Have Questions?

Type them into questions box!

“Why am I muted?”
Don’t worry. Everyone is muted except the presenter and host.
Thank you and enjoy the show.

Contact ACS Webinars ® at acswebinars@acs.org
Check out the ACS Webinar Library!

An ACS member exclusive benefit

Hundreds of presentations from the best and brightest minds that chemistry has to offer are available to you on-demand. The Library is divided into 6 different sections to help you more easily find what you are searching.

<table>
<thead>
<tr>
<th>Professional Development</th>
<th>Technology & Innovation</th>
<th>Drug Design and Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the Collection</td>
<td>View the Collection</td>
<td>View the Collection</td>
</tr>
<tr>
<td>Learn how to write better abstracts, deliver more engaging presentations, and network to your next dream job. Brush up on your soft skills and set a new career path by mastering what can not be taught in the lab.</td>
<td>From renewable fuels to creating the materials for the technology of tomorrow, chemistry plays a pivotal role in advancing our world. Meet the chemists that are building a better world and see how their science is making it happen.</td>
<td>The Drug Design Delivery Series has built a collection of the top minds in the field to explain the mechanics of drug discovery. Discover the latest research, receive an overview on different fields of study, and gain insight on how to possibly overcome your own med chem roadblocks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Culinary Chemistry</th>
<th>Popular Chemistry</th>
<th>Business & Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the Collection</td>
<td>View the Collection</td>
<td>View the Collection</td>
</tr>
<tr>
<td>Why does food taste better when it is grilled or what molecular compounds make a great wine? Discover the delectable science of your favorite food and drink and don’t forget to come back for a second helping.</td>
<td>Feeling burdened by all that molecular weight? Listen to experts expound on the amazing role of current hot science topics. Discover the chemistry of rodeos, how viruses have affected human history, or the molecular breakdown of a hangover.</td>
<td>How do ideas make it from the lab to the real world? Discover the ins and outs of the chemical industry, whether you are looking to start a business or desire a priceless industry-wide perspective.</td>
</tr>
</tbody>
</table>

https://www.acs.org/content/acs/en/acs-webinars/videos.html

Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public several times a week generally from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.

www.acs.org/acswebinars
From ACS Industry Member Programs

- **Industry Matters Newsletter**
 ACS Member-only weekly newsletter with exclusive interviews with industry leaders and insights to advance your career.
 Preview & Subscribe: acs.org/indnews

- **[LinkedIn](http://acs.org/indnews)**
 Connect, collaborate, and stay informed about the trends leading chemical innovation
ACS Career Navigator: Your Home for Career Services

Whether you are just starting your journey, transitioning jobs, or looking to brush up or learn new skills, the ACS Career Navigator has the resources to point you in the right direction.

We have a collection of career resources to support you during this global pandemic:

- ACS Leadership Development System
- Career Navigator LIVE!
- Professional Education
- Virtual Career Consultants
- College to Career
- ACS Webinars
- Virtual Classrooms

Visit www.ACS.org/COVID19-Network to learn more!

Nominate a peer or colleague for an ACS National Award

- Education
- Research
- Service
- Industry
...and more!

acs.org/nationalawards
Visit www.acs.org/ncw

On Sunday, August 1st, 2021 discover how to get a big reaction out of your community for National Chemistry Week!

#NCW

Join us in our efforts to increase the diversity of chemistry.

Valued donors like you have sustained ACS educational programs that are welcoming students from diverse backgrounds into our profession.

www.acs.org/donate

ACS Office of Philanthropy
Chemistry for life®
A Career Planning Tool For Chemical Scientists

ChemIDP is an Individual Development Plan designed specifically for graduate students and postdoctoral scholars in the chemical sciences. Through immersive, self-paced activities, users explore potential careers, determine specific skills needed for success, and develop plans to achieve professional goals. ChemIDP tracks user progress and input, providing tips and strategies to complete goals and guide career exploration.

ACS Bridge Program

Are you thinking of Grad School?

If you are from an underrepresented racial or ethnic group, we want to empower you to get your graduate degree!

The ACS Bridge Program offers:

- A FREE common application that will highlight your achievements to participating Bridge Departments
- Resources to help write competitive grad school applications and connect you with mentors, students, and industry partners!

Learn more and apply at www.acs.org/bridge

Email us at bridge@acs.org
ACS Department of Diversity Programs
Advancing ACS’s Core Value of Diversity, Inclusion & Respect

We believe in the strength of diversity in all its forms, because inclusion of and respect for diverse people, experiences, and ideas lead to superior solutions to world challenges and advances chemistry as a global, multidisciplinary science.

Contact Us:
https://app.suggestionox.com/r/Dl_R Diversity@acs.org

@ACSDiversity

ACS Diversity acsvoices.podbean.com/

www.acs.org/diversity

Register for a Professional Education course that meets your training needs!

ACS Professional Education courses not only give you the tools you need to stay on top of new technology and growing trends in the science industry but also the professional development skills you need to advance in your career.

ACS member and early bird discounts are available. Explore courses in a variety of topics and delivery methods.

Course Categories

Course Formats

https://www.acs.org/proedweb
Polymer Chemistry:
Principles and Practice

December 5-10, 2021 | Blacksburg, VA

Learn about polymer chemistry through a novel combination of lectures and labs.

Are you a research chemist, engineer, physicist, or technician who works with polymers and their applications? This workshop is for you!

This popular course is taught by Virginia Tech faculty experts and is designed for all education levels. Space is limited!

Register today at ACS.org/PolymerLab

www.acs.org/acswebinars
This ACS Webinar is co-produced with ACS Professional Education.
The first 3D printer appeared in 1987 from Chuck Hull (3D Systems) employing a "stereolithography" (SLA) process.

Advanced manufacturing now demands advanced materials design.

www.3dhubs.com/what-is-3d-printing#additive-manufacturing-infographic
Engineering leads the way; however, polymer science and chemistry have now arrived!

Additive Manufacturing or 3D Printing: Patents
(Web of Science Derwent Innovation Index)

Leveraging the age of molecular engineering: polymers, composites, and ceramics

Polymer design from the 1950s are not tuned for the additive manufacturing of 2020
The challenge to “print every molecule in our laboratory“

Understanding viscosity ranges for commercial 3D printing platforms

- Melt viscosity dictates particle coalescence and layer bonding in selective laser sintering (SLS) (also called powder bed fusion)
- SLS-grade-nylon-12 reports 60 Pa-s (melt viscosity)
Polymer viscosity is directly proportional to molecular weight

Our overarching question:
How do we decouple the relationship between molecular weight from viscosity to enable new directions in AM?

Lest we forget the role of entanglements and physical crosslinks
Supramolecular polymers are promising candidates for extrusion additive manufacturing

- Tunable viscosities/shear thinning
- Thermo-reversible physical crosslinks
- Rapid solidification upon extrusion

Challenge: mechanical anisotropy (weak bonding strength in the build direction)

Staying on the “road”
Extrusion-based Processes
Fused-Deposition Modeling (Stratasys)

Positives:
- Cheap
- Robust, strong parts
 - 85% strength of conventional ABS
- Easy post-processing
- Office-friendly
- Sandable, paintable, tap-able
- Little material waste
- Easy material change

Challenges:
- Slow
 - Viscosity
 - Filling cross-sections
- Poor surface finish
- Anisotropic parts
- Poor resolution
- Porous
- Difficult to make point-like depositions

Versatility of Extrusion AM

- 3D dispensing is highly versatile with respect to its extraordinarily wide choice of materials ranging from polymers to ceramics and metals.

- 3D dispensing of polymer melts and solutions, polymer latex, thermoplastic elastomers, ceramic precursors, cements, pastes of inorganic and organic particles, biopolymers, reactive resins (i.e., thermosets), liquid rubbers, and even hydrogels and polyelectrolytes
Necessity for Solidification in Fused Filament Fabrication

• Amorphous polymers are printed above the glass transition temperature

• Semi-crystalline polymers are printed above melting temperature

• Reversible crosslinks enable the melt extrusion of thermosets

• Solidification processes are based on crystallization and entanglement/physical interactions (supramolecular assembly)

Parameters for Extrusion AM

Process
- Layer thickness
- Nozzle speed
- Extrusion feed rate
- Nozzle temperature
- Environment temperature
- Fill pattern and layer timing
- Road width

Machine
- Nozzle diameter
- Filament diameter
- Nozzle height
- Maximum pressure

Material
- Viscosity (function of temperature and shear rate)
- Stiffness
- Thermal conductivity
- Glass transition temperature
- Coefficient of thermal expansion

Courtesy of Chris Williams
Thermoplastics Investigated for Fused Filament Fabrication (FFF)

- Acrylonitrile-Butadiene-Styrene copolymers (ABS)
- Polyamides (PA)
- Polypropylene (PP)
- Poly(ether esters) elastomers
- Polylactide (PLA)
- Polycarbonate (PC)
- Polyetherimides (PEI)
- Polysulfones (PSF)
- Water soluble polymers (as supports)

Common grades include:
- ABS plus
- ABS-M30
- ABS-M30i
- ABSi
- PC-ABS
- PC
- PC-ISO
- PPSF/PPSU
- ULTEM 9085
Water-soluble polymers for materials extrusion AM remain limited

Poly(vinyl alcohol) Eudragit EPO

Printing parameters:

190 °C, 90 mm/s

Printing parameters:

135 °C, 90 mm/s

Tailored dissolution of extrusion printed polymers with temperature-sensitive biologics

Product Requirements

- Water soluble (<10 min)
- Incorporation of actives (Max temp 80 °C)
- 3D printable via desktop material extrusion

Molecular Design & Synthesis

Product Geometric Design

Manufacturing Process Design

Product Performance Analysis

Material, Process, & Product
Acrylic Esters versus Main Chain Polyesters

Acrylics
- Tunable monomer performance for PSA applications
- **Solvent-based** chain growth polymerization
- MWs > 100,000 g/mol
- Controlled radical and living polymerizations for block copolymer formation
- Non-biodegradable
- Limited bio-based mono-substituted monomer choices

Polyesters
- Tunable monomer performance for PSA applications
- **Solvent-free** step-growth polymerization
- MWs < 100,000 g/mol
- Segmented block copolymers from preformed polyols
- Hydrolytically degradable
- Vast bio-based alcohol, carboxylic acid, and ester monomer possibilities

Audience Survey Question

ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

A plot of log zero shear viscosity versus log weight-average molecular weight reveals a steeper dependency at a critical molecular weight, **what is this observation due to?**

- Phase of the moon
- Polymer end group effects
- Entanglement
- Free volume increases
- Other (let us know if the chat!)
Melt transesterification enables melt processible, water-soluble AM polyesters on commercial scales

\[
\begin{align*}
\text{SO}_3\text{Na} + \text{H}_2\text{O} \rightarrow \text{SO}_3\text{Na} \quad &\text{PEG} \quad \text{n} = 1,000 - 12,000 \text{ g/mol} \quad \text{NaOAc} \\
40 \text{ ppm Ti(OiPr)}_4 &\text{ 2 h 200 K, 0.15 mmHg} \\
&\text{Poly(PEG\text{n=k}-co-NaSIP)}
\end{align*}
\]

Advantages of sulfonates
- Potential to stabilize biologics
- Improved water dispersion times
- Lowered melting point
- Charge interactions for enhanced printing and mechanical properties
- Enhanced processability at lower molecular weight

Poly(PEG\text{n=k}-co-NaSIP)

Poly(PEG\text{n=k}-co-NaSIP) can be exchanged to monovalent and divalent counterions

Day 1-3: 5 M eq. salt added
Day 4-6: Equilibrated with RO water

- Remove Na\(^+\) through diffusion
- Complete exchange confirmed by XPS

- Potential to introduce physical crosslinks between chains
- Potential to enhance interlayer adhesion

Molecular weight (M\(_w\)) range of poly(PEG\text{n=k}-co-XSIP):
17,000 – 30,000 g/mol
Extrusion AM Material Parameters

- T_g & T_m
- Viscosity as f(Shear rate, T)
- Stiffness & Strength
- Thermal Diffusivity & Expansion
- Surface Tension & Hydrophilicity

Dynamic mechanical analysis reveals similarity between samples below T_m

![Dynamic mechanical analysis graph](image)

- TA Q800, Tension mode, 3 °C/min, 1 Hz
- Lack of ionic aggregation
Rheological studies show an increase in viscosity with divalent counterion.

Physical crosslinking between chains exemplified in molten state.

Poly(PEG_{8k}-co-CaSIP) exhibits favorable viscosity for extrusion 3D printing.

- Minimal shrinkage
- No Coalescing
- No strings between gaps
- ~55° angle for 0 Support
- Can bridge large gaps 10 mm gap shown

70 °C hot end, 5 mm/sec, 0.4 mm nozzle diameter

Ares G2 rheometer, 1% strain, 78 °C, 25 mm parallel plate

ASU Biodesign Institute
Controlling dissolution and release as a function of time for an embedded liquid

Callie Zawaski et al.

Fused Filament Fabrication (FFF)

- Material extrusion AM
- Filament feedstock
- Continuous process

- Filament is fed into heated nozzle
- End of filament is heated to a molten (fluidic) state
- Nozzle extrudes molten material in a pattern dictated by a CAD model
- Nozzle moves up/bed moves down
Fused Filament Fabrication (FFF)

- Material extrusion AM
- Filament feedstock
- Continuous process

![Diagram of FFF process]

FFF Fundamental Challenges Where Rheology can Guide Process Design

- Interface provides point of weakness
- Bulk properties are regained when interface fully heals
- Anisotropic mechanical properties
- Short time above T_g
- Material limitation (1950s materials, 2020s process!) especially compared to traditional manufacturing

FFF Fundamental Challenges Where Rheology can Guide Process Design

- Bed Adhesion (stress buildup)
- Poor interlayer (z-axis) adhesion

Modeling and Rheology of the FFF process

- Will a material extrude?
- What happens when it exits the nozzle?
- What are the dynamics driving interlayer adhesion?
- How do all of these couple to final part properties?

http://blog.capinc.com/2014/12/design-for-3d-printing-success/

Audience Survey Question
ANSWER THE QUESTION ON BLUE SCREEN IN ONE MOMENT

Indicate whether the following statement is True or False.
Polymer melts are generally non-Newtonian in behavior.

- True
- False

General MatEx Considerations: Will it Extrude?

General design equations for capillary flow – stress and shear rate

\[\sigma_w = \frac{R \, p_c \, R}{2 \, L} \]

\[\dot{\gamma}_{aw} = \frac{4Q}{\pi R^3} \]

Common failure modes

1. Inconsistent filament diameter
 • Processing concern
2. Filament buckling
 • Model exists in literature predicting this phenomenon
3. Annular backflow
 • Little work exists describing this behavior

Flow Field and First Principles Modeling

- Assumptions
 ◦ Steady state (!)
 ◦ One dimensional velocity
 ◦ Radially symmetric about the center of the filament
- Area under the curve (net flow magnitude) provides insight into backflow potential
Approach for modeling annular backflow

Magnitude of Annular Backflow

Normalized Net Flow Magnitude

- No Backflow: < 0.5
- Transition: 0.5 – 0.75
- Backflow: > 0.75

Determining the Flow Identification Number

Dimensionless number to correspond to normalized net magnitude of flow predict backflow

\[\text{FIN} = \frac{\Delta P/L}{\eta \cdot v} \cdot \pi (D_B^2 - D_F^2) \]

- No backflow: < 153
- Transition: 153 – 185
- Backflow: > 185

Sensitivity Analysis and Screening Materials

Degree of shear thinning

Overlay of capillary (steady) and oscillatory
Testing the Screening Process - Results

Applied model to print parameters*

<table>
<thead>
<tr>
<th>Material</th>
<th>Feed Rate</th>
<th>BGM Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>5 mm/s</td>
<td>151</td>
</tr>
<tr>
<td>LDPE</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>NaSPEG</td>
<td></td>
<td>204</td>
</tr>
</tbody>
</table>

*Model assumes constant filament diameter

FIN Limits
No Backflow: < 153
Transition: 153 - 185
Backflow: > 185

Rheology to describe laydown process: nozzle outlet, standoff region, layer adhesion

Any Matex process: DIW, FFF, BAAM

Nozzle exit
Wall shear rate

“Road” laydown
Why are nonisothermal transient models important in fused filament fabrication?
(Select all that apply)

- The rheology of the polymers is highly temperature dependent
- Tim is worried about his ice cream melting in Phoenix while he is busy 3D printing new polymers
- As each layer is deposited, thermal effects are often felt in multiple layers beneath it
Dynamics of Layer Deposition: Geometry, Thermal and Viscoelastic Response

Rheology - Diffusion Dynamics, Extrudate Properties

Re-Entanglement Times can be Long!

How much re-entanglement is required for strong bonds?

Thermal model - only ~1-2 seconds above T_g

Poly(ether imide)

>100 minutes

Intrinsic properties
For example, chemical composition, stereochemistry, topology, and molecular weight

Processing Properties
For example, orientation and effects on crystallinity

Product Performance
For example, optics, tensile, barrier properties, thermal and chemical stability

Do not lose track of the “big picture”
Perhaps you are running out of energy!

Polymer Design Parameters for Additive Manufacturing: Concluding Remarks

- Polymers must be designed for additive manufacturing modalities
- Printing modalities must be designed for polymer reactivity and processibility
- Polymer design parameters guide innovation with attention to fundamental structure-property-relationships
- Chemists, chemical engineers, and mechanical engineers working together to advance the AM field
Sharing your ideas is critical for nurturing partnerships!

“The best way to have a good idea is to have a lot of ideas.”

- Linus Pauling

Register for a Professional Education course that meets your training needs!

ACS Professional Education courses not only give you the tools you need to stay on top of new technology and growing trends in the science industry but also the professional development skills you need to advance in your career.

ACS member and early bird discounts are available. Explore courses in a variety of topics and delivery methods.

Course Categories

- Analytical
- Biological/Medicinal
- Computer/Statistics Engineering
- Organic/Physical
- Polymer
- Professional Development
- Regulatory/Environmental
- More Courses

Course Formats

- Online Live
- On-Demand
- In Person
- Lab Component

https://www.acs.org/proedweb
Polymer Chemistry: Principles and Practice

December 5-10, 2021 | Blacksburg, VA

Learn about polymer chemistry through a novel combination of lectures and labs.

Are you a research chemist, engineer, physicist, or technician who works with polymers and their applications? This workshop is for you!

This popular course is taught by Virginia Tech faculty experts and is designed for all education levels. Space is limited!

Register today at ACS.org/PolymerLab

Molecules to Manufacturing to Marketplace

3D Printing of Sulfonated Polyesters for Controlled Release

FREE Webinar | TODAY at 2pm ET

DON’T GO ANYWHERE, THE LIVE Q&A IS ABOUT TO BEGIN!
Molecules to Manufacturing to Marketplace: 3D Printing of Sulfonated Polyesters for Controlled Release

Presentation slides available now! Today’s recording will be made available to all registrants for 24 hours before moving to www.acs.org/acswebinars as soon as possible.

This ACS Webinar is co-produced with ACS Professional Education.

www.acs.org/acswebinars
Learn from the best and brightest minds in chemistry! Hundreds of webinars on diverse topics presented by experts in the chemical sciences and enterprise.

Edited Recordings are an exclusive ACS member benefit and are made available once the recording has been edited and posted.

Live Broadcasts of ACS Webinars® continue to be available to the general public several times a week generally from 2-3pm ET!

A collection of the best recordings from the ACS Webinars Library will occasionally be rebroadcast to highlight the value of the content.

www.acs.org/acswebinars

ACS Webinars® does not endorse any products or services. The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the American Chemical Society.

Contact ACS Webinars ® at acswebinars@acs.org
LA MARAVILLA DE LA BIODIVERSIDAD
A TRAVÉS DEL PRISMA DE LA CHROMATOGRAFÍA

Fecha: Miércoles, 26 de Septiembre @ 2-3pm ET (1-2pm CT)
Fonenta: Diana Stashenko, Universidad Industrial de Santander
Moderadora: Troy Rottier, Universidad de Puerto Rico, Recinto de Río Piedras y American Chemical Society

Lo Que El Público Aprenderá:
- Juntos con la biodiversidad biológica existe una diversidad molecular bastantes amplia para su estudio, lo que demuestra la diversidad de las técnicas de cromatografía y espectrometría de masas.
- Los sistemas moleculares de los fosfatos desempeñan papel importante en la comunicación, la adaptación y la supervivencia de las plantas.
- El color de algunas flores está asociado con la capacidad antioxidante de sus volatilizadores.
Co-producido con: Sociedad Química de México y Chemical & Engineering News
This collaboration with the Mexican Society of Chemists will be in Spanish.

Who Will Win the #ChemNobel?
Predicting the 2021 Nobel Laureate(s) in Chemistry

Fecha: Lunes, 30 de Septiembre @ 2-3pm ET
Huesped: Angela Zhou, ACS / Andrea Confino, University of North Texas /
Rogberto Hernández, Johns Hopkins University / Frank Laipple, University of North Carolina
Moderado: Laura Horwitz, Chemical & Engineering News

What You Will Learn:
- Who are the frontrunners for this year’s Nobel Prize in Chemistry?
- Big ideas in chemistry that we think should someday win the prize.
- Nobel trivia, different division techniques, and much more

Catalyze the Vote!
2022 ACS President-Elect Candidates

Fecha: Viernes, 1 de Octubre @ 2-3pm ET
Huesped: Judith Granier, woodMC and the Chemical Angel Network and Juan C. Warner, Zymergen
Moderador: Amber Wilson, Green Analytics, LLC

What You Will Learn:
- Meet the ACS President-Elect Candidates
- Listen as the candidates speak to topics relevant to young chemists
- Ask your questions for the candidates
Co-produced with: ACS Younger Chemists Committee

www.acs.org/acswebinars