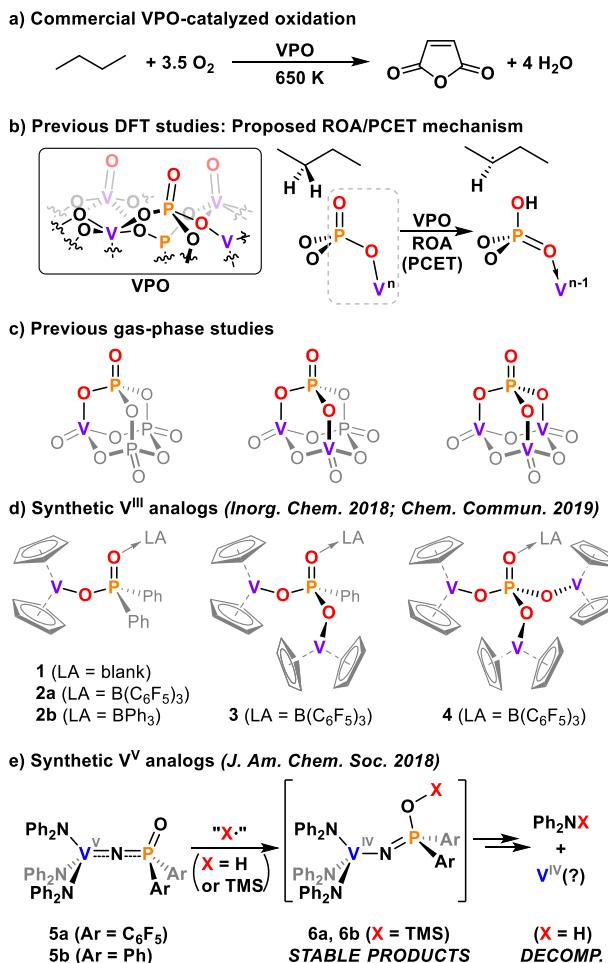


PRF # 58693-DNI3

Project Title: Investigating the Proposed Reduction-Coupled Oxo Activation Mechanism for Hydrocarbon C-H Functionalization

Principle Investigator: Gabriel Ménard, Chemistry and Biochemistry, UC Santa Barbara

Co-PI: None


Introduction:

C–H bond activation is an attractive avenue for the transformation of inexpensive and abundant feedstocks into value-added commodity chemicals. At the industrial level, for example, the DuPont “butox” process catalyzes the partial oxidation of *n*-butane to maleic anhydride via a heterogeneous vanadium phosphorus oxide (VPO) catalyst (Scheme 1a).^{1–3} While most research assigned the vanadyl (V=O) centers as the reactive sites for butane C–H bond activation, recent DFT studies by Goddard *et al.* suggest that the catalyst support P=O bonds – tethered to neighboring vanadyls – may instead be responsible, reacting by a cooperative proton-coupled electron transfer (PCET) mechanism with neighboring high-valent V centers (Scheme 1b), and termed in some reports reduction-coupled oxo activation (ROA).^{4–6} This proposed reactivity has been partially supported by gas-phase studies reported by Schwarz *et al.*^{7–10} investigating heteronuclear cluster ions, $[V_xP_{4-x}O_{10}]^{+}$ ($x = 0–4$), which have been reported to promote the homolytic C–H bond activation of methane (Scheme 1c).^{8–9} Together, this unusual C–H reactivity mediated by an “innocent” main group center (P=O) stands in significant contrast to the decades of research on noble metal-mediated C–H bond activation chemistry¹¹ and may offer a new pathway to catalyzing these difficult transformations.

Research Progress:

In order to probe this possible new main-group mediated C–H bond functionalization chemistry, we have synthesized a suite of molecular mono- or multi-metallic VPO model complexes of the general formula, $(R_xV^n-L)_yP(O)Ar_{(3-y)}$ where the complexes with $R_x = Cp_2$, $n = +3$, $L = O$, $y = 1, 2, 3$, $Ar = Ph$ are shown in Scheme 1d (compounds **1–4**).¹² A follow-up paper with a longer linker, $L = O(O)C(C_6H_4)$ ($y = 1, 3$), and maintaining the vanadocene metal centers was also reported (not shown).¹³ All complexes were thoroughly characterized by a suite of spectroscopic (NMR, EPR, UV-Vis), magnetic (Evans, SQUID), electrochemical (CV), and structural (XRD) techniques. Their reactivities were also probed using, for instance, common H-atom donors (HADs), such as TEMPO-H, 1,4-cyclohexadiene, and others, in order to assess their possible ROA-type reactivity at the P=O centers similar to the previously proposed reactivity (Scheme 1b–c). Unfortunately, no ROA-type reactivity was observed.

We subsequently modified our V centers to incorporate higher-valent V^V centers ($R_x = (Ph_2N)_3$, $n = +5$, $L = N$, $y = 1$, $Ar = Ph$, C_6F_5 ; compounds **5a–5b**,

Scheme 1. a) Dupont’s commercial oxidation of butane to maleic anhydride on the vanadium phosphorus oxide (VPO) surface catalyst. **b)** Previous DFT studies proposing an alternative reduction-couple oxo activation (ROA) mechanism for C–H activation at P=O linkages. **c)** Previous gas-phase studies on P=O mediated methane C–H activation. **d)** Sample of our reported V^{III}-based molecular mimics. **e)** First experimental support for the ROA mechanism using our V^V molecular mimics.

Scheme 1e).¹⁴ These molecules were again thoroughly characterized. We subsequently investigated C–H functionalization mediated by the terminal P=O bonds, analogous to the ROA mechanism (Scheme 1a). Our results indicated that these linkages may be reactive; however, ligand lability (ie. protonation of Ph₂N⁺) precluded us from unambiguously making that assignment (Scheme 1e). We therefore turned to a hydrogen atom surrogate, trimethylsilyl radical (TMS[•]). Exposure of **5a** or **5b** to this TMS[•] donor resulted in the formation of the reduced PO–TMS linked products, **6a** or **6b**, with concurrent reduction of V^V to V^{IV} (Scheme 1e). This is, to the best of our knowledge, the first condensed phase experimental support for the proposed ROA mechanism.¹⁴

Career Impact:

The impact of this grant on graduate students has been substantial. Four of my current ten graduate students have been in part supported for varying periods of time by this grant. In addition, several undergraduate students – mentored by those graduate students – have also participated in this project. One of my graduate students also attended and presented at the Inorganic Reaction Mechanisms Gordon Research Conference (GRC) and Seminar this year thanks to the funding provided by this award.

This grant has also significantly impacted my career. In the first year alone, we have published three papers¹²⁻¹⁴ on this chemistry in well respected journals. Moreover, we currently have two more papers ready to be submitted. In addition, I have been invited to several national and international department colloquia, as well as this year's Organometallics GRC, where I have extensively discussed this chemistry.

References:

1. Coulston, G. W.; Bare, S. R.; Kung, H.; Birkeland, K.; Bethke, G. K.; Harlow, R.; Herron, N.; Lee, P. L. The Kinetic Significance of V⁵⁺ in n-Butane Oxidation Catalyzed by Vanadium Phosphates. *Science* **1997**, 275, 191-193.
2. Zhanglin, Y.; Forissier, M.; Sneeden, R. P.; Vedrine, J. C.; Volta, J. C. On the Mechanism of n-Butane Oxidation to Maleic Anhydride on VPO Catalysts: I. A Kinetics Study on a VPO Catalyst as Compared to VPO Reference Phases. *J. Catal.* **1994**, 145, 256-266.
3. Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide. *Chem. Rev.* **1988**, 88, 55-80.
4. Cheng, M.-J.; Goddard, W. A. The Critical Role of Phosphate in Vanadium Phosphate Oxide for the Catalytic Activation and Functionalization of n-Butane to Maleic Anhydride. *J. Am. Chem. Soc.* **2013**, 135, 4600-4603.
5. Cheng, M.-J.; Fu, R.; Goddard, W. A. Design and validation of non-metal oxo complexes for C-H activation. *Chem. Commun.* **2014**, 50, 1748-1750.
6. Cheng, M.-J.; Goddard, W. A.; Fu, R. The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide. *Top. Catal.* **2014**, 57, 1171-1187.
7. Feyel, S.; Döbler, J.; Schröder, D.; Sauer, J.; Schwarz, H. Thermal Activation of Methane by Tetranuclear [V₄O₁₀]⁺. *Angew. Chem. Int. Ed.* **2006**, 45, 4681-4685.
8. Dietl, N.; Engeser, M.; Schwarz, H. Room-Temperature C-H Bond Activation of Methane by Bare [P₄O₁₀]⁺. *Angew. Chem. Int. Ed.* **2009**, 48, 4861-4863.
9. Dietl, N.; Höckendorf, R. F.; Schlangen, M.; Lerch, M.; Beyer, M. K.; Schwarz, H. Generation, Reactivity Towards Hydrocarbons, and Electronic Structure of Heteronuclear Vanadium Phosphorous Oxygen Cluster Ions. *Angew. Chem. Int. Ed.* **2011**, 50, 1430-1434.
10. Dietl, N.; Wende, T.; Chen, K.; Jiang, L.; Schlangen, M.; Zhang, X.; Asmis, K. R.; Schwarz, H. Structure and Chemistry of the Heteronuclear Oxo-Cluster [VPO₄]²⁺: A Model System for the Gas-Phase Oxidation of Small Hydrocarbons. *J. Am. Chem. Soc.* **2013**, 135, 3711-3721.
11. Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C-H bond activation. *Nature* **2002**, 417, 507-514.
12. Carroll, T. G.; Garwick, R.; Wu, G.; Ménard, G. A Mono-, Di-, and Trivanadocene Phosphorus Oxide Series: Synthesis, Magnetism, and Chemical/Electrochemical Properties. *Inorg. Chem.* **2018**, 57, 11543-11551.
13. Carroll, T. G.; Hunt, C.; Garwick, R.; Wu, G.; Dobrovetsky, R.; Ménard, G. An untethered C₃v-symmetric triarylphosphine oxide locked by intermolecular hydrogen bonding. *Chem. Commun.* **2019**, 55, 3761-3764.
14. Chu, J.; Carroll, T. G.; Wu, G.; Telser, J.; Dobrovetsky, R.; Ménard, G. Probing Hydrogen Atom Transfer at a Phosphorus(V) Oxide Bond Using a "Bulky Hydrogen Atom" Surrogate: Analogies to PCET. *J. Am. Chem. Soc.* **2018**, 140, 15375-15383.