic}
\end{align*}
\]

Upcycling to Aliphatic Polycarbonates

\[
\begin{align*}
\text{BPA-PC} + \text{glycol} &\rightarrow 90 - 160 ^\circ \text{C} \rightarrow \text{BPA} + \text{cyclic carbonate}
\end{align*}
\]

Mixed Plastics

Selective Chemical Depolymerisation

Organocatalytic Depolymerisation

Mini-synopsis

- In the same way that organic catalysis offers excellent opportunities to create polymers, it offers excellent methods for depolymerisation of a wide range of polymers
- Thermally-stable catalysts offer a high activity alternative at high temperatures
- Leveraging kinetic differences in depolymerisation rate, different plastics can be selectively and sequentially depolymerised.
Acknowledgements

Co-workers
Dr Josh Worch
Matt Price
Emma Catterson
Adam Spicer
Louisa Brenninkmeijer
Connor Stubbs
Recent Alumni
Dr Vinh Truong (PDRA)
Dr Craig Bell (PDRA)
Dr Ian Barker (PDRA)

Key Academic Collaborators
Prof. Matthew Becker (Duke University, USA)
Dr Haritz Sardon (POLYMAT, Spain)

http://www.dovegrouplab.com
@Dove_group
Further Reading

Reviews
Opportunities for organocatalysis in polymer synthesis via step-growth methods.

Dual Organocatalysts Based on Ionic Mixtures of Acids and Bases: A Step Toward High Temperature Polymerizations.
Basterretxea, Jehanno, Mercerreyes, Sardon. *ACS Macro Lett.* 2019, 8, 1055-1062

Organocatalytic ring-opening polymerization of l-lactide in bulk: A long standing challenge.

Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry.

Stereochemical enhancement of polymer properties.

Original Research Articles
Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature
Olsen, Undin, Odelius, Keul, Albertsson, *Biomacromolecules* 2016, 17, 3995-4002
Further Reading

Independent Control of Elastomer Properties through Stereocontrolled Synthesis.

Organocatalytic, Regioselective Nucleophilic “Click” Addition of Thiols to Propiolic Acid Esters for Polymer–Polymer Coupling.

Organocatalysed depolymerisation of PET in a fully sustainable cycle using thermally stable protic ionic salt.

Unsaturated Poly(ester-urethanes) with Stereochemically Dependent Thermomechanical Properties.

Base-to-Base organocatalytic approach for one-pot construction of poly(ethylene oxide)-Based macromolecular structures.

Further Reading

Synthesis of Functionalized Cyclic Carbonates through Commodity Polymer Upcycling.

Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory.

Concomitant Control of Mechanical Properties and Degradation in Resorbable Elastomer-Like Materials Using Stereochemistry and Stoichiometry for Soft Tissue Engineering.
Wandel, Bell, Yu, Arno, Dreger, Hsu, Pitto-Barry, Worch, Dove, Becker, *Nature Commun.*, 2021, 12, 446.

Further Reading

Completely Recyclable Monomers and Polycarbonate: Approach to Sustainable Polymers.

Metal-Free Synthesis of Novel Biobased Dihydroxyl-Terminated Aliphatic Polyesters as Building Blocks for Thermoplastic Polyurethanes.

Unique Base-Initiated Depolymerization of Limonene-Derived Polycarbonates.

Polyether Synthesis by Bulk Self-Condensation of Diols Catalyzed by Non-Eutectic Acid–Base Organocatalysts.

Transforming polylactide into value-added materials.
15/09/2021

Become a part of the ACS Division of Polymer Chemistry whose members are among legends in the field.

Benefits
- Networking Events
- Discounts on workshops
- POLY webinars and videos
- POLY LinkedIn and Facebook pages
- Access to job postings
- Polymer Preprints and Graphical Abstracts
- Newsletters and Books
- Many Award Opportunities

www.polyacs.org

This ACS Webinar is co-produced with ACS Division of Polymer Chemistry.

POLY WORKSHOPS

SUSTAINABLE POLYMERS
October 11 - 20, 2021
Safety Harbor Resort and Spa
Safety Harbor, FL USA
Organizers: Hiyary, Ezz, and Robertin

CONTROLLED RADICAL POLYMERIZATION
November 14 - 17, 2021
Hilton Orlando (Formerly the Downtown Doubletree)
Orlando, FL USA
Organizers: Matarazzo, Traverso, Ozor, and Samsin

SILICON-CONTAINING POLYMERS AND COMPOSITES
December 1 - 4, 2021
Omni San Diego
San Diego, CA USA
Organizers: J. Fuchs, C. Hartmanns-Thompson, H. Gao, and B. Burdett

Presentation slides are available now! The edited recording will be made available as soon as possible.

www.acs.org/acswebinars

This ACS Webinar is co-produced with ACS Division of Polymer Chemistry.
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars continue to be available to the general public several times a week generally from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.
ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org

www.acs.org/acswebinars